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Physiological concentrations of the green tea extract epigallocatechin-3-gallate (EGCG)
caused growth inhibition in estrogen receptor α (ERα)-positive MCF7 cells that was asso-
ciated with down-regulation of the ERα and reduced insulin-like growth factor binding
protein-2 abundance and increased protein abundance of the tumor suppressor genes
p53/p21. In contrast to MCF7 cells that have wt p53, EGCG alone did not change cell prolif-
eration or death significantly in another ERα-positive cell line T47D that possesses mutant
p53. EGCG increased ERα protein levels and as a consequence, the cells responded sig-
nificantly better to an ERα antagonist tamoxifen (TAM) in the presence of EGCG. EGCG
significantly increased cell death in an ERα-negative cell line, MDA-MB-231 that also pos-
sesses mutant p53. EGCG significantly increased the ERα and insulin-like growth factor-I
receptor levels and thereby enhanced the sensitivities of the cells to TAM and a blocking
antibody targeting the insulin-like growth factor-1 receptor (αIR3). In contrast to MCF7,T47D
and MDA-MB-231 breast cancer cells that exhibited significant changes in key molecules
involved in breast growth and survival upon treatment with physiological levels of EGCG,
the growth, survival, and levels of these proteins in non-malignant breast epithelial cells,
MCF10A cells, were not affected.
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INTRODUCTION
Tea originated from China and has been produced and consumed
for thousands of years. Due to different manufacturing methods,
tea is produced in different forms. Green tea is made from fresh
tea leaves (Camellia sinensis). Tea is the most widely consumed
beverage next to water and provides a source of the well-known
polyphenols, which are associated with a reduction in cancer
risk (1). After steaming or pan-frying, enzymes are inactivated
to prevent the oxidation of tea polyphenols, which are also called
catechins. Catechins account for 30–40% of the dry weight of the
solids in brewed green tea. There are four major catechins in green
tea: (−)-epigallocatechin-3-gallate (EGCG), (−)-epigallocatechin
(EGC), (−)-epicatechin gallate (ECG), and (−)-epicatechin (EC)
(2). EGCG is the most abundant and biologically active polyphe-
nolic catechin in green tea, and exerts multiple effects in humans.
A variety of laboratory experiments, animal models, and epidemi-
ology studies indicate the protective effects of many dietary agents
against tumorigenesis, including EGCG (3). While the cancer pre-
ventive effects of green tea have been well established in animal
models, its activity in humans is still controversial (4).

Breast cancer is now the most common cancer in developed
countries. Despite decreased mortality due to improved preven-
tion, detection by use of screening mammography and therapy
options including endocrine therapy, incidence of breast cancer
is still increasing. About one in eight (12%) women in the US
will develop invasive breast cancer during their lifetime (Amer-
ican Cancer Society1). In the last 10 years, female breast cancer

1www.cancer.org

incidence rates in the UK have increased by 6% (Cancer Research
UK). Even in countries that used to have lower incidences of breast
cancer, such as Japan and China, have observed increases in breast
cancer incidence due to the adoption of a more westernized life
style (5).

The major issue with the majority of research studying the
effects of EGCG is that the levels of EGCG are super-physiological
(from 20 to 200 µM) and such concentrations cause cytotoxic
effects to normal cells, potentially causing unwanted side effects.
A physiological serum concentration of EGCG (<10 µM) can be
achieved by drinking a couple of cups of green tea or taking a
tablet supplement (6, 7), and the effects of these doses have not
been well investigated.

