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The obesity epidemic has drastically impacted the state of health care in the United States.
Aside from poor diet hygiene and genetics, there are many other factors thought to play a
role in the emergence of obesity and the metabolic syndrome.There has been a paradigm
shift toward further investigating the gut microbiota and its implications in the pathogenesis
of a variety of disease states, including inflammatory bowel disease, Clostridium difficile,
and most recently obesity and the metabolic syndrome.This article is intended to evaluate
the role of gut microbiota in the pathogenesis of obesity and metabolic syndrome and its
influence in future management.
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INTRODUCTION
The obesity epidemic has spread to more than 1/3 of the adult pop-
ulation in the United States. The estimated annual cost of obesity
and obesity-related disease in the United States was $147 billion
dollars in 2008, approximately $1,429 higher compared to those of
normal weight (1). Obesity-related disease such as atherosclero-
sis, diabetes mellitus, non-alcoholic fatty liver disease, and certain
types of cancer are the leading causes of preventable death in the
United States. Recent insights have suggested that microbiota play
a crucial role in pathogenesis of the metabolic syndrome. As a
result, we are in the midst of a paradigm shift in our approach to
battling the obesity epidemic. This article illustrates the underlying
pathophysiology of obesity and metabolic syndrome as it relates
to the gut microbiome, and potential intervention for treatment.

MICROBIOTA AND OBESITY: WHAT IS THE LINK?
The gut microbiota is thought to consist of approximately 1014

bacteria, which in its entirety is estimated to contain 150-fold more
genes than our host genome (2). Recent genetic investigations have
revealed that transmissible and modifiable interactions between
the microbiome and diet hygiene influence host biology (3).

In 2005, Bäckhead and colleagues sought to investigate the
role of the microbiome in germ-free mice (4). The investigators
found that alteration of the gut microbiome in germ-free mice
with microbiota harvested from conventionally raised, genetically
obese mice resulted in a 60% increase in body fat, and the develop-
ment of insulin resistance within 2 weeks irrespective of reduced
consumption (by 29%) and increased activity (by 27%) when
compared to germ-free mice whose microbiome was unaltered.
Subsequently in 2006, Turnbaugh et al. confirmed these results
and in addition found that this trait to be hereditarily transmissi-
ble (5). The investigators found that transfer of microbiota from

conventionally raised mice with a genetic pre-disposition to into
germ-free mice resulted in phenotypically obese mice. Recently in
2013, Riduara et al. sought to establish the relationship between
structural and functional configurations of the human micro-
biome and the resultant disease phenotype (3). In order to do,
the investigators transplanted germ-free mice with fecal micro-
biota from each member of four discordant twin pairs, one from
an obese (ob) or lean (ln) co-twin. The investigators found those
communities with microbiota from ob-twins were correlated with
differences in fermentation of short-chain fatty acids (SCFAs)
(increased in the ln populous), metabolism of branched chain
amino acids (increased in the ob populous), and microbial trans-
formation of bile acid species (increased in the ln populous) with
a net result of an increase in body mass and adiposity in the ob
subset as compared to its ln counterpart.

REGULATION OF HOST ENERGY BALANCE AND STORAGE BY
GUT MICROBIOTA
As discussed by Riduara et al. (3), a number of underlying mecha-
nisms are thought to coalesce within the host microbiome result-
ing in obesity. This section will dissect each underlying mechanism
as it relates to the microbiota and its development in obesity and
the metabolic syndrome.

ENERGY EXTRACTION FROM DIET
The composition and metabolic actions of the microbiota play a
significant role in energy processing of dietary intake. In 2011,
Jumpertz et al. evaluated the role of microbiota in regulating
nutrient absorption by pyrosequencing bacterial rRNA genes in
the feces of 12 lean and 9 obese individuals (6). Additionally,
invested calories were measured and compared to stool calories
with use of bomb calorimetry. The investigators found that alter-
ation of nutrient load induced changes in the microbiota, which
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directly correlated with stool energy loss an increased energy
harvest of approximately 150 kcal, which led to the conclusion
that microbiota may play a substantial role in the regulation of the
nutrient harvest.

