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Cerebellum development is sensitive to thyroid hormone (TH) levels, as THs regulate neu-
ronal migration, differentiation, and myelination. Most effects of THs are mediated by the
thyroid hormone receptor (TR) isoformsTRβ1,TRβ2, andTRα1. Studies aimed at identifying
TH target genes during cerebellum development have only achieved partial success, as
some of these genes do not possess classical TH-responsive elements, and those that
do are likely to be temporally and spatially regulated by THs. THs may also affect neu-
rodevelopment by regulating transcription factors that control particular groups of genes.
Furthermore, TH action can also be affected by TH transport, which is mediated mainly by
monocarboxylate transporter family members. Studies involving transgenic animal models
and genome-wide expression analyses have helped to address the unanswered questions
regarding the role of TH in cerebellar development. Recently, a growing body of evidence
has begun to clarify the molecular, cellular, and functional aspects ofTHs in the developing
cerebellum. This review describes the current findings concerning the effects of THs on
cerebellar development and maintenance as well as advances in the genetic animal models
used in this field.

Keywords: thyroid hormones, genes, cerebellum, brain development, animal models

INTRODUCTION
The thyroid hormones (THs) thyroxine (T4) and 3,5,3′-
triiodothyronine (T3) are essential for embryonic development
and play critical roles in cellular metabolism, acting primarily
through the stimulation of oxygen consumption and basal meta-
bolic rate (1, 2). THs are necessary for proper central nervous
system (CNS) development, and they have long been known to
regulate neuronal differentiation and migration, synaptogenesis,
and myelination (3–6). The cerebellum is located near the rear
of the brain stem at the midbrain–hindbrain junction, and this
structure is generally thought to coordinate proprioceptive–motor
functions, although more recently, it has also been associated with
neurocognition (7, 8). The cerebellum was one of the first targets
of THs to be identified, and it is a useful model for studying the
mechanisms by which THs influence the CNS. In particular, the
cerebellum has a relatively homogenous and simple structure with
a well-characterized laminar organization and a small number of
cell types that develop within spatially defined regions (9–11).

The majority of TH actions are mediated through the bind-
ing of T3 to nuclear thyroid hormone receptors (TRs), which act
as ligand-modulated transcription factors that modify the expres-
sion of target genes (12). Fundamentally, TH nuclear signaling is
mediated by interactions between TRs and specific DNA sequences
known as thyroid response elements (TREs), which associate with
a variety of co-factors within the regulatory regions of target genes
(12, 13). TR isoforms are expressed in several brain regions, includ-
ing the cerebellum (14, 15). However, the target genes of THs
and the cells that express genes likely to be involved in cerebellar
development and maintenance are still not well-established (6, 16).

In addition to the classical roles of TH in the nucleus, TH can
also initiate rapid effects at the cell surface, within mitochondria
and via cytoplasmic TRs (17, 18). The fact that brain development
in TR knockout (KO) animals is only slightly affected (19) sug-
gests the existence of non-genomic morphogenic roles for TH in
the CNS. One of the best characterized non-genomic roles for TH
in the brain is illustrated by the induction of actin polymeriza-
tion in astrocytes by T4 in vitro (20), which is very important for
the organization of extracellular neural guidance molecules dur-
ing neurodevelopmental processes. Finally, TH metabolism and
transport, which are mediated mainly by deiodinases (21) and
monocarboxylate transporters (22, 23), respectively, have also been
shown to be important for cerebellar function.

The aims of this review are to briefly describe the current
knowledge concerning the effects of THs on cerebellar develop-
ment and functional maintenance as well to summarize advances
in the genetic animal models used in this field.

