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Living organisms show seasonality in a wide array of functions such as reproduction, fatten-
ing, hibernation, and migration. At temperate latitudes, changes in photoperiod maintain
the alignment of annual rhythms with predictable changes in the environment.The appropri-
ate physiological response to changing photoperiod in mammals requires retinal detection
of light and pineal secretion of melatonin, but extraretinal detection of light occurs in birds.
A common mechanism across all vertebrates is that these photoperiod-regulated systems
alter hypothalamic thyroid hormone (TH) conversion. Here, we review the evidence that a
circadian clock within the pars tuberalis of the adenohypophysis links photoperiod decod-
ing to local changes of TH signaling within the medio-basal hypothalamus (MBH) through
a conserved thyrotropin/deiodinase axis. We also focus on recent findings which indicate
that, beyond the photoperiodic control of its conversion,TH might also be involved in longer-
term timing processes of seasonal programs. Finally, we examine the potential implication
of kisspeptin and RFRP3, two RF-amide peptides expressed within the MBH, in seasonal
rhythmicity.
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INTRODUCTION
Seasonality is a critical property of most organisms. At tem-
perate latitudes, photoperiod is the main synchronizer of sea-
sonal functions. Photoperiodism defines the use of the annual
cycle of day and night length to coordinate functions such as
reproduction, fattening, hibernation, and migration with pre-
dictable changes in the environment, for example in food avail-
ability or climatic conditions. Seasonal changes in physiology
and behavior typically are innately timed long-term processes,
requiring weeks or months to wax and wane. Therefore, addi-
tional to photoperiodic readout mechanisms, living creatures
have evolved endogenous long-term timing devices, which allow
them to anticipate forthcoming seasonal changes. In the most
extreme cases, cycles of about 365 days recur for years in ani-
mals kept under constant photoperiods; such so-called cir-
cannual rhythms exist in a variety of birds and longer-lived
mammals.

Species with relatively short life spans such as voles and ham-
sters usually do not display circannual rhythms, but their seasonal
cycles also comprise an endogenously generated part, which corre-
sponds to the overwintering period and allows timely emergence
from the burrow and reproductive recrudescence in early spring.
Endogenous long-term timing is commonplace in vertebrates but
its mechanistic basis remains mysterious [for reviews, see Ref. (1–
6)]. Here we review findings, essentially in birds and mammals,
which clarify the mechanisms of photoperiodic readout and pro-
vide a rationale for the seasonal control of thyroid hormone (TH)
metabolism within the hypothalamus.

PHOTOPERIODISM: MELATONIN AND THE PARS TUBERALIS
The crucial role of melatonin in mammalian photoperiodism has
been established in many species including hamsters, ferrets, and
sheep (7–9). Within the pineal, melatonin is produced and released
during the night and therefore constitutes an internal neurochem-
ical representation of photoperiod. Timed melatonin-infusion
experiments established that duration is the key parameter of
the melatonin pattern that triggers the photoperiodic response
[for review, see Ref. (10)]. In order to map central binding sites,
autoradiography with 2-iodo-melatonin was used in a wide range
of mammals (11). Surprisingly, across all species the highest den-
sity of melatonin-binding sites was found in the pars tuberalis
(PT), a region of the pituitary stalk apposed to the median emi-
nence. The suprachiasmatic nuclei (SCN) also showed moderate
labeling in most species while many brain nuclei showed weak
to moderate labeling, with very little species overlap [for reviews,
see Ref. (12, 13)]. The presence of melatonin receptors within the
SCN was consistent with the effects of melatonin on daily timing
in mammals (14). Conversely, since the PT was the only neuroen-
docrine structure labeled in the highly photoperiodic ferret, a role
in seasonality was anticipated (15). However, melatonin-binding
sites were also disclosed within the PT of species, which are not
overtly photoperiodic such as mouse, rat, and human.

Melatonin-binding studies also led to the recognition that the
binding site(s) for melatonin was a classical GPCR, with picomo-
lar affinity for its ligand. In mammals, two high-affinity melatonin
receptors (MT1 and MT2) were cloned (16, 17). Subsequent stud-
ies showed that MT1 is the predominant subtype, both necessary
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and sufficient to mediate the photoperiodic effect of melatonin
(18–22). The number of central sites expressing melatonin recep-
tors as revealed by in situ hybridization was comparatively more
restricted – mostly the PT and the SCN – than that observed with
melatonin-binding studies. This may reflect the difference in sen-
sitivity of the techniques and/or the existence of a low-affinity
melatonin-binding site. The latter would be physiologically irrel-
evant, and probably corresponds to quinone reductase 2 rather
than a true melatonin receptor (23).