Among many other cancers, EGCG has been found to inhibit
cancer development in lung (8) (10–40 µM EGCG) (9) (262 µM
EGCG), prostate (10) (20–80 µM EGCG), colon (11) (20 µM
EGCG), skin (12) (21–87 µM EGCG), and breast cancers (13)
(87–131 µM EGCG). A variety of mechanisms have been pro-
posed as to how EGCG imparts its chemo-preventive effects,
including inhibition of MAP-kinase, AP-1 (14), NFκB, angiogen-
esis, invasiveness, metastasis (15), and DNA methyl-transferase
(DNMT) (16); induction of apoptosis; modulation of cell cycle
checkpoint controls (8); transcription factor expression; and
receptor-mediated functions (17). A recent study showed that
with MCF7 and MDA-MB-231 cells, EGCG and a pro-drug of
EGCG (pEGCG, EGCG octaacetate) caused hypomethylation of
human telomerase reverse transcriptase (hTERT) gene via inhibi-
tion of histone deacetylase (HDAC) and histone acetyltransferase
(HAT) activity. Demethylation of hTERT established a tran-
scription repressing environment to prevent aberrant hTERT
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expression and lead to tumor suppression (18). pEGCG was
synthesized by modulation of hydroxyl groups with peracetate
groups to enhance the bioavailability and stability of EGCG.
The same group also reported that combining EGCG and a
HDAC inhibitor trichostatin (TSA) synergistically re-activated
a functional estrogen receptor in MDA-MB-231 cells via alter-
ing the binding transcription repressor complex pRb2/p130–
E2F4/5–HDAC–DNMT1–SUV39H1 to the estrogen receptor
α (ERα) promoter. This induction of ERα expression could
sensitize ERα-negative breast cancers to anti-hormone ther-
apy (19).

In this study, we aimed to assess if physiological concentrations
of EGCG affected cell growth, cell death, and altered key molecules
[insulin-like growth factor-1 receptor (IGF-1R), ER, and HER2]
that have been implicated in regulating these processes and if such
changes influenced the sensitivity to agents targeting breast cancer
cells.

MATERIALS AND METHODS
All chemicals were purchased from Sigma (Gillingham, Dorset,
UK) unless otherwise stated. αIR3 was bought from Calbiochem,
Nottingham, UK, and herceptin was a kind gift from AstraZeneca,
Cheshire, UK.

CELL CULTURE
The estrogen receptor negative human breast cancer cell line
MDA-MB-231 was purchased from ECACC. The estrogen recep-
tor positive human breast cancer cell lines MCF7 and T47D
and the relatively normal breast epithelial cell line MCF10A
were obtained from ATCC. Cells were maintained in growth
media (GM) at 37°C and 5% CO2 in a humidified incubator.
Growth medium for MCF10A consisted of a 1:1 mixture of
Ham’s F12 medium and Dulbecco’s modified Eagle’s medium
with 2.5 mM l-glutamine (DMEM:F12, Gibco, Paisley, UK), 5%
horse serum (Gibco, Paisley, UK), 20 ng/ml EGF (Calbiochem,
Nottingham, UK), 100 ng/ml cholera toxin, 10 µg/ml insulin
(Novo Nordisk, West Sussex, UK), and 0.5 µg/ml hydrocorti-
sone. MCF7, T47D, and MDA-MB-231 cells were cultured in
DMEM supplemented with 10% fetal bovine serum (FBS). All
GM contain penicillin (50 IU/ml), streptomycin (50 IU/ml), and
l-glutamine (2 mM). Experiments were performed in serum-
free media (SFM) [DMEM:HamsF12 supplemented with sodium
bicarbonate (0.12%), BSA (0.02%), apo-transferrin (0.1 mg/ml),
penicillin (50 IU/ml), streptomycin (50 IU/ml), and l-glutamine
(2 mM)]. Cells were seeded onto 6- or 24-well plates in GM and
transferred to SFM 24 h later. Dosing was performed after 24 h in
SFM. Cells were placed into fresh SFM and treated as detailed in
the figure legends.

CELL COUNTING
Both attached and floating cells were collected and prepared for
counting using a hemocytometer. Cells were mixed with trypan
blue dye to distinguish live and dead cells. Cells were counted from
which total cell number and the percentage of dead cells relative
to control were calculated.

TRITIATED THYMIDINE INCORPORATION
Proliferation was also measured using [3H]-thymidine incorpo-
ration. 0.1 µCi of [3H]-thymidine (Perkin Elmer Beaconsfield,
Bucks, UK) was added to the cells for the last 4 h of treatment. Cells
were then washed in 5% trichloroacetic acid (TCA) for 10 min
at 4°C, followed by lysing in 1 M sodium hydroxide for 1 h at
room temperature. Lysates were mixed with ultima gold liquid
scintillation cocktail (Perkin Elmer Beaconsfield, Bucks, UK) and
incorporated counts were measured using a Beckman Scintilla-
tion Counter LS6500. Data were recorded as disintegrations per
minute (DPM).