THE INFLUENCE OF THs ON CEREBELLAR ONTOGENESIS
In humans, T3, T4, and TRs are already present within the devel-
oping cortex prior to the onset of fetal thyroid gland activity, or
gestational week 12, which suggests an important role for mater-
nal TH during this critical window of brain development (24–27).
Congenital hypothyroidism leads to structural and intellectual
impairment in infants (28). Furthermore, TH administration to
human infants with congenital hypothyroidism immediately after
birth was shown to promote near-normal intellectual development
(29). The majority of studies on the role of THs in neurodevel-
opment have been carried out in rodent models in which THs,
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deiodinases, and TRs are present prior to the onset of fetal TH
synthesis and secretion (30, 31). Paired box 8 (Pax8) KO mice are a
commonly used animal model for studying the effects of postnatal
TH on CNS development, as Pax8 is an essential transcription fac-
tor for thyroid follicular cell differentiation, and its absence leads
to thyroid gland dysgenesis (32). Therefore, the Pax8-KO mouse
is a model for congenital hypothyroidism that displays extensive
abnormalities in cerebellar development, resulting in an ataxic
phenotype (32–34) (Table 1).

Rodent cerebellar development is complete within the first 2–
3 weeks after birth, when the cerebellar foliation process, which
encompasses the transition from a smooth cerebellar surface to an
X lobule cerebellum, is completed (7). It has long been known that
cerebellar ontogenesis is closely linked to TH regulation (60–62),
although the molecular mechanisms through which THs mod-
ulate this process remain unclear. Hypothyroidism results in a
number of morphological alterations in the cerebellum, including
increased neuronal death within the internal granular layer (IGL),
increased perdurance of the external granular layer (EGL), defects
in granular cell migration, impaired Purkinje cell dendritogene-
sis, delayed myelination, defects in the late differentiation pattern
of Golgi interneurons and mossy fibers, reduced protrusions of
Bergmann glial cells, and increased cell apoptosis (9, 46, 63–65).
TH administration prior to the end of postnatal week 2 prevented
these structural changes. Moreover, the expression levels of neu-
rotrophins and growth factors, such as BDNF, NT3, and EGF, as
well as cell adhesion molecules, such as NCAM and L1, are modi-
fied by TH in the developing cerebellum (63, 66–68). For example,
TH was shown to promote cerebellar neuronal migration and the
differentiation of Bergmann glia by inducing EGF secretion (69).

PERSPECTIVES FROM TRANSGENIC MOUSE MODELS
T3 and T4 enter the cell through plasma membrane trans-
porters, including the monocarboxylate transporter family mem-
bers MCT8 and MCT10, organic anion transporting peptides
(OATP), and carriers of l-amino acids (LATS) (70, 71). Recent
studies have indicated that TH transporters such as MCT8, which
are found in a subset of neuronal populations (23), may play criti-
cal roles in neurodevelopment processes mediated by THs. Patients
harboring inactivating mutations in the MCT8 gene (Slc16a2)
exhibit Allan–Herndon–Dudley syndrome, which is character-
ized by psychomotor retardation, lack of speech development,
increased serum T3 concentrations, and low T4 levels (72, 73).

Although MCT8-KO mice have been generated, they do not
display the same neurological abnormalities observed in human
patients (Table 1). This phenomenon is likely due to the pres-
ence of other neuronal TH transporters, such as OATP14, LAT1,
and LAT2, during earlier stages of mouse brain development that
compensate for the absence of MCT8 (36, 74). However, another
possible explanation for the difference between the mouse and
human phenotypes is that human MCT8 is necessary for the
transport of an unknown signaling molecule necessary for CNS
development, which is consistent with clinical evidence indicat-
ing that the neurological syndromes observed in patients with
MCT8 mutations are more severe than those observed in patients
with congenital hypothyroidism (36). A recent study performed in
MCT8-KO mice demonstrated that 3,5,3′,5′-tetraiodothyroacetic
acid (tetrac), a T4 metabolite that is not transported by MCT8 or

OATP1C1, is capable of replacing TH during brain development
(35). Tetrac can be converted into 3,3′,5-triiodothyroacetic acid
(triac) by deiodinase type 2, which can subsequently interact with
TRs, thereby replacing T3 activity. Indeed, treatment of MCT8-KO
mice with tetrac led to improvements in TH-dependent neuronal
differentiation in the striatum, cortex, and cerebellum during the
first three postnatal weeks.