MELATONIN-DEPENDENT TSH RELEASE IN THE PARS
TUBERALIS
The PT is the most rostral part of the adenohypophysis. Many
reviews detailing the ontogeny, morphology, and immunohisto-
chemical characteristics of the PT are available (24–28). The PT
was once considered an “undifferentiated embryological remnant
of the hypophysis” whose “only function is to provide mechanical
support role for the hypothalamo-hypophyseal portal vessels” [see
Ref. (29)]. However, its location and anatomical features pleaded
in favor of a specific role: the PT extends along the ventral aspect
of the median eminence, surrounds the pituitary stalk in its most
caudal part, and is in contact with nerve endings of the median
eminence and capillaries of the pituitary primary plexus.

The PT is phylogenetically conserved in tetrapods, but is gen-
erally absent in fish (30), and consists of endocrine cells, which
exhibit early secretory activity compared to the pars distalis (PD).
Three different cell types occur in the PT: (i) follicular cells;
(ii) gonadotropes, which constitute ~10% of the endocrine PT
cells, have dense-core granules and occur mostly in the caudal PT
(known as the zona tuberalis); (iii) PT-specific cells, which are vir-
tually agranular thyrotropes and constitute ~90% of endocrine
PT cells. The PT gonadotropes appear identical to those in the
PD, while shape and ultrastructure of PT-specific thyrotropes dif-
fer strikingly from those in the PD (24, 25). These thyrotropes
were therefore suspected to be a peculiar pituitary endocrine cell
type, possibly producing a novel glycoprotein [“tuberalin,” Ref.
(31)]. These cells exhibit early secretory activity compared to PD
endocrine cells (32). This depends upon the induction of Tshβ

transcription by a transcription factor consequently called TEF
[Thyrotroph Embryonic Factor; Ref. (33)].

Based on ultrastructure and immunohistochemistry, these PT-
specific thyrotropes were predicted to be melatonin-responsive,
a prediction which has since been validated (34, 35). TSH
immunoreactivity within these cells displays dramatic melatonin-
dependent photoperiodic changes, with high and low levels under
long (LP) and short photoperiod (SP), respectively (36, 37).
Finally, the TSH produced by these PT-specific thyrotropes may
be identical to that produced by the PD, but the transcriptional
control of the Tshβ gene in the two populations differs since PT
thyrotropes do not express receptors for either TRH or TH (38).
Hence, Tshβ expression by PT-specific thyrotropes is disconnected
from the classical hypothalamic–pituitary–thyroid axis; instead it
depends upon melatonin.

However, considering the Harris dogma of a descending flow
of information from the hypothalamus to the pituitary, a role for
PT-derived TSH was not forthcoming. Rather, it was assumed that,
should the PT play a role in seasonality, it would most probably be

to release tuberalin(s) in the pituitary portal plexus, which would
then target the PD. This might be the case for the seasonal con-
trol of the lactotropic axis, even though the mechanism is unclear
(39). This aspect will not be considered further here as it has been
discussed elsewhere (28, 40–42).

THYROID HORMONE SIGNALING IN SEASONAL CYCLES
AN OVERVIEW
The pioneering work of Benoit on ducks in the 1930s revealed
that the thyroid gland is mandatory for seasonal transitions in
reproductive states, a finding which applies to a wide range of ver-
tebrates [reviewed by Nicholls et al. (43); Hazlerigg and Loudon
(44); Yoshimura (45)]. Thyroidectomy prevents the cessation of
breeding in starlings (46), quail (47), and sheep [Ref. (43, 48, 49);
for review, see Ref. (50)]. In rams, thyroidectomy during the non-
breeding season almost immediately reactivates the gonadotropic
axis (51). Therefore, TH appeared to transmit the message of
long-day lengths. Microimplants releasing small amount of TH
were then surgically placed within the brain of the ewe (52, 53),
which revealed that TH acts centrally, and most likely within the
medio-basal hypothalamus (MBH), to impact seasonal reproduc-
tion. Studies in Siberian hamsters using a similar microimplants
approach further showed that other seasonal axes are also con-
trolled by central actions of T3: providing T3 directly within the
MBH overrides the SP-induced inactivation of the gonadotropic
axis (54) and triggers premature gonadal recrudescence in SP-
exposed animals. T3 implants also override SP-induced seasonal
inappetence, weight loss, and expression of torpor [Ref. (55); see
Figure 1]. Similar outcomes are found when T3 is provided by
daily subcutaneous injections to SP-exposed hamsters (56). In
contrast to these effects on reproduction and energy metabolism,
T3 implants do not impact the lactotropic axis, consistent with
a distinct mechanism of control (57, 58) while not incompatible
with a common melatonin target tissue as discussed later.