WESTERN BLOTTING
Cell lysates and media were run on 12% SDS-PAGE gel and pro-
teins transferred to a Hybond-C nitrocellulose membrane (GE
Healthcare, Bucks, UK). Proteins were probed with anti-insulin-
like growth factor binding protein-2 (IGFBP-2) 1:1000 (sc-6001
Santa Cruz); anti-ERα 1:750 (sc-73479 Santa Cruz, TX, USA);
anti-PARP 1:1000 (556494 BD, Oxford, UK); anti-GAPDH 1:5000
(MAB 374 Millipore, Darmstadt, Germany); anti-α-tubulin 1:5000
(ABJ1178 Autogen Bioclear, Wiltshire, UK); anti-Her2 1:1000
(#2248 Cell Signaling, Hertfordshire, UK); anti-IGF-I receptor
(IGF-IR) 1:1000 (D23H3 Cell Signaling, Hertfordshire, UK); anti-
p53 1:1000 (sc-126 Santa Cruz, TX, USA); anti-p21 1:2000 (05-
345 Upstate Biotechnology, New York, NY, USA); or anti-β-actin
1:10000 (A5441 Sigma-Aldrich, Gillingham, Dorset, UK) follow-
ing the manufacturer’s instructions. Secondary antibodies were
diluted in 5% milk-TBST (20 mM Tris, 136 mM sodium chloride,
0.1% Tween-20, pH 7.4) and proteins visualized using supersig-
nal west dura ECL solution (Thermo Fischer, Ulm, Germany) and
the UVP Chemi-Doc-IT imaging system (Bio-Rad, Hertfordshire,
UK), as described previously (20).

RIA
IGF-II was measured in MDA-MB-231 cell conditioned media by
RIA as described previously (21).

STATISTICAL ANALYSIS
The data were analyzed with SPSS 12.0.1 for Windows using one-
way ANOVA followed by least significant difference (LSD) post hoc
test. A statistically significant difference was considered to be at
p < 0.05.

RESULTS
EGCG AT PHYSIOLOGICAL CONCENTRATIONS INHIBITED CELL
PROLIFERATION AND INCREASED CELL DEATH OF BREAST CANCER
CELLS
It has been reported that physiological, achievable serum concen-
tration of EGCG is not higher than 1 µM (22–24) or up to 7 µM
with a supplement (25). To analyze whether these physiological
levels of EGCG have any impact on breast cancer cell prolifer-
ation, we assessed doses of EGCG up to 1 µM in ERα-positive
breast cancer cell lines, MCF7 (Figure 1A), T47D (Figure 1B), and
an ERα-negative cell line MDA-MB-231 (Figure 1C). The per-
centages of total cell number compared to the control samples
are shown. With 1 µM EGCG, growth inhibition was observed in
MCF7 (28%, p < 0.01) and MDA-MB-231 (25%, p < 0.05) cells,
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FIGURE 1 | MCF7 (A),T47D (B), and MDA-MB-231 (C) cells were
seeded (0.2 × 106) in six-well plates in GM and after 24 h in SFM were
dosed with EGCG (0–1 µM) for 48 h. Graphs show percentage of total
cell numbers compared to the untreated control (left panel) and
percentage of cell death (right panel) assessed by trypan blue exclusive

cell counting. Graphs are means from at least three independent repeats,
each in triplicate upon which statistical analysis was performed. Insert
shown in (C) is a western blot showing an increase in PARP cleavage
together with a graph showing the mean OD measurements of blots from
three separate experiments.

but cell growth was not significantly affected in T47D (8%) cells.
While no significant increase in cell death was achieved with 1 µM
EGCG in MCF7 or T47D cells, EGCG triggered a doubling in cell

death (p < 0.01) in MDA-MB-231 cells, compared to untreated
cells. We confirmed this was apoptotic cell death by showing an
increase in PARP cleavage at 0.1 and 1 µM (insert Figure 1C).
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PHYSIOLOGICAL CONCENTRATIONS OF EGCG INCREASED ERα AND
IGF-IR ABUNDANCE IN MDA-MB-231 CELLS AND SENSITIZED THEM TO
TAMOXIFEN AND AN IGF-IR INHIBITOR (αIR3)
In order to further understand the effects of EGCG in MDA-MB-
231 cells, we assessed changes in the abundance of the IGF-IR and
the ERα following treatment with EGCG. EGCG (1 µM) caused
an increase in their expression (Figure 2A): a 1.42 (p < 0.05) and
1.67 (p < 0.005) fold increase, respectively, compared to untreated
controls (Figure 2B). We also observed that levels of HER2 were
undetected and unaffected following treatment with EGCG (data
not shown). We also found that the MDA-MB-231 cells secreted
approximately 30 ng/ml IGF-II as measured by RIA.