BACTERIAL FERMENTATION AND ITS ROLE IN ENERGY HARVEST
The metabolites of dietary polysaccharides, namely monosaccha-
rides and SCFAs, are produced by the hydrolysis and fermentation
carried out by gut microbiota. These metabolites are absorbed and
act as an energy source by the host. In 2012, Lin et al. evaluated
the effects of SCFA administration in mice with the premise being
that SCFAs regulate gut hormones via free fatty acid receptors 2
(FFAR2) and 3 (FFAR3) ultimately protecting against diet-induced
obesity and the development of insulin resistance (7). They found
SCFAs, namely butyrate and propionate, to induce gut hormones
and to reduce overall intake independently via FFAR3. The authors
concluded stimulation of gut hormones and curbing of dietary
intake via butyrate and propionate to be a novel mechanism by
which the microbiota regulates host metabolism.

Microbial fermentation is a complex process resulting in the
production of SCFAs. Methanogens in the gut are thought to
play a pivotal role in fermentation and ultimately productions
of SCFAs with the net result being energy harvest and weight gain
(8). In 2006, Samuel and Gordon sought to evaluate the extent
to which Archea impact digestive health and were able to demon-
strate an impact on host energy harvesting via bacterial utilization
of polysaccharides and ultimately the production of SCFAS (9).

Conterno et al. analyzed the fermentation activity of
gut microbiota and found it to be increased in obesity
(10). Subsequently, Schwiertz and colleagues quantified fecal
SCFAs in lean (BMI= 18.5–24.9 kg/m2; n= 30), overweight
(BMI= 25–30 kg/m2; n= 35), and obese (BMI=>30 kg/m2;
n= 33) volunteers (11). The investigators found the concen-
tration of fecal SCFAs to be significantly greater in the obese
cohort (103.9± 34.3 mmol/l) as compared to the overweight
(98.7± 33.9 mmol/l) and lean (84.6± 22.9 mmol/l) subjects,
which led them to conclude there to be a greater production of
SCFA in obese and overweight individuals.

SUPPRESSION OF FASTING-INDUCED ADIPOCYTE FACTOR
Lipoprotein lipase (LPL) plays a pivotal role in hydrolyzing triglyc-
erides and releasing fatty acids for transport into adipocytes.
Upon entering adipocytes, these fatty acids are re-esterified into
triglycerides and stored as fat. Secreted by adipose, intestine,
and liver, angiopoietin-like 4 [fasting-induced adipocyte factor
(Fiaf)] antagonizes the activity of LPL, thus preventing storage
of triglycerides as fat (8). Bäckhead and colleagues demonstrated
an increase in LPL activity in adipose tissue by 122% and simul-
taneous decrease in Fiaf expression with a net result being an
increase in body fat upon conventionalization of germ-free mice
(4). Subsequently, Bäckhead et al. evaluated the effect of Fiaf
on limit catabolism by comparing the susceptibility of germ-
free Fiaf-deficient mice to germ-free wild-type mice (12). The
germ-free Fiaf-deficient mice were not resistant to western diet-
induced obesity in comparison to germ-free wild-type mice. The
investigators were able to demonstrate a model in which the gut
microbiota suppresses Fiaf expression in response host sensitivity

to over nutrition, thereby increasing LPL activity and ultimately
fat deposition in adipocytes.

SUPPRESSION OF ADENOSINE MONOPHOSPHATE-ACTIVATED
PROTEIN KINASE
Adenosine monophosphate-activated protein kinase (AMPK) is
an enzyme that plays an active role in energy homeostasis. It is
expressed primarily by brain, liver, and skeletal muscle in response
to an in AMP:ATP or NAD:NADH ratios, which indicate meta-
bolic stress. As a result, AMPK acts to offset the energy deprived
state by stimulating fatty acid oxidation, ketogenesis, glucose
uptake,and insulin secretion while inhibiting cholesterol synthesis,
lipogenesis, and triglyceride synthesis (13).

Bäckhead and colleagues demonstrated that conventionaliza-
tion of germ-free mice resulted in a reduced expression of AMPK
(12). In particular, AMPK expression in the skeletal tissue of con-
ventionalized mice was markedly reduced when compared to their
germ-free counterpart. Therefore, when both populations were fed
a western diet, the germ-free population exhibited increased fatty
oxidation, which may attribute to their lean phenotype despite
exposure to a western diet. In addition, the investigators noted
significantly elevated levels of AMP and NAD+ in skeletal muscle
and liver, respectively, in the germ-free populations. As a result,
the investigators concluded that the microbiome has a suppressive
effect on AMPK activity with a downstream effect on fatty acid
oxidation, thereby predisposing the host to obesity and insulin
resistance (12).