FIGURE 1 |T3 implants prevent SP-induced inactivation of the gonadal
axis (red line) and reactivate the gonadal axis in SP-adapted Siberian
hamsters [green line; after data from Barrett et al. (54) and Murphy
et al. (55)]. Siberian hamsters (black line) kept in LP remain indefinitely
sexually active (broken lines) unless they are transferred to SP; gonads then
progressively regress (testes depicted here, but data are similar for female
reproductive organs). However, prolonged SP exposure leads to a
spontaneous recrudescence of the gonads, which reflects
SP-refractoriness.
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These observations added to the well-documented role of TH
in key transitions between life cycles, such as metamorphosis in
amphibians and developmental growth and differentiation of the
mammalian brain (59, 60). In adults, TH also has key roles in the
control of metabolism and thermoregulation, two processes inter-
twined with the seasonal reproductive cycle. The seasonal program
encompasses profound and coordinated changes in behavioral,
reproductive, and metabolic states (61). The finding that TH reg-
ulates the basal metabolic rate is not new, but the recognition
that it reflects a central action within the MBH is very recent (62,
63). Indeed, T3 injection within the MBH suffices to promote food
intake and weight gain in rats (64). Interestingly, this effect is mim-
icked by LP, which triggers weight gain in many species, including
sheep (65). Such a process bears critical adaptive value, best exem-
plified in species that hibernate (e.g., groundhog) or undergo daily
torpor (e.g., Siberian hamster), which have evolved a strategy to
build up abdominal fat depots during spring/summer to survive
the harsh winter season (1, 61). Photoperiodic cues and the meta-
bolic status interact in many seasonal breeders, including sheep
(66, 67), goats (68, 69), and horses (70). In all these species, feeding
modulates the duration of the breeding season and/or depth of the
anestrus. Therefore, TH integrates and coordinates physiological
changes, which are integral to the seasonal program.

LOCAL CONTROL OF TH METABOLISM WITHIN THE MBH
Although cold exposure activates thyroid activity, under constant
ambient temperature conditions, TH concentrations do not dis-
play marked or consistent seasonal fluctuations in the plasma or
cerebro-spinal fluid. Rather, fine temporal and local control of TH
action is achieved through opposite actions of specific enzymes
known as deiodinases (71–73). Deiodinase 2 (DIO2) converts the
relatively inactive T4 into the active T3 while deiodinase 3 (DIO3)
inactivates T4 by converting it into rT3, and also degrades T3 into
T2. Very precise control of T3 concentrations is further achieved
through reciprocal control of the expression and activity of these
two enzymes by their ligand: a hypothyroid state up-regulates
DIO2 and down-regulates DIO3, and vice-versa (72, 74, 75).

The central expression of Dio2 is restricted to a few structures.
The pineal gland is one of them (76), but the strongest expres-
sion occurs in astrocytes and tanycytes lining the third ventricle
and median eminence (77, 78). These tanycytes also express two
major TH transporters, MCT8 and OATP1c1 (79–81), and MCT8
is expressed at higher levels under SP than LP in the Siberian
hamster (82, 83). Tanycytes are a heterogeneous and complex pop-
ulation of ependymal cells, which constitute a gateway between
the CSF and the MBH and median eminence (84). In a pioneering
study, Yoshimura and colleagues (85) showed that both Dio2 and
Dio3 are expressed within tanycytes of the quail MBH. Crucially,
the expression of these two enzymes displays opposite regulation
by photoperiod: Dio2 is highly expressed under LP while Dio3
is highly expressed under SP. This predicted a local increase of
T3 content within the MBH under LP, which was validated by
radioimmunoassay (85). The opposite regulation of Dio2 and Dio3
by photoperiod has since been described in sparrows and Siberian
and Syrian hamsters (86–89). Importantly, the expression of Dio2
is down-regulated by melatonin, independently of sex steroids (88,
90). Melatonin is also required to trigger Dio3 expression under

SP in Siberian hamster (54). Collectively, these data provided an
enzymatic means through which local T3 levels in the MBH could
increase under LP.