We then tested the sensitivity of MDA-MB-231 cells to TAM
and αIR3, which blocks ERα and IGF-IR pathways, respectively
(Figure 2C). Initial experiments looking at the effects of EGCG

were examining changes in cell number and cell death and there-
fore we used cell counting. In addressing the effects on the response
to TAM and αIR3, as these affect growth but do not induce apop-
tosis at the doses used, we used thymidine incorporation as a more
sensitive measure of changes in cell proliferation. Due to low level
of the ERα and IGF-IR basally, as anticipated, MDA-MB-231 cells
did not respond to TAM or αIR3 in terms of cell proliferation. But
with pre-treatment of 1 µM EGCG, TAM and αIR3 inhibited cell
growth by 34% (p < 0.01) and 21% (p= 0.02), respectively.

TREATMENT WITH EGCG INCREASED THE PROTEIN ABUNDANCE OF
ERα, Her2, AND IGFBP-2 IN T47D CELLS AND SENSITIZED THEM TO
TAMOXIFEN, BUT NOT TO HERCEPTIN
With T47D cells, EGCG at the physiological concentrations
increased the abundance of ERα, Her2, and IGFBP-2 protein

FIGURE 2 | Representative western immunoblots showing abundance
of IGF-1R and ERα in MDA-MB-231 cells with whole cell lysates
(100 µg) following EGCG treatment (0–1 µM) for 48 h (A), β-actin was
assessed to show equal loading of the protein. Fold changes of the
proteins were shown by densitometry measurements (B), which are
mean value of at least three repeats. MDA-MB-231 cells were seeded and

treated similarly with EGCG. Tamoxifen (TAM, 1 µM) or αIR3 (1 µg/ml)
were dosed to the cells 48 h after EGCG treatment. DNA synthesis was
measured using TTI assay after 48 h of TAM/αIR3 treatment (C). Graphs
show the mean value of DPM from at least three experiments each
performed in triplicate upon which statistical analysis was performed;
*p < 0.05, **p < 0.01.
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FIGURE 3 | Western immunoblot showing abundance of Her2, IGF-1R,
and ERα from 50 µg whole lysates ofT47D and secreted IGFBP-2 in
the supernatants (A), following EGCG treatment (0–1 µM) for 48 h.
β-actin was assessed to show equal loading of the protein. IGFBP-2
secretion was assessed with 30 µl un-concentrated supernatant. They are
representative blots of experiments repeated at least three times. Fold
changes of the proteins were shown by densitometry measurements (B).
Sensitivity of the T47D cells to tamoxifen or herceptin (C) was determined

by seeding cells (0.025×106) in 24-well plates in GM 24 h before they
were placed into SFM for a further 24 h, then treated with 1 µM EGCG.
One micromolar tamoxifen (TAM) or 10 µg/ml herceptin (Her) were dosed
to cells at 48 h after EGCG treatment. DNA synthesis was measured using
tritiated thymidine incorporation assay after 48 h of TAM/Her treatment.
Graphs show the mean value of DPM from at least three experiments
each performed in triplicate upon which statistical analysis was performed;
*p < 0.05, **p < 0.01.

(Figure 3A), but the abundance of IGF-IR protein was not
affected (Figure 3A). The ERα, Her2, and IGFBP-2 expression was
increased with 1 µM EGCG by 1.6 (p < 0.001), 2.23 (p < 0.02),
and 2.06 (p < 0.05) fold, respectively (Figure 3B).

As shown in Figure 1, while low concentrations of EGCG alone
caused growth inhibition in the MCF7 cells, it had little effect in
T47D cells. Compared to MCF7 cells, T47D express lower levels
of the ERα and are less responsive to TAM treatment. With low
expression of Her2, monoclonal antibodies targeting Her2, such
as herceptin, are also not particularly effective in blocking cell pro-
liferation in these cells. As an increased expression of the ERα and
Her2 was observed in T47D cells in response to EGCG, we further

examined whether the sensitivity of these cells to TAM and her-
ceptin could be improved when they were combined with 1 µM
EGCG.