INTERACTION BETWEEN SCFAs AND G-PROTEIN-COUPLED RECEPTORS
As previously discussed, carbohydrate fermentation results in the
production of SCFAs, which ultimately results in the regulation of
gut hormones such as glucagon-like peptide (GLP) and peptide
YY (PYY). These gut hormones are responsible for satiety through
regulating the production and release of digestive enzymes (10).
Pharmacological and genetic approaches have revealed that the Y-
2 receptor mediates the anorectic effects of PYY3–36 (14). Recent
studies in rodents have identified the hypothalamus, vagus, and
brainstem regions as potential sites of action (15). Using func-
tional brain imaging techniques in humans, PYY3–36 was found
to modulate neuronal activity within hypothalamic and brain-
stem regions involved in reward processing. Thus, the sequence
inducing overeating behavior would be alteration of the micro-
biota and the inhibition of secretion of PYY3–36. Several lines of
evidence suggest that low circulating PYY concentrations predis-
pose toward the development and maintenance of obesity (16).
Subjects with reduced postprandial release exhibit lower satiety
and circulating PYY levels that correlate negatively with markers
of adiposity. In addition, mice lacking PYY are hyperphagic and
become obese. Conversely, chronic PYY3–36 administration to
obese rodents reduces adiposity. Transgenic mice with increased
circulating PYY are resistant to diet-induced obesity. The retained
responsiveness of obese subjects to the effects of PYY-36 suggests
that targeting the PYY system by alteration of the microbiome may
offer a therapeutic strategy to help treat obesity.

The signaling cascades of SCFAs are mediated by G protein-
coupled receptors, namely FFAR2 and FFAR3. Propionate and
butyrate have an affinity for FFAR2, whereas acetate appears to
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have an affinity for FFAR2 (17). The role of FFAR2 is predom-
inantly to promote energy storage by stimulating adipogenesis,
inhibiting lipolysis and decreasing energy expenditure (8). In the
colon, both FFAR2 and FFAR3 work in tandem to regulate intesti-
nal motility and satiety via GLP-1 (18). Bjursell and colleagues
noted FFAR2-deficient mice (Gpr43−/−) who were exposed to
a high-fat diet had significantly lower body fat mass, increased
lean body mass, greater insulin sensitivity, and lower triglyceride
and cholesterol levels than their wild-type counterparts (19). His-
tologically, the investigators noted a decrease lipid interspersed
in brown adipose tissue of the FFAR2-deficient mice while ulti-
mately resulted in higher energy expenditure and higher core body
temperature leading to the conclusion that FFAR2 has a protec-
tive effect against obesity and dyslipidemia via increased energy
expenditure. Samuel et al. evaluated the effect of gut microbiota
on adiposity by observing mice deficient in FFAR3 (Gpr41−/−) in
comparison to wild-type (Grp41+/+) (20). The investigators noted
that FFAR3-deficient mice had significantly lower body fat mass
and increased lean body mass in comparison to their wild-type
counterpart, which the investigators attributed to reduced expres-
sion of PYY in FFAR3-deficient mice. The downstream effect of
this is the stimulation of gut motility and increased energy expen-
diture coupled with reduced food intake thereby creating a dual
effect on energy balance. Increased expenditure and reduced intake
generated by an altered microbiome. This led the investigators to
conclude that FFAR3 is a regulator of host energy homeostasis
through effects that are microbiota dependent. The dual effect is
likely to have a greater impact than current medications targeting
only one modality.

REGULATION OF LIPOGENESIS
Conventionalization of germ-free mice results in a drastic increase
in hepatic lipogenesis, a process by which excess glucose is con-
verted to lipids for storage (8). In conventionalized germ-free
mice, increased glucose intake and subsequent absorption leads
to the activation of carbohydrate response element-binding pro-
tein (ChREBP), acetyl-CoA carboxylase (Acc1), fatty acid synthase
(FAS), and sterol response element-binding protein-1 (SREBP-
1), which in turn increases lipogenesis and insulin concentration
(8, 10). It is important to further distinguish the pathways that
result in lipogenesis versus that resulting in a negative caloric
balance as potential for therapy. Go et al. recently postulated
that gut microbiota producing t10,c12 conjugated linoleic acid
induced lipogenesis (21). There was a marked increase in lipid
accumulation via enhanced incorporation of acetate, palmitate,
oleate, and 2-deoxyglucose into triglycerides as well as an increased
mRNA expression and protein levels of lipogenic genes, which
include SREBP-1, ACC1, FASN, ELOVL6, GPAT1, and DGAT1.
This led the authors to conclude that gut microbiota production
of t10,c12, conjugated linoleic acid activates de novo lipogene-
sis and triglyceride synthesis resulting in lipid accumulation and
increased hepatic steatosis.

