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Guanine nucleotide binding protein (G protein)-coupled receptors (GPCRs) function in com-
plexes with a range of molecules and proteins including ligands, G proteins, arrestins,
ubiquitin, and other receptors. Elements of these complexes may interact constitutively or
dynamically, dependent upon factors such as ligand binding, phosphorylation, and dephos-
phorylation. They may also be allosterically modulated by other proteins in a manner
that changes temporally and spatially within the cell. Elucidating how these complexes
function has been greatly enhanced by biophysical technologies that are able to moni-
tor proximity and/or binding, often in real time and in live cells. These include resonance
energy transfer approaches such as bioluminescence resonance energy transfer (BRET)
and fluorescence resonance energy transfer (FRET). Furthermore, the use of fluorescent
ligands has enabled novel insights into allosteric interactions between GPCRs. Conse-
quently, biophysical approaches are helping to unlock the amazing diversity and bias in G
protein-coupled receptor signaling.

Keywords: bioluminescence resonance energy transfer, BRET, fluorescence resonance energy transfer, FRET, GPCR,
GPCR-HIT, heteromer, Receptor-HIT

INTRODUCTION
Guanine nucleotide binding protein (G protein)-coupled recep-
tors (GPCRs), also known as seven-transmembrane receptors,
form the largest gene family in the vertebrate genome, with
1000–2000 members (1). To maintain homeostasis, GPCRs medi-
ate responses to a vast array of extracellular signals, including
light, ions, odorants, nucleotides, amino acids, glycoproteins, pro-
teases, neurotransmitters, peptide hormones, lipids, and mechan-
ical energy. Accordingly, GPCRs participate in many physiological
and pathological processes, and the ability of their function to
be modified with compounds presents GPCRs as highly useful
pharmaceutical targets. Indeed, it has been widely reported that
between 30 and 50% of medicines target this class of receptor
(2–4). However, a recent study reported that these drugs only
target approximately 30% of known non-olfactory GPCRs, and
a much smaller percentage of potential underlying targets have
been identified (5). The advent of increasingly powerful tech-
niques to investigate GPCR function has progressed the field
from a classical bimodal, monomeric theory of GPCR activity to
involve multimodal, oligomeric mechanisms. Multiple alternative
signaling pathways, allosterism, ligand bias, and receptor–receptor
interactions all generate diverse GPCR trafficking and signaling
outcomes. Notably, these mechanisms are not independent of each
other, but instead likely integrate to influence drug specificity and

efficacy. They are therefore the subject of intense focus for ongoing
and future drug development.

DIVERSITY OF GPCR FUNCTION IN OLIGOMERIC COMPLEXES
Guanine nucleotide binding protein (G protein)-coupled recep-
tors were formerly believed to function as monomeric entities,
although data from a number of early studies suggested other-
wise [reviewed in Ref. (6–8)]. Most notably, early work involving
the seminal GABAB1/GABAB2 heteromer has lent support to the
concept of GPCRs acting as oligomeric complexes (9–11), along
with studies of the taste receptor family (12–14). Biochemical and
increasingly powerful biophysical methods have helped strengthen
the growing body of evidence supporting the ability of GPCRs to
form such complexes (15–21), including homomers, heteromers,
and higher-order quaternary complexes (8, 22–25). When present
in oligomeric complexes, individual receptors (protomers) may
differ in their ability to bind ligands, traffic to/from the cell sur-
face, and modify overall signaling activity compared to when
present individually or in alternative complexes. In this way, indi-
vidual receptors within a macromolecular complex provide a level
of allosteric modulation that can ultimately alter the trafficking
and signaling output of the complex as a whole. Furthermore,
while these activities may be categorized and discussed as dis-
tinct events, allosteric modulation of ligand binding, signaling,
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and trafficking of receptors through oligomerization are highly
dependent processes.

RECENT ADVANCES IN MEASUREMENT OF GPCR
COMPLEXES USING BIOPHYSICAL TECHNIQUES
Recent advances in biophysical methods to monitor protein–
protein interactions have evolved through the discovery and opti-
mization of novel luciferase enzymes/substrates and fluorophores,
as well as improved sensitivity of detection instrumentation. Vari-
ants of green fluorescent protein (GFP) derived from Aequorea
victoria have resulted in optimization of the chemical stability
as well as the quantum yield of these proteins, enabling them
to be used to measure protein–protein interactions with greater
sensitivity, as well as for use in living organisms (26). Novel
luciferases, such as the optimized Renilla luciferases (26, 27) and
newly characterized enzymes from other marine species (28), are
providing molecular endocrinologists and pharmacologists with
more optimal tools to assess complex formation and function uti-
lizing resonance energy transfer (RET) techniques in vitro and
in vivo. These assays utilize the biophysical properties of Förster
RET that involves non-radiative transfer of energy from an excited
donor to a suitable acceptor. Fluorescence resonance energy trans-
fer (FRET) utilizes a donor fluorophore (such as cyan fluorescent
protein) that is excited by an external light source (such as a flash
lamp or laser), whereas bioluminescence resonance energy transfer
(BRET) utilizes a luciferase enzyme as donor that transfers energy
upon oxidation of its substrate. These approaches therefore enable
live cell protein proximity detection (29–31) and can be used to
monitor changes in conformations of individual GPCR protomers
as well as between multiple GPCRs in complexes.