Tamoxifen alone inhibited cell growth in T47D cells by 42%,
1 µM of EGCG did not cause significant growth inhibition in these
cells as we saw previously, but combining both together gave a 52%
decrease in cell growth, which was higher than each of them sep-
arately (p < 0.05) (Figure 3C). This implies that in T47D cells,
EGCG synergistically enhanced their sensitivity to TAM proba-
bly due to elevated ERα expression. Although T47D cells express
relatively low levels of the Her2 receptor, they still responded
to herceptin with 28 and 23% inhibition of cell growth with or
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without EGCG treatment, respectively, which was not significantly
changed.

TREATMENT WITH EGCG CHANGED THE EXPRESSION OF KEY
PROTEINS INVOLVED IN CELL GROWTH IN MCF7 CELLS
Physiological concentrations of EGCG decreased cell proliferation
in MCF7 cells (Figure 1A). Her2 and IGF-1R were not changed
(Figure 4A), but the ERα and IGFBP-2 abundance decreased to
45% (p < 0.002) and 44% (p= 0.02) of the untreated control,
respectively (Figures 4A,B).

The tumor suppressor gene p53 is mutated in T47D and MDA-
MB-231 cells and has lost its function (26, 27). In contrast MCF7

cells possess wild-type P53 which acts as a tumor suppressor gene
by playing a role in maintaining genetic integrity (28). A dose-
dependent increase in p53 and its downstream effector p21 was
observed (Figure 4A) with a 3 (p < 0.001) and 3.5 (p < 0.02) fold
increase with 1 µM EGCG, respectively (Figure 4C).

EGCG AT PHYSIOLOGICAL CONCENTRATIONS HAD NO EFFECTS ON THE
NORMAL BREAST EPITHELIAL CELLS
In contrast to the effects seen in the cancer cells exposed to phys-
iological concentrations (up to 1 µM), the MCF10A cells showed
no differences in cell growth (Figure 5A) or induction of cell
death (Figure 5B). Consistent with the phenotype observed in

FIGURE 4 | Western immunoblot showing abundance of ERα, p53,
and p21 in whole lysates of MCF7 (50 µg) following EGCG
treatment (0–1 µM) for 48 h (A). β-actin was assessed to show equal
loading of the protein. IGFBP-2 secretion was assessed with 30 µl

un-concentrated supernatant. They are representative blots of
experiments repeated at least three times. Fold changes of these
proteins were shown by densitometry measurements (B,C); *p < 0.05,
**p < 0.01.
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FIGURE 5 | MCF10A cells were seeded (0.2 × 106) in six-well plates
in GM and after 24 h in SFM were dosed with EGCG (0–1 µM) for
48 h. Graphs show percentage of total cell numbers compared to the
untreated control (A) and percentage of cell death (B) assessed by
trypan blue exclusive cell counting. Graphs are means from at least
three independent repeats, each in triplicates. Western immunoblot

showing abundance of Her2 and IGF-1R in MCF10A cells with whole
cell lysates (100 µg) following EGCG treatment (0–1 µM) for 48 h (C).
β-actin was assessed to show equal loading of the protein. They are
representative blots of experiments repeated at least three times. Fold
changes of these proteins were shown by densitometry
measurements (D).

the non-malignant MCF10A breast cells, the expression of the key
proteins involved in breast cell proliferation, such as IGF-1R and
Her2 were analyzed in whole cell lysates of MCF10A cells treated
with EGCG and were found not to change (Figures 5C,D). Other
key proteins such as the ERα and IGFBP-2 were also unchanged
and p53 and p21 were undetectable (data not shown).