CLOSING THE LOOP: TSH OUTPUT FROM THE PT GOVERNS T3
REGULATION WITHIN THE MBH
The PT seemed well located to mediate photoperiodic switches
in Dio2–Dio3 usage. To decipher the mechanism of the
photoperiodic response, Yoshimura and colleagues (91) set out
an ambitious experimental set-up: hypothalamic blocks contain-
ing the MBH and PT/median eminence from quails submitted
to a long-day transfer, known to activate the gonadotropic axis
within 24 h, were used for hybridization on a chicken gene chip.
This revealed that the expression of two genes, Tshβ and Eya3, is
rapidly triggered by the transfer from SP to LP. A second wave of
transcriptional changes was also observed for a handful of genes
including Dio2 and Dio3, which displayed acute and simultane-
ous induction and repression, respectively. Crucially, expression of
the cognate TSH receptor (TSHR) was found in tanycytes, which
express the deiodinases, providing the link between TSH output
from the PT and T3 regulation within the MBH. The pathway
was uncovered using an acute intracerebroventricular injection of
TSH to SP-exposed quails, which induced Dio2 expression and led
to gonadal recrudescence.

In a contemporaneous study in sheep, Hanon et al. (92) sug-
gested this mechanism to be ancestral, since their data were similar
in many respects: higher Tshβ expression within the PT under LP
than SP (see Figure 3A), expression of the TSHR within tany-
cytes and PT/median eminence, higher Dio2 expression under LP
than SP (see Figure 3A), and TSH-dependent induction of Dio2
both in vitro and in vivo. The latter finding was not unexpected,
since TSHR signals through a Gs protein, and Dio2 is a cAMP-
responsive gene (93). In contrast, the MT1 receptor couples to a
Gi protein and the interplay between TSHR and MT1 signaling
within the PT may be part of the photoperiod decoding mech-
anism, at least in sheep (92, 94, 95). Under LP, the PT therefore
functions as an “indirect T3-generator,” disconnected from both
TRH and T3 feedback (see above).

Since these studies in quail and sheep, a similar
TSH/deiodinases/T3 retrograde pathway (from the pituitary back
to the hypothalamus, Figure 2) has been described not only in
other photoperiodic species such as the European hamster (96),
the Syrian hamster (97), the Siberian hamster (89), the common
vole (98), but also in photoresponsive juvenile Fisher 344 rats (99)
and in a melatonin-producing but non-photoperiodic CBA/N

FIGURE 2 | Pathways for photoperiodic entrainment in mammals and
birds (see text).
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FIGURE 3 |The circadian clock of the pars tuberalis links melatonin to
the photoperiodic response [after data from Dardente et al. (138) and
unpublished data]. (A) Images representative of minimal and maximal
mRNA levels in situ hybridization autoradiograms for Cry1, Tef, Six1, Eya3,
Tshβ, and Dio2 in sheep kept under SP 8:16 and sheep transferred to LP
16:8 for 3 days (LP3) or 15 days (LP15). (B) The internal coincidence model
for photoperiodic time-measurement within the PT; SP situation on the left
side, LP on the right side, yellow and black indicate day and night. The
transcription of Eya3 is both clock-controlled and inhibited by melatonin,
hence the phase-relationship relative to Cry1 expression (a melatonin-
induced circadian gene) is similar irrespective of the photoperiod but Eya3
transcription increases only under LP as melatonin inhibition is relieved.
(C) Schematics of the transcriptional control of the Tshβ gene by TEF/
SIX1/EYA3. Note that EYA3 levels are higher under LP than SP.

mouse strain (22, 100, 101). Photoperiodic variations in Dio2
expression were however not observed in the non-photoperiodic
Wistar rat (88). The use of murine knock-out strains confirmed
that the MT1 melatonin receptor (22) and TSHR (100) are manda-
tory for the LP induction of Dio2 expression within tanycytes.
Whether this pathway is present in all vertebrates remains to be
determined (102).