FLUORESCENCE RESONANCE ENERGY TRANSFER/TIME-RESOLVED
FRET
A number of FRET-based techniques exist and have been exten-
sively reviewed elsewhere (32). Intensity-based FRET methods
have their limitations due to the overlap of fluorophore excitation
and emission spectra (33). Bleedthrough of the donor emission
into the acceptor detection window needs to be removed, as does
the component of the acceptor emission resulting from direct
acceptor excitation. Spectral unmixing is one approach to address
this issue (34).

Alternatively, the “unmixing” can occur temporally through
the utilization of time-resolved FRET (TR-FRET), which can also
overcome issues of photobleaching and high background autoflu-
orescence (35). This approach relies on energy transfer between
lanthanide donors (such as europium or terbium cryptate com-
plexes) and a suitable acceptor (such as the Cy-5-like cyanine dye,
d2, or the modified allophycocyanine, XL665). The exceptional
duration of fluorescence emission (300–1000 µs) from lanthanide
donors enables measurement of acceptor emission long after back-
ground fluorescence has decayed (35). This, together with the high
FRET efficiency between lanthanide and cyanine fluorophores,
and the chemically stable nature of cryptate complexes, results in
excellent signal-to-noise ratios for TR-FRET. As such, TR-FRET
assays are well suited to high-throughput screening (36), as well as
general investigative studies. When combined with labeling meth-
ods such as SNAP- and CLIP-tag technology or fluorescent ligands,

TR-FRET becomes a powerful tool for detecting GPCR proximity.
For example, a recent paper from the Milligan laboratory investi-
gated cannabinoid receptor 1 (CB1) and orexin receptor 1 (OX1)
heteromerization using TR-FRET and SNAP/CLIP tags, providing
evidence for a remarkable ability of OX1 to induce internalization
of the CB1–OX1 heteromer with greater potency than observed
with OX1 alone (37). Similar approaches have been used to deter-
mine the stoichiometry of homo- and heteromer populations at
the cell surface, specifically within the metabotropic glutamate
(mGlu) receptor family (38) or between dopamine D2 and D3
receptors (39).

Fluorescent ligands (see section below) offer a powerful alterna-
tive approach to labeling GPCR complexes (40–42), by removing
the requirement for engineered fusion proteins. Consequently,
they enable investigation of GPCR complexes in their native envi-
ronment, which is particularly useful given that the existence of
heteromers in vivo is much less well-established than in vitro.
Notably, TR-FRET between fluorophore-conjugated antagonists
has been used to demonstrate the existence of oxytocin receptor
homomers in primary mammary tissue (43, 44).

A recent paper demonstrated the use of TR-FRET antibod-
ies to quantify levels of EGFR/HER2 heterodimerization since
simultaneous in vivo treatment with antibodies that disrupted
this complex resulted in the greatest median survival rate (45).
Such a technique could also be used for screening compounds
that regulate heteromerization of GPCR complexes, depending
upon the availability of suitably validated GPCR antibodies and
a distinct and measurable functional effect of a particular com-
plex. The presence and proximity of protomers that constitute a
GPCR complex may also be inferred using epitope-tagged recep-
tors and fluorescently labeled antibodies to these epitopes. For
example, to detect proximity between CXCR3 and CXCR4, these
receptors were N-terminally epitope-labeled (HA-CXCR3/FLAG-
CXCR4) and TR-FRET was measured between TR-FRET-labeled
antibodies to these epitopes (46).