EFFECT OF IMPAIRED INNATE IMMUNITY
Toll-like receptors (TLRs) are a type or pattern recognition recep-
tor, which work in concert with Interleukin-1 receptors to form
a receptor superfamily known as the “interleukin-1 receptor/TLR

superfamily.” Recent studies have targeted TLRs detrimental role
in diabetes and its complications. TLRs have since been implicated
in the pathogenic process of diabetes via increased blood sugar
and non-esterified free fatty acids, and release of cytokines and
reactive oxygen species resulting in a pro-inflammatory state that
manifests diabetes (22). Toll-like receptor 5 (TLR5) is a protein,
which plays a pivotal role in the activation of innate immunity
through pathogen recognition via microbe-associated molecu-
lar patterns (MAMPs) expressed on bacteria, viruses, and fungi
(23). The recognition of PAMPS by TLR5 results in the induction
of inflammatory cascades and downstream transcription of vari-
ous inflammatory cytokines and mediators. Thus, the interaction
between microbiota and TLR5 is vital in intestinal homeostasis (8).

The majority of intestinal epithelial cell lines are responsive
to flagellin, for which TLR5 has a high affinity. In response to
flagellin, TLR5 includes the inflammation cascade via a num-
ber of transcription factors, most notably NFκB, in order to
enhance host defense and improve survival (24). Vijay-Kumar
et al. demonstrated that TLR5-deficient mice (TLR5−/−) were
prone to developing hallmark features of metabolic syndrome
including insulin resistance, hypertension, and hyperlipidemia
(25). In addition, TLR5-deficient mice exhibited hyperphagia and
as a result developed increased adiposity. Transfer of microbiota
from TLR5-deficient mice to its wild-type germ-free counter-
part resulted phenotypic manifestation of metabolic syndrome.
Interestingly of note, the investigators demonstrated that food
restriction in the TLR5-deficient subset prevented obesity, how-
ever insulin resistance remained unaffected. The investigators
concluded that the gut microbiota contributes to the metabolic
syndrome and that malfunction of the innate system may further
promote its development.

ALTERING HOST MICROBIOME: A POTENTIAL CURE?
Understanding the effect of the intestinal microbiome on the
pathogenesis of metabolic syndrome and insulin is of utmost
importance in developing alternative approaches to therapy. It is
also important to isolate specific microbes that may contribute to
obesity, and therefore be a potential for targeted therapy. Let et al.
analyzed rRNA sequences from genetically obese mice, lean mice,
wild-type siblings, and their mothers, all of whom were fed the
same diet (26). The investigators found that the mouse and human
microbiota compositions to be quite similar, with Firmicutes and
Bacteroides predominating the gut flora. The investigators also
noted that genetically predisposed mice had a 50% reduction in
Bacteroites with a proportional increase in Firmicutes, which led to
the conclusion that the diversity of the gut microbiota is affected by
obesity and manipulation of the flora may be useful in regulating
energy homeostasis in the obese population. This section will delve
into potential therapies assessing the specific impact on specific
microbiota, global microbiome as well as energy homeostasis.