A mouse model lacking LAT2 (Slc7a8) was generated to fur-
ther characterize the role of this transporter in TH physiology.
However, LAT2-KO mice exhibited normal cerebral and cerebellar
development, with the exception of slight defects in movement
coordination on rotarod tests (40) (Table 1).

The iodothyronine deiodinase enzymes D1 (Dio1) and D2
(Dio2) modulate the intracellular availability of the active hor-
mone T3. In particular, D2 catalyzes the conversion of T4 to T3,
whereas D3 inactivates T4 and T3 by converting them to T2 and
reverse T3 (rT3), respectively (75). Studies have demonstrated that
nearly 80% of T3 is generated by local conversion within the brain
(3, 5) through the activity of D2, which is primarily found in astro-
cytes (41). Therefore, the presence of D2 together with increased
levels of T3 suggests a role for D2 in supplying the developing brain
with T3 derived from maternal T4. However, some unexpected
findings in Dio2-KO mice are inconsistent with the hypothesis that
D2 is essential for all TH-dependent neurodevelopment processes.

Although Dio2-KO mice display elevated brain T4 levels
and reduced T3 content, surprisingly, the observed neurological
impairments, which included changes in the cerebellar expres-
sion of TH-dependent genes and behavioral defects, were found
to be mild compared with those observed in hypothyroidism (42,
76). These data suggest that decreased local T3 production can
be largely compensated for by increased T3 uptake from circula-
tion, and indeed, this was later confirmed by experiments carried
out in double Dio1/Dio2-KO mice, which demonstrated normal
serum T3 concentrations and only mild neurological phenotypes
(21). On the other hand, Dio3-KO animals were characterized by
high T3 levels during perinatal development, which induced the
upregulation of TH-responsive genes in the cerebellum (43, 44).
Recently, it was reported that Dio3-KO mice exhibited impaired
cerebellar foliation, early premature disappearance of the EGL,
rapid expansion of the molecular layer, and abnormal locomotor
behavior. Furthermore, the cerebellar phenotypes of these mice
could be partially rescued by deletion of the TRα1 isoform (45)
(Table 1).

The majority of TH functions are mediated through nuclear
TRs, which are members of a superfamily of ligand-modulated
transcription factors that can either upregulate or downregulate
target gene transcription (2). The consensus for positively reg-
ulated genes is that TRs bind to activating TREs both in the
presence and absence of T3. In the absence of T3, TR represses
target gene transcription by recruiting co-repressors, whereas in
the presence of T3, co-repressors are released and co-activators
are recruited, leading to transcriptional up regulation (1, 12). In
mammals, two different genes encode at least three high-affinity
TRs: TR-β1 (Thrb), TR-β2 (Thrb), and TR-α1 (Thra) (77). TR-
α1 is the isoform that is predominantly expressed both prenatally
and postnatally throughout the brain, including the developing
cerebellum, and it is responsible for nearly 80% of total receptor T3

binding (14, 78, 79). In contrast, TR-β expression is confined to a
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Table 1 | Summary of mutant animal models and their cerebellar phenotypes.

Animal model Etiology HPT axis BrainTH state Cerebellar phenotype Locomotor behavior Reference

Pax8 -KO Pax8

knockout

Thyroid gland

dysgenesis

Increased TRH and TSH

expression; elevated

cerebellar D2 activity;

decreased cerebellar D3

activity

Increased cell number in the

EGL; reduced dendritic

growth in Purkinje cells

Ataxic phenotype (32, 33, 35)

Slc16a2 KO MCT8

knockout

Elevated serum

levels of T3 and

TSH; decreased

serum levels of T4

Reduced T3 and T4 brain

content; increased TRH

expression; increased

cerebellar D2 activity;

decreased cerebellar D3

activity

Milder neurological

phenotype than that

observed in patients; no

alterations in Purkinje cells

Locomotor activity

similar to WT mice

(35–38)