BIOLUMINESCENCE RESONANCE ENERGY TRANSFER
Following the oxidation of a suitable substrate by a luciferase
enzyme, typically a variant of Renilla luciferase (Rluc), such as
Rluc2 or Rluc8, BRET occurs through a non-radiative transfer of
energy to a complementary fluorophore, such as a variant of GFP, if
it is in sufficiently close proximity (47, 48). Critically, as with FRET,
energy transfer is dependent upon the distance between donor and
acceptor (inversely proportional to the sixth power), as well as their
relative orientation and degree of spectral overlap (29, 30, 49). The
BRET process occurs naturally in marine organisms such as the
jellyfish Aequorea victoria and sea pansy Renilla reniformis. Since
the seminal use of this technique to observe interacting clock pro-
teins (50), BRET has been used increasingly to monitor proximity
indicative of association, dissociation, or conformational changes
involving proteins of interest (29). Indeed, this method can be
used to observe intramolecular changes to protein conformation
in a bimodal manner indicating active or inactive states. This is
particularly important for biosensors, and will be detailed in the
next section (see Resonance Energy Transfer Biosensors).

Recent innovations in BRET technology have been extensively
reviewed (30), but briefly, the original BRET approach (now
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termed BRET1) generally uses an Rluc variant and yellow fluo-
rescent protein (YFP), as the donor and acceptor respectively, with
coelenterazine h as the enzyme substrate. A second generation,
termed BRET2, uses a synthetic coelenterazine, DeepBlueC, with a
blue-shifted donor emission spectrum, and modified GFP (GFP2)
(51). GFP10 is also a suitable BRET2 acceptor (52–55). BRET2 has
the advantage of increased spectral resolution between donor and
emission peaks, but this is overshadowed by rapid decay kinetics of
the substrate and a substantially reduced quantum yield (56, 57).
The distance ranges over which BRET1 and BRET2 energy transfer
occurs are comparable with FRET, with BRET1 being more sensi-
tive to proximity than BRET2 (58). BRET1 with Rluc/enhanced
YFP, and BRET1 with Rluc2 or Rluc8/Venus, exhibit minimal
energy transfer beyond about 6.5 and 8 nm, respectively, whereas
BRET2 extends to about 11 nm regardless of whether Rluc, Rluc2,
or Rluc8 is used (58).

Another permutation of BRET known as “extended BRET”
(eBRET) utilizes a protected variant of coelenterazine h
(EnduRen) and enables real-time monitoring of interactions for
extended time periods (47, 59, 60). This enables discrimination of
distinct kinetic profiles, such as between mutated receptors (61,
62). Similarly, protected DeepBlueC variants have also been pro-
duced, and may be of use to take advantage of increased spectral
resolution with a lengthened substrate half-life (63). A further
modification known as BRET3, utilizing a mutant fluorescent pro-
tein with red-shifted emission (mOrange), has also proved useful
for in vivo imaging (64, 65). Other variations of BRET, including
multiplexing, have also been devised to allow multiple acceptor
fluorophores, conjugated to various proteins of interest, to be acti-
vated in a cascade manner (66). For example, this has been used to
detect proximity between three proteins in a GPCR complex (67).

Recently, an investigation was carried out into novel luciferases
from marine organisms that resulted in the isolation and optimiza-
tion of a novel luciferase, “NanoLuc™,” derived from the deep sea
shrimp Oplophorus gracilirostris (28). Concurrently, a novel imi-
dazopyrazinone substrate, furimazine, was specifically developed
for use with this novel enzyme. NanoLuc™ is almost half the size
of Renilla luciferase [19 versus 36 kDa, respectively (28)], and this
could potentially result in a lower degree of interference or steric
hindrance of the luciferase tag when fused to a protein of interest
in mammalian cells. NanoBRET™ benefits from the substantially
increased brightness of NanoLuc™(28), enabling very low levels of
enzyme expression to be used. Furthermore, the 460-nm emission
maximum of NanoLuc™(28) is blue-shifted compared to the Rluc
variants with emission peaks of about 480 nm (57). Along with the
approximately 20% narrower spectral emission of NanoLuc™(28),
this enables better spectral separation from the acceptor emission.

RESONANCE ENERGY TRANSFER BIOSENSORS
Biosensors are novel molecular tools that can be used to investigate
the activity of a signaling or structural protein qualitatively and/or
quantitatively (68, 69). This may be in the form of bimodal out-
put, whereby either unimolecular or bimolecular peptide probes
are synthesized to include certain domains that measure a change
in the inactive or active state of an effector protein, and this con-
sequently causes a change in conformation of the biosensor, and
magnitude of signal output (68, 69). Importantly, these can be