DIET
Diet has recently been implicated in its influence on the gut flora,
which led investigators to further evaluate whether diet is solely
responsible for the gut microbiota, irrespective of obese pheno-
type. Hildebrandt et al. investigated the effect of the host pheno-
type, genotype, immune function, and diet on the gut microbiome
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(27). The investigators switched lean wild-type and RELMbeta
knockout mice from a standard diet to a high-fat diet and noted
that wild-type mice became obese whereas the RELMbeta knock-
out mice remained comparatively lean. The investigators found a
significant decrease in Bacteroides and an increase in Firmuctes in
both subsets, which implicating the diet as a source of change in
the gut flora and not the obese phenotype, which led to the conclu-
sion that diet is of importance as a determinant of gut microbiome
composition. Subsequently, Fleissner et al. evaluated the influence
on various diets on the gut microbiota (28). The investigators
exposed germ-free and conventional mice to either a low-fat diet
(carbohydrate–protein–fat ratio of 41:42:17; 19.8 kJ/g), a high-
fat diet (carbohydrate–protein–fat ratio of 41:16:43; 21.4 kJ/g)
or a commercial Western diet (carbohydrate–protein–fat ratio of
41:19:41; 21.5 kJ/g). They found no difference in body weight
between the germ-free mice or conventional mice on the low-
fat diet, however, when exposed to the high-fat diet germ-free
mice gained more body weight and fat when compared with con-
ventional mice, and lower energy expenditure. Germ-free mice
gained markedly less body fat on the Western diet in compari-
son to germ-free mice on the high-fat diet. The investigators then
examined the fecal composition of the conventional mouse and
found it differed between the diets, with Firmicutes increased on
both the high-fat diet and Western diet with proportional decrease
in Bacteroides, leading to the conclusion that the absence of micro-
biota does not provide protection from diet-induced obesity and
the diet composition has a significant impact on the microbial
composition.

PREBIOTICS
Prebiotics are non-digestible polysaccharides that stimulate the
growth of bacteria within the digestive system, namely Bifidobac-
terium and Lactobacillus. By doing so, prebiotics promote SCFA
production and promote gut barrier function (8). Cani et al.
evaluated the effect of Bifidobacterium in modulating the inflam-
matory tone and the development of insulin resistance and obesity
(29). They found that the addition of Bifidobacterium antago-
nized the pro-inflammatory state produced by the gut microbiota
in response to a high-fat diet, which would normally predispose
an individual to insulin resistance and obesity. Everard and col-
leagues sought to investigate the effect of prebiotic administration
in obese and diabetic mice (30). They found prebiotic admin-
istration decreased the Firmicutes and proportionally increased
the Bacteroides populations in genetically susceptible mice. In
addition, they found that prebiotics improved glucose tolerance,
reduced adiposity, and low-grade inflammation, which led the
authors to conclude that modulation of microbiota with prebi-
otics, improves energy homeostasis in obese and diabetic mice. A
recent meta-analysis by da Silva and colleagues dissected 61 orig-
inal articles describing the relationship between the microbiota
and obesity and the possible impacts of prebiotics and probiotics
(31). The authors found the main effect of associated weight loss
was related to an increase in Bifidobacteria.

Oligofructose is a prebiotic agent fermented by a number of
colonic bacteria used to stimulate the grown of beneficial bacte-
ria (32). Parnell and Reimer evaluated the effects of oligofructose
supplementation on body weight and concentrations of ghrelin

and PYY as a measure of satiety in overweight and obese adults
(33). They randomized 48 healthy adults (BMI >25 kg/m2) to
receive either oligofructose (21 g/daily) or placebo (maltodextrin)
for 12 weeks. They found a reduction of 1.03± 0.43 kg in patients
with oligofructose as compared to an increase of 0.45± 0.31 kg
(p= 0.01). In addition, they found a lower area under the curve
for ghrelin (p= 0.004) and a higher area under the curve for
PYY with oligofrutcose (p= 0.03), which coincided with a reduc-
tion in caloric intake and insulin concentrations (p≤ 0.05). This
led authors to conclude that oligofructose supplementation has a
potential benefit in promoting weight loss as well as improving
glucose regulation in overweight and obese adults.

PROBIOTICS
Probiotics are live microorganisms administered in attempt to
reconstitute the gut microbiota, namely Bifidobacterium, Lacto-
bacillus, Saccharomyces, Streptococcus, and Enterococcus. To date,
most clinical trials reported use a combination blend of vari-
ous microorganisms, which make it difficult to extrapolate, which
may be beneficial, and which may be potentially harmful. Sev-
eral case reports have implicated probiotics as a culprit of severe
adverse effects in critically ill patients, including fungemia (Saccha-
romyces boulardii) (34–36), and thus should be used with caution
in critically ill and immunocompromised patients.

Ma and colleagues sought to evaluate the effect of probiotics on
obesity, steatosis formation, and insulin resistance. In this study,
wild-type mice were exposed to either normal or high-fat diets
with some receiving VSL#3 (a probiotic mixture of three strains
of Bifidobacterium and four strains of Lactobacillus) (37). They
found a high-fat diet to deplete nature killer T-cells with sub-
sequent steasosis formation and insulin resistance. Those mice
exposed to probiotic therapy improved the high-fat diet-induced
natural killer T-cell depletion and as a result improved steatosis
and insulin resistance.