As mentioned before, fish species investigated thus far do
not have a distinct PT, but in masu salmon a TSH/DIO2 axis
implicating the saccus vasculosus, located below the hypothala-
mus and caudally to the pituitary gland, has been proposed (103).
However, the saccus vasculosus is absent in several species of fish
such as the pike (104), which is nonetheless photoperiodic (105).

The other few studies on this matter in fish have yielded var-
ied outcomes (106, 107). Regarding birds, studies in tits (108) and
starlings (109) did not lend clear support to the model, but aspects
of the experimental set-up prevent any conclusion to be drawn.
For example, the studies of starlings were carried out in outdoor
aviaries, so effects of fluctuating temperature on the peripheral
thyroid axis may have obscured the photoperiodic regulation of
DIO2 and DIO3 centrally. Finally, we are not aware of any study
on this matter in either reptiles or amphibians.

ENCODING AND DECODING THE PHOTOPERIODIC MESSAGE
UPSTREAM OF THE PT
Birds and mammals possess a similar mechanism to respond to
photoperiod, but they perceive the photoperiodic message in dif-
ferent ways. In mammals, light is exclusively perceived by the
retina, with a key role for ganglion cells expressing the photopig-
ment melanopsin [for review, see Ref. (110)]. This information is
relayed to the circadian clock of the SCN, which governs mela-
tonin production by the pineal gland through a multi-synaptic
sympathetic pathway. Melatonin is the mandatory messenger of
photoperiod in mammals. In striking contrast, removing the eyes
and suppressing melatonin by pinealectomy does not disrupt pho-
toperiodism in birds [for reviews, see Ref. (44, 45, 111–113)]. In
birds, light goes through the skull and acts directly upon hypo-
thalamic deep-brain photoreceptors to control seasonal repro-
duction (Figure 2). Several photopigments expressed by different
cell types, all located within the MBH and projecting to the
PT/median eminence, are plausible candidates: VA-opsin (114),
neuropsin [Opn5, Ref. (115, 116)], and melanopsin [Opn4, Ref.
(117)]. The neurotransmitter(s) and/or neuropeptide(s) used by
these cells, and how they impinge on PT thyrotropes, remain to be
elucidated.

WITHIN THE PT: FROM THE CIRCADIAN CLOCK TO THE SEASONAL
OUTPUT
Photoperiodic species such as quail (118) and Siberian and Syrian
hamsters (119, 120) measure photoperiod length with remarkable
accuracy. In these three species, reproduction switches off when
the photoperiod is shorter than 12.5 h. The narrow photoperiod
range over which physiological changes occur is one of the lines of
evidence implicating some sort of daily timing device. The concept
that circadian clock(s), clocks with a period of about 24 h, control
seasonal timing is indeed not novel (120, 121).

The genetic and molecular bases and organization of circadian
clocks have been recently identified (122–124). These clocks are
not only located within the SCN, but are present in virtually every
tissue and cell where they impact “local” physiology. The PT is no
exception as it expresses a full set of clock genes and displays persis-
tent circadian rhythmicity in vitro [Ref. (125–127); for review, see
Ref. (28)]. The SCN and peripheral clocks share fundamental char-
acteristics: they are cell-autonomous and self-sustained. However,
individual cellular clocks within peripheral tissues rapidly become
desynchronized and exhibit phase drifting in the absence of regular
resetting by cues emanating, directly or indirectly, from the SCN.
These cues include inputs from the autonomic nervous system,
temperature cycles, and humoral factors such as glucocorticoids
and melatonin.
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The PT can be defined as a melatonin-dependent circadian
oscillator (28, 50). Resetting of the PT clock by melatonin requires
acute induction of Cry1 expression [Ref. (128, 129), see Figure 3A];
CRY1 being a key repressor of the circadian clock (130–132). The
acute induction of Cry1 expression involves EGR1-like factors
(133) and the transcription factor NPAS4 (134, 135). In sheep,
Cry1 expression remains tightly linked to the onset of melatonin
secretion and by implication night onset, irrespective of the dura-
tion of the day length [Ref. (136), see Figure 3B]. Interestingly,
light given during the night induces Cry1 expression within the
quail PT (137), which suggests a phylogenetically conserved role
for Cry1 in the photoperiodic resetting of the PT clock.