used as screening tools to measure the activity of signaling or
structural protein activity in a high-throughput situation. Sev-
eral FRET biosensors have been developed for small GTPases,
involved in a number of regulatory and signaling activities in the
cell (68). Intracellular Ras activity of angiotensin receptor type
1 (AT1R) stimulated by angiotensin II has been observed using
a Ras biosensor, and found to have activity in certain compart-
ments (70). GTPases are activated and deactivated by guanine
nucleotide exchange factors (GEFs) and GTPase activating pro-
teins (GAPs), respectively (71). Therefore, if these proteins are
known, and the domains that they affect, fusion proteins can be
developed involving either a single domain, or two domains. If the
effector causes a considerable change in conformation, this may be
sufficient to enable a difference in the RET signal to be detected.
This has been developed for Rab5, a member of the Rab family
of GTPases involved in trafficking of GPCRs and other proteins
in transport vesicles throughout various compartments in the cell
(71), Quantitative changes using FRET probes have typically been
used as the RET method for a large proportion of characterized
biosensors, however, BRET probes are increasingly being used. An
ERK sensor “REV” has been developed incorporating BRET tags
to measure the phosphorylated or unphosphorylated state of ERK
(72). Similarly, G protein activation can be inferred by monitoring
interactions between G proteins and GPCRs using BRET (53, 73–
75). Other examples include BRET biosensors for cAMP (76) and
protein kinase A (77) [see Ref. (78) for review]. Although biosen-
sors can be created using artificial constructs, native proteins may
also be tagged at either N- or C-termini, or by integrating FRET
or BRET tags into internal domains of the protein, such as the
third intracellular loop of GPCRs, as recently demonstrated for
an odorant GPCR (79). Additionally, homogeneous time-resolved
fluorescence (HTRF) is a biosensor platform with a range of appli-
cations (80), including measurement of inositol-1-phosphate (61,
81, 82) and cAMP (61). Due to the impermeability of the metal
chelates, HTRF measurement either requires cell lysis or mild cell
permeabilization, the latter with Triton X-100 for example (75).

Proximity between BRET-tagged β-arrestin and BRET-tagged
ubiquitin can be monitored following activation of a co-expressed
GPCR, and the resultant kinetic profiles provide interesting
insights into receptor pharmacology, as seen when comparing V2R
with β2 adrenoceptor (83) or different orexin receptor subtypes
(62, 84). Alternatively, BRET1 and BRET2 can be utilized in par-
allel by co-expressing Rluc-tagged β-arrestin, YFP-tagged GPCR,
and GFP2-tagged ubiquitin, then measuring BRET in parallel cell
populations following addition of coelenterazine h (BRET1) or
DeepBlueC (BRET2) substrate (83).

DETECTION AND PROFILING OF GPCR HETEROMER COMPLEXES
The agreed definition of a receptor heteromer is a “macromolecu-
lar complex composed of at least two (functional) receptor units
with biochemical properties that are demonstrably different from
those of its individual components” (85). Notably, heteromeric
complexes may exist without GPCRs interacting directly, as other
complex components may be in between (86). To detect specific
heteromer complexes of GPCRs, suitable experimental controls
are required to differentiate between specific and non-specific
(bystander) reporter signals.
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The Receptor-Heteromer Investigation Technology (Receptor-
HIT) (87), includes Receptor Tyrosine Kinase-HIT (RTK-HIT)
(88) and the GPCR-Heteromer Identification Technology (GPCR-
HIT) as a novel approach for rapid identification, screening, and
profiling of GPCR heteromers (30, 46, 86, 87, 89–92) (Figure 1).
The approach consists of three essential components co-expressed
in live cells, (i) a GPCR fused to a proximity-based first reporter
component, (ii) an unlabeled GPCR, and (iii) a GPCR-interacting
group, linked to the complementary second reporter component,
whose interaction with the complex is modulated upon binding
a ligand selective for the unlabeled GPCR or the heteromer com-
plex specifically. Typically the first reporter component is fused
to the C-terminus of the GPCR and an intracellular interacting
group is used (Figure 1A), such as β-arrestin (86) or tagged G pro-
tein subunits (75). Indeed, our work with EGFR–HER3 complexes
recruiting Grb2 illustrates the diversity of potential intracellular
receptor interacting partners (88). However, by fusing the first

reporter component to the N-terminus of a GPCR and using a flu-
orescently labeled ligand as the interacting group/second reporter
component combination (Figure 1B), GPCR-HIT can be used to
assess ligand binding to the heteromer. Upon expression of the
aforementioned three components in cells, a ligand specific for
the unlabeled GPCR or the heteromer complex is added and the
reporter signal measured. If the GPCRs are not proximal, addition
of the ligand specific to the untagged GPCR will modulate the
interacting group’s proximity to the activated receptor, however,
as the two reporter components will not be in close proximity, no
modulation of the reporter signal will be measured. In contrast,
when heteromers of the GPCRs are present, addition of ligand
will modulate the interacting group’s proximity to the complex,
resulting in a change in reporter signal (Figure 1).