Pax8/Slc16a2

double KO

Pax8 and

MCT8

knockout

Thyroid gland

dysgenesis

Increased TRH and TSH

expression; increased

cerebellar D2 activity;

decreased cerebellar D3

activity

Reduced dendritic

arborization; thinner

molecular layer

(35)

Slco1c1 KO OATP1C1

knockout

Normal serum T3

and T4 levels

Mild decrease in T4 brain

content; normal T3 brain

content

Normal Purkinje cell

morphology

Normal motor activity

on rotarod test

(39)

Slco1c1/Slc16a2

double KO

OATP1C1

and MCT8

knockout

Elevated serum

levels of T3 and

TSH; decreased

serum levels of T4

Brain-specific hypothyroidism

increased TRH expression;

elevated cerebellar D2

activity; reduced cerebellar

D3 activity

Impaired arborization and

dendritic growth of Purkinje

cells at P12; no alterations in

Purkinje cells at P33 or P120

Impaired motor

coordination and

locomotor activity

(38)

Slc7a8 KO LAT2

knockout

Normal serum T3,

T4, and TSH levels

Normal TSH expression;

normal pituitary D2

expression; normal cerebellar

D3 expression

Normal cerebellar gene

expression and morphology

Mildly impaired

movement

coordination on

rotarod test

(40)

Dio2-KO D2

knockout

Normal serum T3

levels; elevated

serum T4, and

TSH levels

Decreased T3 brain content;

increased brain D3 activity

Milder alterations in

cerebellar TH-responsive

genes (Srg1 and Hr ) than in

hypothyroidism

(41, 42)

Dio3-KO D3

knockout

Increased serum

T3 levels during

perinatal

development

Brain thyrotoxicosis;

increased cerebellar D2

activity; reduced cerebellar

D3 activity

Upregulated cerebellar

TH-responsive genes (Hr );

impaired cerebellar foliation;

early dissipation of EGL;

rapid expansion of the

molecular layer

Defective locomotor

activity on vertical

pole and rotarod test

(43–45)

Thra−/− TRα1

deletion

Normal serum T3

levels; slightly

decreased serum

T4 levels; reduced

serum TSH levels

Decreased TSHα expression;

increased TSHβ expression

Non-hypothyroid cerebellar

phenotype

Normal locomotor

activity

(46, 47)

Thrb−/− All TRβ

deletion

Increased levels

of TSH, T3, and T4

Increased T3 brain content

decreased TSH expression

No alterations in

TH-responsive genes in the

cerebellum

No behavioral defects (48, 49)

(Continued)
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Table 1 | Continued

Animal model Etiology HPT axis BrainTH state Cerebellar phenotype Locomotor behavior Reference

Thrb ∆337T TRβ

mutation

Elevated levels of

T3, T4, and TSH

Hypothyroid-like brain (low

levels of TH-responsive genes

BDNF and Pcp2)

Impaired cerebellar foliation;

altered laminar organization;

abnormal Purkinje cell

dendritogenesis; reduced

Bergmann glia fibers;

reduced cerebellar gene

expression (Pcp2)

Severe impairment in

balance and

coordination

(50, 51)

Thra PV TRα1

mutation

Mild increase of

T3, T4, and TSH

levels

Reduced cerebellar gene

expression (Srg1)

(52)

Thra R384C TRα1

mutation

Normal serum

levels of T4, T3

Normal TSH expression Delayed migration of EGL to

IGL; mild alterations of

Purkinje cells

Reduced locomotor

activity

(53, 54)

Thra L400R TRα1

mutation

Normal serum

levels of T4, T3

Normal TSH expression

Hypothyroid-like brain (low

levels of TH-responsive

genes)

Late granule cell

differentiation pattern similar

to congenital

hypothyroidism; mild

alterations of Purkinje cell

arborization; low expression

of TH-responsive genes (Hr

and Pcp2); delayed loss of

Purkinje cells axonal

regenerative capacity;

impaired differentiation of

Purkinje cells and Bergmann

glia

(55–58)

