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Thyroid hormone action: astrocyte—neuron communication
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Thyroid hormone (TH) action is exerted mainly through regulation of gene expression by
binding of T3 to the nuclear receptors. T4 plays an important role as a source of intracellular
T3 in the central nervous system via the action of the type 2 deiodinase (D2), expressed in
the astrocytes. A model of T3 availability to neural cells has been proposed and validated.
The model contemplates that brain T3 has a double origin: a fraction is available directly
from the circulation, and another is produced locally from T4 in the astrocytes by D2. The
fetal brain depends almost entirely on the T3 generated locally. The contribution of systemic
T3 increases subsequently during development to account for approximately 50% of total
brain T3 in the late postnatal and adult stages. In this article, we review the experimental
data in support of this model, and how the factors affecting T3 availability in the brain, such
as deiodinases and transporters, play a decisive role in modulating local TH action during
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THE MODEL
Thyroid hormone (TH) action is exerted mainly through regula-
tion of gene expression by binding of T3 to the nuclear receptors
(1,2). T4 plays an important role as a source of intracellular T3 in
the central nervous system via the action of the type 2 deiodinase
(D2). This process is regulated physiologically. D2 activity in brain
increases during development in correlation with the more T3 sen-
sitive developmental period. D2 activity and T3 concentrations are
synchronized in a spatial and temporal fashion to determine criti-
cal brain processes such as myelination, neuronal migration, glial
differentiation, and neurogenesis. On the other hand, D2 activity is
inversely regulated by T4, so that brain T3 levels fluctuates less than
circulating TH levels, due to changes in D2 activity in response to
changes in T4 availability at least at postnatal and adult stages (3).
Although neurons are the primary target of T3 actions,
Guadafio-Ferraz et al. (4) demonstrated that D2 expression takes
place predominantly, if not exclusively, in glial cells: the tanycytes
(5) lining part of the third ventricle surface and in the astro-
cytes throughout the brain. The Dio2 mRNA was not restricted
to the cell body but was also present along the cellular processes.
This observation indicated an important role for glial cells in TH
homeostasis in the brain and a close coupling between glial cells
and neurons in TH metabolism. According to these observations,
the authors suggested a model of T3 availability to neural cells.
On the one hand, circulating T4 and T3 would enter the brain
through the blood-brain barrier (BBB). T4, upon entering the
brain would reach the astrocytes through their end-feet in contact
with the capillaries, and produce additional T3 by D2-mediated
deiodination.
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EVIDENCE FROM TRANSCRIPTOMIC DATA

Support for the glial specificity of Dio2 expression came from
transcriptomic studies by Cahoy et al. (6). These authors per-
formed transcriptomic studies in primary neural cells isolated
from the mouse brain, without further manipulations to establish
the patterns of gene expression representative from the differ-
ent cell types in vivo. Dio2 was enriched up to 50 times in the
astrocytes, and therefore may be considered as a highly specific
astrocyte gene. Despite this cellular specificity, there is evidence
that Dio2 is also expressed in cells other than the astrocytes
in some situations. For example, in profound hypothyroidism
in the rat, Dio2 expression was also observed in a fraction of
cerebral cortex interneurons (7). It was more recently demon-
strated that astrocyte-specific inactivation of Dio2 (GFAP-Cre—
D2KO mice) reduced D2 activity in brain to less than 10% of the
control (8).

EVIDENCE FROM PARACRINE INTERACTIONS /N VITRO
Freitas et al. (9) studied in vitro the evidence for a paracrine
interaction between astrocytes and neurons. The goal was to
check whether the T3 generated in glial cells was able to acti-
vate neuronal gene expression. This experimental system was
based on an in vitro co-culture system of H4 human glioma
cells expressing D2 and neuroblastoma cells. The two cell types
were located in two adjacent compartments bathed with the same
culture media. The authors demonstrated that upon incubation
with T4, D2 activity in glial cells resulted in increased T3 pro-
duction that reached neurons and promoted TH-responsive gene
expression.
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EVIDENCE FROM TRANSPORTER PATHOPHYSIOLOGY:
DIRECT FUNCTIONAL DEMONSTRATION OF THE PARACRINE
MODEL /N VIVO

A large body of evidence has accumulated in recent years demon-
strating the crucial importance of transporters in mediating the
cellular uptake of THs through the cell membranes (10). The
most specific and physiologically relevant transporters for THs
identified so far are the monocarboxylate transporter 8 (MCTS,
SLC16A2), and the organic anion transporting polypeptide 1C1
(OATP1C1, SLCO1C1). MCT8 mutations cause an X-linked syn-
drome with severe psychomotor retardation and elevated serum
T3 levels, indicating the importance of this transporter in TH avail-
ability to the brain (11, 12). Other transporters may also contribute
to this process although their specific roles are less clear.