GPCR-HIT can be used on a broad range of reporter assay plat-
forms including FRET (e.g., CisBio’s HTRF®), BRET, bimolecular
fluorescence complementation (BiFC), bimolecular luminescence

FIGURE 1 | GPCR-Heteromer IdentificationTechnology
(GPCR-HIT). GPCR A is fused to the first reporter component, GPCR
B is unlabeled with respect to the reporter system, and a GPCR-
interacting group is linked to the complementary second reporter
component. The first reporter component is fused to the C-terminus

of the GPCR and an intracellular interacting group is used (A), or
ligand binding to the heteromer is assessed by fusing the first
reporter component to the N-terminus of a GPCR and using a
fluorescently labeled ligand as the interacting group/second reporter
component combination (B).
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complementation (BiLC), enzyme fragment complementation
(e.g., DiscoveRx’s PathHunter®), and proteolysis-based reporter
systems (e.g., Invitrogen’s Tango™). The GPCR-HIT technique
was recently demonstrated for two well characterized heteromers,
CCR2–CXCR4 and CCR2–CCR5 (86). In this study, untagged
CCR2 was co-expressed with β-arrestin2/Venus YFP and Rluc8-
tagged CXCR4 or CCR5. Addition of CCL2, the ligand selective for
CCR2, caused an increase in BRET signal indicative of β-arrestin
recruitment to the heteromeric complex (86). In addition to dose–
response and kinetic profiles, Z ′ factors were determined (>0.6)
for β-arrestin recruitment, which demonstrate the suitability of
this assay for drug screening programs (86).

GPCR-Heteromer Identification Technology was used to iden-
tify and profile a novel α1AAR–CXCR2 heteromer, potentially
relevant to benign prostate hyperplasia (BPH) (92). The α1AAR
is an important mediator of prostatic smooth muscle tone and
lower urinary tract function. Consequently, α1AAR antagonists
are used in the treatment of BPH (93). Typically, α1AAR inter-
acts extremely weakly, if at all, with β-arrestin in HEK293 cells
(94). However, α1AAR coimmunoprecipitates with β-arrestin in
prostate smooth muscle cells (95), suggesting a necessary cofac-
tor may be missing in HEK293 cells. We employed GPCR-HIT in
HEK293 cells using BRET with β-arrestin2/Venus as the acceptor.
When α1AAR/Rluc8 was expressed alone, norepinephrine failed
to induce recruitment of β-arrestin2/Venus to the receptor. How-
ever, when CXCR2 was co-expressed, norepinephrine caused a
marked increase in BRET signal, suggestive of a heteromeric
complex. Further investigation using CXCR2/Rluc8 and untagged
α1AAR with β-arrestin2/Venus revealed a much larger increase
in BRET signal compared to the reverse (BRET tag) configura-
tion, indicating that β-arrestin2 may be recruited to CXCR2 via an
allosteric interaction with norepinephrine-activated α1AAR. Inter-
estingly, the norepinephrine-dependent β-arrestin recruitment
was inhibited by SB265610, a CXCR2-specific inverse agonist, in
addition to Terazosin, an α1AAR antagonist. Furthermore, BRET
studies with both receptors tagged suggest that α1AAR–CXCR2
heteromerization is constitutive and not ligand-dependent (92).

Critically, the increase in signal observed with GPCR-HIT
is ligand-dependent and specific to the heteromeric complex.
The latter attribute is particularly important for demonstrating
unique pharmacology arising from heteromerization, whilst the
former enables heteromer-specific or biased compound screening
and profiling (89, 91). BRET saturation and competition assays
are often used to demonstrate the specificity of an interaction,
however, they do not provide important functional informa-
tion, as demonstrated when BRET saturation experiments were
used to assess the α1AAR–CXCR2 heteromer using α1AAR and
vasopressin receptor 2 (V2R) as a control (92). Surprisingly,
co-expression of α1AAR and V2R also resulted in a hyperbolic
curve indicative of specific proximity, despite a distinct lack of
noticeable change in receptor pharmacology and an absence of
norepinephrine-induced β-arrestin recruitment. In contrast, nor-
epinephrine caused a marked increase in β-arrestin recruitment
to the α1AAR–CXCR2 heteromer when compared to α1AAR alone
(92). BRET competition assay data, where increasing expression
of an unlabeled receptor reduces the BRET signal between BRET-
tagged receptors, should also be interpreted with caution. This is

because increasing the expression of unlabeled receptor can result
in lower expression of the BRET-tagged receptors, artifactually
resulting in a lower BRET signal (29). Therefore, whenever such
competition data are presented, they should be supported by data
showing relative receptor expression levels in the presence and
absence of the competitor.