DISCUSSION
For thousands of years, green tea has been known to exert health-
promoting effects in various conditions: cancer, cardiovascular
diseases, neuro-degenerative diseases, strokes, obesity, diabetes,
and many viral or bacterial infections. The most abundant cat-
echin in green tea is EGCG. Its bioactivity, stability, potential
side effects, and usage in clinical trials have been widely discussed
(3, 25, 29). However the in vitro studies that endeavor to mimic
in vivo effects generally used EGCG at concentrations higher than

10 µM and even as high as 200 µM, which are physically un-
achievable in the human body. Cancer-specific toxicity is a crucial
element in breast cancer therapy. Many anti-cancer drugs used
in the clinic are limited by their general toxic side effects (30).
Physiological concentrations of EGCG in human plasma reach
between 0.1 and 1 µM, and may approach 7 µM with supple-
ments. In order to study whether and how EGCG at a physiological
achievable concentration may potentially be beneficial to breast
cancer patients, we used a range of 0.1–1 µM EGCG to assess its
actions on breast cancer cells. The non-malignant breast epithe-
lial cell line MCF10A was also used as a control to examine the
cancer-specificity of EGCG.

The most exciting finding from this work is that physio-
logical concentrations of EGCG exerted cancer-selective growth
inhibitory and pro-apoptotic effects. It also altered the expression
of many key proteins involved in cancer growth and survival, with
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no effect on these molecules in normal cells. This in turn enhanced
the sensitivity of cancer cells to current therapies. Although TAM
has been successfully used in ERα-positive breast cancers, about
30% of patients are ERα- and/or progesterone receptor (PR)-
negative and resistant to endocrine modification and therefore
display poor prognosis. In addition, a proportion of hormone
positive cancers that initially respond to hormone therapy even-
tually develop hormone resistance and become more aggressive.
If a cancer also lacks Her2 expression, they are described as being
triple negative (TNBC). MDA-MB-231 is an example of a TNBC
cell line which lacks ERα, PR, and Her2 expression and is resistant
to hormone therapy.

With MDA-MB-231, we found the induction of cell death was
a dominant consequence of EGCG treatment by itself. In addition,
EGCG also increased ERα abundance in these cells and as a result
of this, the cells were then able to respond to TAM.

Chrisholm et al. also showed cytotoxic effects of EGCG alone
in another ERα-negative breast cancer cell line, Hs578T and a syn-
ergistic cytotoxic effect of EGCG with TAM in MDA-MB-231 cells
(31), but at much higher, non-physiological concentrations.

Various studies using EGCG found that it regulated tumor sup-
pressor genes through DNA demethylation (32, 33) or histone
re-acetylation in skin (34), breast (35), prostate (36), colon, and
esophageal cancer (37). In the ERα-negative MDA-MB-231 cells,
it was reported that EGCG re-activated ERα expression at 10 µM
and synergistically regulated ERα re-expression with AZA and TSA
(19). The modulation of the chromatin markers including acetyl-
H3,acetyl-H3K9,acetyl-H4,dimethyl-H3K4,and trimethyl-H3K9
indicated epigenetic regulation by EGCG in MDA-MB-231 cells.
It is also suggested that histone modification mechanisms may
play a more important role in EGCG-induced-ERα reactivation
than DNA methylation in ERα-negative breast cancer cells. Our
data also show that EGCG re-expressed the ERα but at physiolog-
ical concentrations. Examining if this is by the same epigenetic
mechanism would be interesting as this would more easily be
translated into the clinic. In addition, we found that the MDA-
MB-231 cells were still unable to respond to exogenous estradiol
despite re-expression of the ERα (data not shown).

Unlike the data from Chrisholm et al., who did not observe
growth inhibitory effects of EGCG in ERα-positive breast can-
cer cells (31), we found EGCG alone at physiological levels did
have inhibitory actions on cell growth in MCF7 cells. The tumor
suppressor gene p53 is mutated in T47D and MDA-MB-231 cells
and has lost its function (26, 27). But wild-type p53 is present in
MCF7 cells and acts as a tumor suppressor gene by playing a role
in maintaining genetic integrity (28). A dose-dependent decrease
in ERα abundance together with an increase in p53 and p21 in
response to EGCG may contribute to the decreased cell prolifer-
ation. These results are consistent with a report from Liang et al.
(38), in which 30 µM EGCG caused an accumulation of p53, p21,
and p27 in MCF7 cells, which was purported to contribute to
EGCG-induced cell cycle G1 arrest. Our new data suggest that
even very low, physiological concentrations of EGCG can simu-
late changes in abundance of key anti-proliferative proteins that
leads to inhibition of cell growth. Very recently, an EGCG-induced
decease of ERα transcription and expression in ERα-positive breast
cancer cells MCF7 and T47D at the promoter activity level has

been reported (39). However, non-physiological concentrations
of EGCG were used (20 µM and above). It will be interesting to
investigate if the same mechanism underlies the changes of ERα

protein expression in MCF7 observed in our study using achiev-
able concentrations of EGCG. We and others have found that the
demethylating agent AZA induced a similar down-regulation of
ERα in the ERα-positive breast cancer cell lines MCF7 and T47D,
but not via epigenetic modulation (40, 41).