Ncoa1−/− SRC-1

deletion

Elevated TSH, T4,

and T3 levels

Delayed Purkinje cells

development and maturation

Reduced motor

coordination and

strength

(59)

BDNF, brain-derived neurotrophic factor; EGL, external granular layer; IGL, internal granular layer; Srg1, synaptotagmin-related gene 1, Hr, hairless; Pcp2, Purkinje cell

protein 2.

few postnatal neuronal populations, including the paraventricular
hypothalamus, cerebellar Purkinje cells, and hippocampal pyrami-
dal and granule cells (80, 81). In rodents, TR-α1 is already present
at E11.5 in the neural tube and at E12.5 in the diencephalon and
ventral rhombencephalon (14). Both TRα and TRβ are expressed
in the cerebellum. TRα is primarily expressed in the early cere-
bellar neurepithelium, granular cell precursors, and later in the
transient EGL, whereas TRβ is predominantly expressed during
later stages, notably in the Purkinje cell layer (PCL) and in deep
internal layers (14, 81, 82) (Figure 1).

Thra- and Thrb-KO mouse models, which exhibit abrogated
nuclear signaling, have been created to address the roles of differ-
ent TR isoforms in proper brain development and function (47,
48, 83). However, it was reported that these mice exhibit only
a mild neurological phenotype compared with hypothyroid ani-
mals, indicating that the absence of T3 binding (unliganded TR) is
more harmful to the CNS than the absence of TR isoforms (46, 84)
(Table 1). Later, Thra- and Thrb-knock-in mutant mice express-
ing dominant-negative TRs were generated, and it was reported

that these mice were phenotypically distinct from TR-KO mice
(50, 53–55). Specifically, in mice harboring the Thrb ∆337T muta-
tion – a point mutation in the ligand-binding domain that prevents
T3 binding but not binding to DNA or co-factors (85) – cere-
bellar morphogenesis was similar to that observed in congenital
hypothyroidism, presumably because TR remained constitutively
bound to its co-repressors, thereby mimicking a hypothyroid state
(50). Hashimoto et al. (50) demonstrated that Thrb ∆337T mice
displayed impairments in balance and coordination, reductions
in the molecular and PCLs, and decreases in the number and
branching of Purkinje cells, which may account for the decreased
cerebellar size observed in these mutant animals.

Therefore, functional TR-β is required for TH-dependent cere-
bellar development, which was further demonstrated by the
phenotypes observed in Thrb ∆337T mutant mice, including
defects in cerebellar foliation, altered laminar organization, abnor-
mal Purkinje cell dendritogenesis, and reduced Bergmann glia
fibers (51). Cerebellar foliation is characterized by the presence
of 10 well-formed lobules and sub-lobules (7). In Thrb ∆337T
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FIGURE 1 | A representation of the mouse cerebellar cortex
during the initial postnatal days showing the positions of cells
expressing specificTR isoforms. Only the outer EGL, inner EGL,
Purkinje cell layer (PCL), and inner granule layer are shown. TRα is
primarily expressed in granular cell precursors and subsequently in

the transient outer and inner EGL. In the Purkinje cells, TRα is the
first isoform to be detected, however, after the second postnatal
week TRβ is predominantly expressed. TR, thyroid hormone
receptor; EGL, external granular layer; P14, postnatal day 14; PCL,
Purkinje cell layer.