PROTEIN-FRAGMENT COMPLEMENTATION ASSAY
Protein-fragment complementation assay (PCA) represents
another useful method for examining protein–protein interac-
tions both in vitro and in vivo (96, 97). With this approach, each
protein of interest is fused to one component of a split reporter
protein (Figure 2). In the absence of any interaction, the separate
fragments remain inactive (Figure 2A), however, when the two
proteins of interest interact in an appropriate manner, the com-
plementary fragments recombine to form a functional reporter
protein (Figure 2B). Various reporters can be used including
β-lactamase, dihydrofolate reductase, tobacco etch virus (TEV)
protease, GFP variants (termed BiFC), and luciferase (termed
bimolecular luminescence complementation, BiLC) (98, 99). Each
has particular advantages and limitations depending on the appli-
cation. For example, BiFC can be combined with fluorescence
microscopy to investigate the intracellular localization of the inter-
acting proteins. However, the recombination of GFP variants is
irreversible, and interactions cannot be visualized in real time due
to the slow maturation of the GFP. In contrast, luciferase-based
PCA fragments appear to mature faster and are thought to be more
reversible (97, 100). On the other hand, luminescence-based assays

FIGURE 2 | Protein-fragment complementation assay (PCA). This
approach typically utilizes the expression of two recombinant proteins of
interest fused to fragments of a split reporter protein (first and second
reporter components). In the absence of any interaction between the
proteins of interest, the separate reporter fragments remain inactive (A).
However, if the two proteins of interest come into close proximity then the
accompanying complementary reporter fragments are capable of
recombining to form a functional protein, resulting in an increase in reporter
signal (B).
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are generally not suitable for high resolution imaging. PCA is par-
ticularly useful for detecting weak protein–protein interactions
and can provide some measure of affinity, as for weak interactions,
BiFC signals are believed to be proportional to interaction strength
(101). However, careful selection of experimental controls is also
required (99), as by necessity the two reporter fragments must
retain some affinity for one another. Nevertheless, when combined
with other approaches, PCA is clearly a powerful technique. For
example, BiFC and GPCR-HIT were recently used in parallel to
investigate the novel pharmacology of AT1–AT2 heteromers (90).

COMBINATIONS OF PCA AND RET APPROACHES
Protein-fragment complementation assay can also be combined
with BRET or FRET to examine complexes containing three or
more proteins. For example a combination of BRET and BiFC,
using Rluc-tagged adenosine A2A receptors (A2AR), along with
A2AR-N-YFP and A2AR-C-YFP, was used to detect higher-order
oligomeric complexes of A2AR (102). Similarly, BRET experiments
have been carried out with dopamine D1 and D2 receptors tagged
with split Rluc8 fragments as well as Venus-tagged Gα subunits, to
demonstrate functional selectivity arising from heteromerization
(103). Furthermore, by using four fragments (split Rluc and split
Venus), Guo et al. demonstrated that the dopamine D2 receptor
(D2R) can exist in a complex of at least four receptor protomers
(104). BRET has also been combined with FRET to give sequential
RET (SRET) (105). Combinations of three fusion proteins were
used, Rluc-, YFP-, and DsRed-tagged (SRET1) or Rluc-, GFP2-,
and YFP-tagged (SRET2) (105). If all three proteins are present in
a complex, then Rluc substrate oxidation enables energy transfer
from Rluc to the BRET acceptor (e.g., YFP), which then has the
potential to act as a FRET donor to give sequential energy trans-
fer to the FRET acceptor (e.g., DsRed). Complex formation is then
inferred by specific measurement of FRET acceptor emission. This
approach was recently used to provide evidence for heteromeriza-
tion of adenosine A2A, dopamine D2, and cannabinoid CB1 recep-
tors (105). Similarly, SRET was used to investigate higher-order
complexes of adenosine A2A, D2, and mGlu5 receptors (106).

PROXIMITY LIGATION ASSAY
Proximity ligation assay (PLA) is a highly sensitive technique
used to directly visualize protein–protein interactions with single-
molecule resolution (107). PLA is an antibody-based approach of
which several variations exist [see Ref. (108) for review]. In one
of the more commonly used formats, two proteins of interest are
targeted with primary antibodies from different species, and fur-
ther labeled with two specific secondary antibodies conjugated to
oligonucleotides. Complementary oligonucleotides are added to
enable proximity-dependent (<40 nm) hybridization and ligation
to form a circular DNA template. The template is then ampli-
fied in situ and visualized with a fluorescently labeled oligonu-
cleotide probe. This approach yields a number of advantages over
well-established imaging techniques in that the amplification step
enables the visualization of individual protein complexes, whilst
the in situ nature of the assay allows for determination of subcellu-
lar localization. Furthermore, as bioengineered protein constructs
are not required, PLA can be used to visualize protein–protein
interactions in primary tissue. Notably, PLA was used in a recent