Using physiologically doses with T47D cells, we found that
in contrast to MCF7 cells, EGCG actually caused an increase in
abundance of the ERα. In these cells, the growth inhibition was
unaffected by low doses of EGCG, but having observed that EGCG
increased the ERα abundance, we combined treatment of EGCG
with TAM, which targets ERα and observed an additive growth
inhibition but reassuringly the increase in the ERα was not accom-
panied by an enhanced proliferative response to estradiol (data not
shown).

Although ERα is the main driver of breast cancer progression
and still the main target for treatment, dysregulation of the IGF-
1R/phosphatidylinositol-3-kinase (PI3K)/Akt pathway has been
shown to correlate with breast cancer development and has been
intensively studied as a potential therapeutic target (42–44). The
trans-membrane receptor IGF-IR is a tyrosine kinase receptor and
mediates insulin-like growth factor (IGF) activities. Increased lev-
els of the IGF-IR have been implicated in many cancers including
breast (42) and prostate cancer (45). IGF-IR signaling stimulates
cell growth and inhibits death (46). Among different potential
approaches to treat TNBC, some small molecular inhibitors or
neutralizing antibodies targeting IGF-IR have been designed to
block IGF-IR pathway and therefore to reduce cancer cell growth.
αIR3 is a monoclonal antibody that acts as an IGF-IR antag-
onist (47). Blockade of tumor growth in vivo and in vitro has
been observed with treatment of αIR3 in MDA-MB-231 cells (48).
We have shown here that with MDA-MB-231 cells, physiological
concentrations of EGCG increase the IGF-IR and improve their
response to αIR3. Since clinically the TNBC are difficult to treat,
the significant enhancement of low concentrations of EGCG on
the cells response to αIR3 may be clinically very relevant. Partic-
ularly, we found that the response of the cells to IGF-I was not
increased by EGCG despite the observed increase in levels of the
receptor. As MDA-MB-231 cells produce a significant amount of
endogenous IGF-II, we speculate that this amount of peptide could
saturate the IGF-IR present on these cells and hence why addition
of exogenous IGF-I has no further effect on cell proliferation.
However, αIR3 would be able to compete with the endogenous
IGF-II and to inhibit the cell growth but this mechanism remains
to be confirmed.

We recently showed that IGFBP-2 is a novel positive regulator
of the ERα and that this promotes cell survival in ERα-positive
breast cancer cells (49). We confirmed in this study that the abil-
ity of EGCG to increase ERα was associated with an increase in
IGFBP-2 and a reduction of ERα corresponded to a reduction of
IGFBP-2. It will be interesting to investigate further the role of
EGCG-induced changes of IGFBP-2 in breast cancer.

Having examined key molecules that have been implicated in
regulating breast cancer cell growth and survival, we found no con-
sistent changes that would explain the uniform inhibitory effects of
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EGCG. The ERα, Her2, and IGF-1R pathways contribute to differ-
ent extents in the different cell lines that have varying phenotypes
and some of the changes that we observed may have contributed
to the effects of EGCG or they could have been compensatory
responses.

Compared to in vivo conditions, cells in vitro are exposed
to EGCG for very short time (only 48 h). We acknowledge
that over this short period we have observed relatively small
changes although significant, but presumably continuous long-
term repeated exposure of cells in vivo to EGCG may have a more
marked cumulative effect.

To promote safety and effectiveness of dietary reagents, deriv-
atives with structural modifications such as pEGCG have been
developed and synthesized. With changed structural characteris-
tics, these phenolic compounds exert enhanced anti-proliferative
effects in cancers (18). A nanoparticle-encapsulating EGCG has
also been designed for oral administration in mice with human
prostate cancer (50, 51). Our study highlights that the impact and
specificity of EGCG in cells seems to be concentration-related and
further studies investigating the effects of physiological levels of
EGCG are essential.
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