How do we connect melatonin resetting of the PT clock with
differential photoperiodic output of TSH and seasonal repro-
duction? The expression of the transcriptional co-activator EYA3
within the ovine PT displays large photoperiodic changes in both
phase and amplitude [Ref. (39, 138); see Figure 3A]. Interestingly,
Eya3 was the other gene (besides Tshβ) immediately induced in
the quail PT during the first long-day release experiment (91).
We therefore investigated the transcriptional control of Eya3 and
searched for a link between inductions of both genes. The expres-
sion of Eya3 is clock-controlled, through conserved DNA binding
motifs within its promoter, and therefore phase-locked to that of
the circadian clock [Ref. (138), see Figure 3B]. Because of this,
expression peaks during the night under SP but during the day
under LP. The amplitude of the peak is higher under LP than
SP because melatonin suppresses Eya3 expression, a suppression
which can only occur in SP-exposed animals [Ref. (138); see
Figure 3B]. Finally, in vitro data showed that induction of Tshβ

expression is triggered by the circadian-controlled transcription
factor TEF (33), which then recruits the co-activators SIX1 and
EYA3. This leads to a marked increase in transcription under LP
due to higher levels of EYA3 [Ref. (102, 138), Figures 3B,C]. A
critical role for SIX1/EYA3, but not TEF, in the photoperiodic
control of Tshβ transcription in the mouse PT has been proposed
(139, 140).

IS T3 OUTPUT SUFFICIENT TO ELICIT THE FULL SPECTRUM OF
SEASONAL CHANGES?
The data reviewed so far are consistent with a crucial role for the
TSH output of the PT in driving seasonal changes in T3 avail-
ability within the MBH. However, swings in TSH/T3 may not
be sufficient to elicit all seasonal changes. As mentioned before,
since control of the lactotropic axis does not depend on T3 [for
review, see Ref. (50)], complementary mechanisms are indeed
expected. Neuromedin U (89, 141), histamine, and VGF secre-
tion (82, 142, 143) may mediate seasonal effects on body weight
and metabolism since their synthesis and cognate receptors display
expression patterns and seasonal changes reminiscent of those seen
for TSH/TSHR. However, since TSH infusion in SP-adapted Siber-
ian hamster restores hypothalamic expression of somatostatin and
body weight to LP levels (144), Neuromedin U, histamine, or VGF
may be dispensable.

Retinoic acid signaling is also likely to be involved as retinoic
acid receptors, transporters, and associated binding proteins dis-
play prominent photoperiodic regulation in the ependymal cell
layer and posterior arcuate nucleus of Siberian hamsters and

juvenile Fischer F344 rats (142, 145, 146). Interestingly, the retinoic
X receptor (RXR) can heterodimerize with either the TH recep-
tors (THRα/THRβ) or the retinoic acid related receptor (RAR).
The target genes and downstream pathways governed by THR
and RAR diverge, and therefore the photoperiodic regulation of
RXR/RAR may fine-tune the seasonal adaptation of the metabolic
status. From a more general standpoint, the notion that tanycytes
coordinate a host of seasonal neuroendocrine cycles including
reproduction, metabolism, and hibernation is emerging rapidly
[Ref. (147, 148); for reviews, see Ref. (61, 149, 150)].

PHOTOPERIODIC TIMING AND THE CIRCANNUAL CLOCK: T3
AS A UNIFYING COMPONENT?
As mentioned earlier, whether species are classified as photope-
riodic (e.g., Siberian and Syrian hamsters) or circannual (e.g.,
sheep), part of the seasonal cycle is generated endogenously. Ham-
sters and sheep maintained under constant SP do spontaneously
revert to the opposite physiological state after several months. This
phenomenon, referred to as “SP refractoriness,” is typical of an
interval timer/hourglass (5, 151). In contrast, sheep but not Siber-
ian or Syrian hamsters, also display refractoriness to LP. Whether
this species difference reflects fundamentally divergent underly-
ing mechanisms is questionable. Indeed, Follett and Nicholls (47)
proposed years ago that “it may well be that essentially identical
physiological mechanisms underlie the photoperiodic responses
of a wide range of vertebrates and that very minor modifications
of these can cause surprisingly large (though superficial) changes
in the overt responses of the animal in terms of reproduction.”
These authors devised a model, based on differences in thresh-
old sensitivity, which rationalizes the LP refractoriness process
(see Figure 4). There are indeed similarities between the pho-
toperiodic control of the seasonal program in photoperiodic and
circannual species (43, 50, 152). Siberian or Syrian hamsters and
sheep might therefore exemplify “variations on a theme” rather
than fundamentally different models.