study in the Javitch laboratory to identify dopamine D2 and adeno-
sine A2A receptor heteromers in the striatum of mice ex vivo
(109). An important caveat is that PLA requires the use of well-
validated antibodies, which are not always available for GPCRs.
Nevertheless, PLA remains a powerful technique for investigat-
ing GPCR heteromers, as exemplified by studies on dopamine
D2–D4 receptor heteromers in HEK293T cells (110) and cysteinyl
leukotriene receptor-1 and -2 heteromers in INT-407 intestinal
epithelial cells (111).

FLUORESCENTLY LABELED LIGANDS TO DETECT GPCR
COMPLEXES
The cellular context within which a receptor is located can have
a major impact on ligand-binding affinity, efficacy, and the sig-
naling pathways that are subsequently activated (112–114). It
is therefore important to derive methods for the measurement
of ligand-binding affinity in living cells where the integrity of
the local cellular environment is maintained under physiologi-
cal conditions. Fluorescence-based ligand-binding assays have the
sensitivity and resolution to make measurements at the single-
cell level and high quality fluorescent ligands (both agonists and
antagonists) have become available in recent years to study GPCRs
(115–119). These have been successfully applied to imaging exper-
iments using confocal microscopy (117, 118, 120–122) and more
recently to fragment screening strategies in living cells using auto-
mated confocal imaging plate readers (123). The ability to monitor
ligand binding with fluorescent ligands in real time and at the level
of single living cells has also provided powerful insights into the
kinetics of ligand association and dissociation (42, 124, 125). Fur-
thermore, the ability to evaluate the influence of non-fluorescent
ligands on the dissociation kinetics of an orthosteric fluorescent
ligand has provided an opportunity for the study of allosterism
and negative cooperativity across dimer interfaces (42, 124, 125).

Fluorescent ligands have also been utilized with total inter-
nal reflection fluorescence (TIRF) microscopy. For example,
a recent study identified individual M1 muscarinic receptors
and determined their dimerization kinetics using TIRF and the
fluorescent antagonist, Cy3B–telenzepine (126). Similarly, the
monomer/dimer equilibrium of N -formyl peptide receptors was
measured using TIRF and Alexa Fluor 594-conjugated N -formyl
hexa-amino-acid peptide (127).

In addition to the direct imaging of the binding of a fluores-
cent ligand to an untagged wild-type receptor, fluorescent ligands
have also been used in TR-FRET applications where the ligand
and receptor (N-terminal) have been labeled with compatible TR-
FRET partners (41). This has also been adapted to apply TR-FRET
to the study of receptor dimers in native tissues (43). A simi-
lar strategy can be applied with NanoBRET™, using fluorescent
ligands and GPCRs tagged on their N-terminus with NanoLuc™.

FLUORESCENCE CORRELATION SPECTROSCOPY AND THE
MEASUREMENT OF LIGAND-BINDING IN SINGLE CELLS, MEMBRANE
MICRODOMAINS, AND NANODISCS
Biased signaling to particular intracellular signaling pathways
(113, 128–130) can be considered to be equivalent to the regulation
of GPCR ligand-binding and efficacy caused by small allosteric
ligands. In this case, however, it is the binding of intracellular
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signaling proteins to the intracellular facing domains of the
GPCR that mediates the allosteric effect. It is well-established that
allosteric ligands bind to a site distinct from the orthosteric bind-
ing site occupied by the endogenous natural ligand and produce
conformational changes in the receptor that may alter orthosteric
ligand-binding affinity, agonist efficacy, or both (113, 131–133).
In a similar manner, the interaction of a signaling protein with
a receptor has the potential to change the binding affinity of the
orthosteric ligand as a consequence of this allosteric interaction.
A feature of allosterism is that the effects observed are probe-
dependent (113, 132, 133). This means that the consequence of
any allosteric influence on the receptor will depend on the ligand
(probe) occupying the orthosteric site. As a consequence, agonists
will usually have a higher affinity for the receptor when it is bound
to an intracellular signaling protein and this will depend on both
the orthosteric agonist involved and the signaling protein to which
the receptor is coupled. This can manifest as signaling bias.