homozygotes at postnatal day (PND) 21, researchers observed
decreases in the molecular and granular layers as well as a failure in
the subdivision of lobule VI, which is subdivided into sub-lobules
VIa and VIb in wild-type and heterozygous animals. During PND
9, which is the initial period of cerebellar development, Thrb
∆337T mice fail to form fissures between lobules VI–VII, and
lobule IX is also severely affected. During both the initial and
final stages of cerebellar foliation, the Thrb ∆337T mutation leads
to extreme defects in fissure and lobule formation (51). Unfortu-
nately, the identification of direct target genes that are regulated by
TH in the developing brain using RNA-based techniques has been
problematic. However, recent studies using chromatin immuno-
precipitation combined with DNA microarray analysis (ChIP on
chip) identified a large number of TR-β binding sites and target
genes in the developing mouse cerebellum, reinforcing the role of
TR-β in mediating gene transcription through TH in this brain
structure (86, 87). Chatonnet et al. introduced TR-α1 and TR-β1
into a neural cell line lacking endogenous TRs and demonstrated
that the majority of the T3 target genes analyzed were regulated by
both TR-α1 and TR-β1. Nevertheless, a significant number of the
analyzed genes showed strong preferences for one receptor isoform
over the other (88).

In the cerebellum of mice carrying a cell-specific L400R muta-
tion in the ligand-binding domain of TR-α1 Thra L400R), which
prevents histone acetyltransferase recruitment and facilitates the
permanent recruitment of co-repressors, there is a delay in the pat-
tern of granule cell differentiation similar to what is observed in
congenital hypothyroid animals; however, Purkinje cell arboriza-
tion is not strongly affected in these mutants (55). Another study
involving Thra L400R mice highlighted the importance of TRα-
dependent signaling in postnatal brain development by showing
that it promotes the secretion of neurotrophins from astrocytes
and Purkinje cells and that it maintains adult brain function by
limiting the proliferation of oligodendrocyte precursor cells (56).
Late in their development, these mutant mice displayed a loss of
axonal regenerative capacity in Purkinje cells, which is thought to

play a role in the brain maturation process. These data indicate an
important role for TR-α1 in mediating T3-induced inhibition of
axonal regeneration in Purkinje cells (57). In addition, it was very
recently reported that the L400R mutation primarily affects the
differentiation of two specific cerebellar cell populations, Purkinje
cells, and Bergmann glia, which indicates that the autonomous
effects of TH on these cells indirectly impact global cerebellar
cortex development (58). In Purkinje cells, T3 acts through TR-
α1 to promote dendritic tree development and the secretion of
neurotrophic factors, whereas in Bergmann glia, T3 promotes
the development and organization of radial fibers and the align-
ment of cell bodies within the PCL (58) (Table 1). In humans,
a role for TR-α1 in brain development is supported by descrip-
tions of patients with cognitive impairment phenotypes similar to
those observed in congenital hypothyroidism who harbor primary
mutations in the THRA gene (89, 90).

Taken together, these data suggest that TR-α and TR-β func-
tion together to mediate the processes of cerebellar ontogenesis
controlled by THs. Compared with Thrb mutants, Thra-knock-in
mice show more severe cerebellar defects, indicating that TR-α may
play a key role in regulating the expression of target genes involved
in cerebellar ontogeny (52). Other relevant mutant animal models
with impaired neurological phenotypes also exist, such as Ncoa1-
KO animals. Steroid receptor co-activator 1, which is encoded by
the Ncoa1 gene, has been shown to modulate TH activity via spe-
cific TR isoforms (91, 92). This co-activator is highly expressed in
the cerebellum; thus, Ncoa1-KO mice exhibit cerebellar abnormal-
ities that are similar to those observed in congenital hypothyroid
mice (59).

CONCLUDING REMARKS
It has been known for decades that cerebellar development is
regulated by THs. Although the molecular mechanisms through
which THs impact CNS development are becoming better under-
stood, primarily due to studies in genetic animal models, many
issues remain to be addressed. Only a few T3 targets in neural
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cells have been described to date, it is important to identify addi-
tional direct target genes of THs and to determine how these genes
are temporally and spatially regulated during specific neurode-
velopment. Finally, the rapid non-genomic actions of THs and
the role of the recently described thyronine derivatives require
further analysis. Therefore, additional studies will be necessary
before our model of TH activity within the developing cerebellum
is complete.
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