Because TH is involved in many long-term life cycles events,
it seems plausible that photoperiod-induced changes in T3 levels
may also trigger more profound long-term changes, culminating
weeks to months later. In particular, TH-induced plasticity and

FIGURE 4 | A model for long-day refractoriness [adapted from Figure 2
in Ref. (152)]. In sheep (left panel) and hamsters (right panel), exposure to
long days (black line) leads to the development of a mechanism of unknown
nature, most likely T3-dependent (red line). In sheep, the long-day drive
eventually exceeds a “threshold” (blue dotted line); the animal then
becomes refractory to long days and spontaneously reverts to an SP
phenotype. In hamsters, the long-day drive never exceeds the threshold
and the animal displays the LP phenotype indefinitely; exposure to SP is
mandatory to get the SP physiological state.
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cell-cycle related events have long time constants, which appear
compatible with seasonal cycles (6, 153). Recent data in sheep
demonstrate a photoperiodic gating of cell division within the
PT and ependymal cells of the 3V and are consistent with this
scheme (154–156). Nevertheless, whether photoperiodic gating
of cell division depends on TH and/or is involved in seasonal
transitions remains to be established.

To address a potential role for TH turn-over beyond the pho-
toperiodic response, we investigated the expression of Tshβ and
Dio2/Dio3 within the MBH of sheep under distinct physiological
states: LP, LP refractory (LPR) obtained after prolonged LP expo-
sure, SP and SP refractory (SPR) obtained after prolonged SP
exposure (157). The expressions of Tshβ and Dio2 were dimin-
ished in LPR compared to LP animals but remained low in SP and
SPR animals. The expression of Dio3 was high in SP but very low
in all other photoperiodic conditions, most notably under SPR; so
the expression of Dio3 under SP is transient (see Figure 5A).

Therefore, a diminished TSH output may cause the LPR state,
while development of the SPR state would be disconnected from it.
This would be consistent with the hourglass properties of the SPR
mentioned before. However, changes in Dio2/Dio3 may reflect an
indirect effect of photoperiod: within the MBH, the local hyper-
thyroid state triggered by persistent LP exposure would eventually
cross a certain threshold, thereby triggering Dio3 induction and
Dio2 down-regulation (72, 74, 75). Following this, T3 levels would

A

B

FIGURE 5 | Beyond the long-day response:TH metabolism within the
MBH in long-term timing. (A) Representative images of in situ
hybridization autoradiograms for Tshβ, Dio2, and Dio3 in sheep under four
different endocrine states: LP animals in a spring/summer-like state of
reproductive arrest, LP refractory (LPR) animals showing spontaneous
reproductive reactivation (late summer/autumn state), SP animals showing
autumn/winter-like reproductive activation, and SP refractory (SPR) animals
showing spontaneous reproductive arrest [adapted from Saenz de Miera
et al. (157)]. (B) Schematics depicting (i) the direct effect of LP and SP on
DIO2/DIO3 levels, respectively, intertwined with (ii) the possibility that their
activity and the resulting TH metabolism constitutes the core of a long-term
timing mechanism involved in refractoriness.

be cleared by DIO3, ultimately leading to the demise of Dio3
expression; LP exposure would then somehow be required to
induce Dio2 once more and prime a new cycle. This LP require-
ment to prime the seasonal sequence may explain why circannual
cycles in sheep are most obvious under constant LP (50).