The location of the receptor and the signaling proteins can also
have a major impact on the signaling outcome of receptor acti-
vation. It is now known that GPCRs and signaling proteins can
be compartmentalized within the cell membrane (134–137). It is
also clear that signaling from GPCRs can be mediated from intra-
cellular domains following their internalization (138–141). This
not only provides a mechanism by which intracellular signaling
can be orchestrated by location within a cell, but also points to the
potential for different signaling pathways to be activated by the
same receptor in different cellular or membrane locations (135–
137). The latter possibility raises the need to develop techniques
by which the pharmacology of a receptor in a specific domain or
location can be monitored. One such technique is fluorescence
correlation spectroscopy (FCS) (142).

Fluorescence correlation spectroscopy is a quantitative bio-
physical technique that can measure the diffusional characteristics
and estimate the number of fluorescent particles (e.g., GPCR com-
plexes, signaling proteins, or fluorescent ligand-occupied receptor
complexes) within highly localized membrane microdomains of
single living cells (~0.2 µm2) (142–146). Fluorescent ligands in
combination with FCS have also been used to study the prop-
erties and behavior of a number of different GPCRs in discrete
membrane microdomains of single cells (117, 120, 134).

Fluorescence correlation spectroscopy uses a small confocal
detection volume created by focusing a laser to a diffraction-
limited spot using a lens with a high numerical aperture [see
Ref. (142) for further details]. Essentially, the resulting detection
volume is approximately 0.25–0.5 fl depending on the particular
excitation wavelength being used (i.e., a larger volume is created
with a red 633 nm laser compared to a green 488 nm laser). As flu-
orescent molecules (free fluorescent ligands, receptor-bound flu-
orescent ligands, GFP-tagged receptor complexes) diffuse through
this volume, they are excited by the laser and the emitted photons
are detected in a time-correlated manner using a single-photon
counting device (e.g., an avalanche photodiode). Over a period
of time, this leads to fluctuations in the measured mean level of
fluorescence intensity. Autocorrelation analysis (142) of these fluc-
tuations provides information on how long the species responsible
for a particular fluorescent fluctuation is present within the con-
focal volume (the average dwell time, t D) and also the number
(N ) of diffusing fluorescent species present. As the fluorescent

fluctuation data are collected in a time-correlated manner, it is
possible to extract from this information the number of fluo-
rescent particles present with particular t D values in complex
mixtures (142).

In the context of ligand-binding experiments, it is therefore
possible to obtain from FCS experiments the concentrations
(deduced from N and the actual confocal volume) of both fluo-
rescent ligand and ligand–receptor complexes on the basis of their
differing diffusion coefficients (117, 120, 134, 142). For exam-
ple, previous FCS work with a fluorescent adenosine A3 receptor
(A3R) agonist in CHO cells expressing the human A3R revealed an
agonist-occupied A3R complex with a membrane diffusion coef-
ficient of 0.12 µ2m/s (134). It is worth pointing out that this is
too slow to represent a single receptor and is more likely to be
representative of an oligomeric signaling complex within which
the receptor resides (117). Competition studies with an A3R-
antagonist (MRS1220) and an A3R-agonist (NECA) indicated that
this component had high affinity (low nanomoles) for both ago-
nists and antagonists (134). These data suggest that, at the very low
concentrations of fluorescent A3R-agonist required for FCS, selec-
tive labeling of the active (R*) form of the A3R can be achieved
(134). Furthermore, the lack of effect of pertussis toxin on this
high-affinity agonist binding suggested that the agonist-occupied
receptor detected was not coupled to Gi proteins (134).

The ability of FCS to effectively work at high resolution in
single-photon detection mode means that it also has the poten-
tial to monitor ligand-binding events to solubilized and puri-
fied GPCRs. The most successful approach to the reconstitu-
tion of these purified GPCRs into a membrane environment
has come from the use of high-density lipoproteins (HDLs).
HDLs, which are composed of a dimer of apolipoprotein A–I
surrounding a planar bilayer of approximately 160 phospho-
lipids, can be reconstituted in vitro to produce a disk-shaped
structure (nanodisc or nanolipoprotein particle) of 10–12 nm
in diameter and a thickness of 40 Å (147). Recently, nanodiscs
have been used to solubilize the Neurokinin 1 receptor (NK1R)
and to investigate the kinetics of the binding of fluorescent sub-
stance P to substance P-bound NK1R contained within nanodiscs
(148). The combination of these techniques has the potential
to investigate ligand-binding to defined receptor–receptor and
receptor–signaling protein stoichiometries (149).

CONCLUDING REMARKS
As our understanding of GPCRs has improved, revealing the con-
cepts of ligand and receptor bias, allosterism, and oligomerization,
so have biophysical technologies to monitor and evaluate their
function in ever more physiologically relevant ways. There is now
a bewildering array of approaches available, each with their own
strengths and weaknesses. Rigorously controlled application of
these technologies promises to unlock many more secrets of the
ever important GPCR superfamily.
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