Kakooda et al. evaluated the effects of Lactobacillus (LG2055)
on abdominal adiposity in adults with obese tendencies (38).
The investigators randomized 87 subjects (BMI 24.2–30.7 kg/m2;
abdominal visceral fat area 81.2–178.5 cm2) to received either
fermented milk with (n= 43) or without (n= 44) LG2055 for
12 weeks. They found that those receiving LG2055 had a signifi-
cant reduction (p < 0.01) in abdominal visceral and subcutaneous
fat areas compared to baseline by an average of 4.6%. In addition,
body weight, BMI, waist, and hip measurements were significantly
decreased (p < 0.001) by 1.4, 1.5, 1.8, and 1.5%, respectively. The
authors concluded that probiotic LG2055 has a beneficial influence
on metabolic disorders by lowering effects on abdominal adiposity,
body weight, and other measures.

FECAL TRANSPLANT
Fecal microbiota transplantation (FMT) has been utilized for over
50 years, but has recently gained momentum given its high effi-
cacy in eradicating Clostridium difficile infection (39). Recently,
there have been several trials evaluating the prospect of altering
the gut microbiome as a potential for therapy in obesity and the
metabolic syndrome. Vrieze et al. evaluated the effects of FMT on
insulin sensitivity in individuals with metabolic syndrome (40).
Subjects with metabolic syndrome were randomly assigned to
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FIGURE 1 | Gut microbiota and its influence on obesity and the metabolic syndrome.

groups set to receive small intestinal infusions from lean donors
or autologous microbiota. Subjects who received infusions from
lean donors were noted to have an increase in insulin sensitivity
(glucose disappearance changed from 26.2 to 45.3 mmol/kg/min;
p < 0.05) and an increase in butyrate-producing intestinal micro-
biota 6 weeks post transfusion. This led authors to conclude that
intestinal microbiota might be developed as a therapeutic agent to
increase insulin sensitivity in patients with metabolic syndrome
and insulin resistance.

OBESITY: A LOW-GRADE INFLAMMATORY STATE
Metabolic alterations resulting in obesity is associated with a low-
grade inflammatory state affecting energy homeostasis and glucose
metabolism. Recently,Cani et al. described metabolic endotoxemia
as a result of microbiota-derived LPS as a trigger involved in the
onset and progression of inflammatory and metabolic sequelae
(41). They noted adipose tissue F4/80-positive cells and markers
of inflammation were markedly increased in mice continuously

infused with LPS. These mice also demonstrated insulin resis-
tance, and adipose tissue weight gain similar to mice that were fed
a high-fat diet, which led the authors to conclude that metabolic
endotoxemia as a result dysregulates inflammatory tone result-
ing in the onset and progression of metabolic sequelae such as
weight gain and diabetes. Van Greevenbroek et al. further delin-
eated the relationship between obesity and the resultant low-grade
inflammatory state (42). They suggested that adipocyte necrosis
may be the foundation for the pro-inflammatory response in obe-
sity as caloric intake and energy expenditure result in adipocyte
hypertrophy, which may be associated with local hypoxia and
apoptosis. Hypertrophic adipocytes begin to secrete TNF-alpha in
low quantities stimulating a chemotactic response and attracting
macrophages in response to the increase in adipocyte turnover.

CONCLUSION
Obesity and its related complications are a major detriment on
the current state of health care and have significant health care
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economic implications globally. The evidence presented strongly
suggests that the gut microbiota plays a pivotal role in regulat-
ing energy homeostasis and the development and progression
of obesity and its associated metabolic disorders. It appears that
manipulation of the gut flora may be an avenue for potentials
of targeted therapy, however, further studies are necessary before
implanting them into standard clinical practice. The depth and
breadth of the intestinal microbiome remains unknown, and as
a result the data presented remains to be established in the clin-
ical realm. Optimal disease state management therefore remains
to be defined and remains a significant focus for further clinical
investigation. As the “ideal” composition of the gut microbiota
starts to unravel, modification must be pursued with caution. The
impact of the gut microbiota on obesity and metabolic syndrome
is summarized in Figure 1.
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