Interestingly, Syrian hamsters in SPR state do not exhibit spon-
taneous reactivation of Dio2 expression (88) while Siberian ham-
sters do (83). Furthermore, Siberian hamsters express Dio3 upon
transfer from LP to SP but its expression is not sustained through
time (54, 83, 87), similar to what occurs in sheep (157). Therefore,
transient Dio3 expression under SP appears as a common feature
and may explain why Dio3 expression has not been observed in
Syrian hamster (54). Even though the relative variations of Dio2
and Dio3 differ between species (e.g., Siberian vs. Syrian hamster)
the central tenet remains the same: T3 levels are higher within the
MBH under LP compared to SP (158). Furthermore, TH metabo-
lism within the MBH may not only intervene in the photoperiodic
response but may also be integral to longer-term timing processes
such as circannual rhythms (see Figure 5B).

CONCLUSION
At this stage several outstanding questions remain: first, since the
same TSH/deiodinase/T3 pathway is triggered by LP not only in
long-day breeders (e.g., hamsters and quail) but also in short-
day breeders (e.g., sheep) and non-photoperiodic species (e.g.,
mouse), how do we get opposite responses, or no response at all,
of the hypothalamic–pituitary–gonadal axis? This is particularly
intriguing because the increased intra-hypothalamic availability of
TH is uniformly linked to an anabolic state across seasonal species.
Second, through which mechanisms do local changes of T3 within
the MBH ultimately impinge on gonadotropin-releasing hormone
neurons? Pertinent to this second question, the MBH hosts two cell
populations expressing RF-amide peptides which have attracted
particular attention: neurons of the arcuate nucleus, which express
Kiss1 and neurons of the VMH/DMH, which express the Rfrp pre-
cursor. The concept that these RF-amide peptides are involved in
seasonal breeding has been the topic of several excellent reviews
(50, 158–161) and we will therefore only briefly review the most
recent and salient findings.

Kisspeptin is a very potent GnRH secretagogue and governs
most aspects of reproduction in mammals including sexual differ-
entiation, steroid-dependent gonadotropin release, puberty onset,
and the control of fertility by metabolic cues (162, 163). Interest-
ingly, the annual onset of fertility in photoperiodic species had
been compared to a reoccurrence of puberty, and common under-
lying processes were anticipated (2, 164, 165). Kisspeptin therefore
appeared a prime candidate for the integration of photoperiodic
and metabolic cues across the seasonal program, a prediction
which has now received strong support (159–161).

In contrast to kisspeptin, the exact role(s) of peptides derived
from the Rfrp precursor, RFRP1 and RFRP3, remain(s) unclear
(160). RFRP3 may modulate feeding and various stress responses
(166, 167). In the context of breeding, RFRP3 inhibits GnRH in
sheep [Ref. (168), but see Ref. (169)] but inhibits or activates
GnRH in Syrian and Siberian hamsters, depending on the pho-
toperiod (170, 171). The Rfrp gene is orthologous to avian GnIH,
which gives rise to gonadotropin inhibitory hormone (GnIH),
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a peptide with well-characterized inhibitory effects upon the
gonadotropic axis in birds (172). Interestingly, there is no avian
ortholog of the Kiss1 (or Kiss2) gene (173), which implies that
the concept of a balance between KISS1 and RFRP3 in governing
GnRH secretion in mammals (174) does not apply to birds.

Both Kiss1 and Rfrp expression display marked photoperiodic,
melatonin-dependent, changes in mammals (159, 160, 175). Even
though melatonin receptors have been localized to several hypo-
thalamic nuclei it seems likely that the photoperiodic control over
Kiss1 and Rfrp is indirect [see above, Ref. (50, 145, 161)]. In this
context, a role for PT-derived TSH appeared plausible. In a land-
mark study,Klosen et al. (144) showed that intracerebroventricular
delivery of TSH in Siberian and Syrian hamsters induces Dio2
expression within ependymal cells, restores expression of Kiss1
and Rfrp to their LP levels and, most importantly, triggers reac-
tivation of the gonadal axis. Furthermore, Henson et al. (176)
showed that T3 injections to SP-adapted Siberian hamsters reac-
tivated the gonadotropic axis, thereby confirming prior data (see
Section “An Overview” and Figure 1), but also led to LP-like levels
of RF-amide peptides within the MBH.

Therefore, even though a theoretical possibility exists that
another TSH-dependent – but T3-independent pathway – leads to
seasonal changes of the reproductive axis, the most parsimonious
model is one in which T3 action on RF-amide neurons link the
photoperiodic production of TSH within the PT to the seasonal
control of GnRH secretion.
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