MCT8 transports T4 and T3 (13) and OATP1C1 exhibits a
remarkable affinity and specificity toward T4 and rT3 (14, 15).
Roberts et al. (16) reported the presence of Oatplcl protein in the
abluminal side of endothelial capillary cells forming the BBB. The
Oatplcl signal overlapped partially with aquaporin 4, a marker
of astrocytes’ end-feet, which are in contact with brain micro cap-
illaries. Mct8/MCTS8 is also expressed in the micro capillaries in
rodent and human, but not in the astrocytes’ end-feet. In addition,
Mct8 is also expressed in neurons and choroid plexus (17).

Based on the preferences for TH transport and on the expres-
sion patterns of these two transporters, delivery of circulating T4
and T3 to the brain may be formulated in the following way: cir-
culating T3 and T4, crossing the BBB through Mct8 would be
delivered to the extracellular fluid, reaching directly the neural
cells in the proximity of the micro capillaries. On the other hand,
T4, but not T3, would be delivered directly to the astrocytes after
Oatplcl-mediated transport through the BBB. It is important to
notice that OATPICI is poorly expressed in the BBB of human
fetus (16) and adult primates (18) and therefore in the human
brain, T4 transport is dependent on MCTS8.

We provided experimental evidence in support for this model
in rodents by measuring the relative effects of T4 and T3 on brain
gene expression in Mct8 knockout mice (Mct8KO) (19). T3 or T4
were administered to wild-type (WT) and to Mct8KO mice pre-
viously made hypothyroid, and expression of two neuronal target
genes was measured in the cerebellum and striatum. Whereas T4
and T3 were similarly active in WT mice, the Mct8KO mice only
responded to T4. The data suggested that the critical restriction to
T3 transport in the absence of Mct8 is located at the BBB rather
than at the plasma membrane of individual neurons, where other
transporters can substitute for Mct8. The similarity in the effects
of T4 in the Mct8-deficient and in the WT mice, suggested that T4
can reach the astrocytes in the Mct8-deficient mice through a dif-
ferent transporter, most probably Oatplcl, and produce enough
T3 to regulate neuronal gene expression through a paracrine inter-
action. Actually, the increased D2 activity present in the Mct8KO
mice (20, 21), would facilitate this pathway in face of lower cir-
culating T4, and restricted brain uptake of T3. The consequence
is that the Mct8KO mice maintain brain gene expression similar
to WT mice, with a few exceptions. Direct proof that D2 activity
was indeed responsible for normal expression of most brain TH-
regulated genes in the absence of Mct8 was also provided (22). In
the Mct8KO mice, inactivation of D2 led to patterns of brain gene

expression that were similar to that of severely hypothyroid mice,
highlighting the importance of D2.

Therefore, the studies on the Mct8-deficient mice evidenced
that the factors affecting T3 availability in the brain, namely deio-
dinases and transporters, play a decisive role in modulating local
TH action. These studies also gave a functional direct demonstra-
tion of the critical role of astrocytes in regulating the amount of
T3 available for neuronal uptake in vivo. The model also explains
why the double inactivation of Mct8 and Oatplcl transporters
(23) leads to a situation in the brain similar to hypothyroidism, as
in the double Mct8 and Dio2 KO.

THE RELATIVE CONTRIBUTIONS OF DIRECT T3 UPTAKE FROM
THE CIRCULATION AND THE LOCAL T3 PRODUCTION IN THE
ASTROCYTES

POSTNATAL AND ADULT RODENTS

In the D2-deficient mice, brain T3 concentrations at postnatal day
15 are about half of normal, suggesting that at least from this post-
natal age onward, 50% of the total brain T3 derives from direct T3
uptake from the circulation and another 50% derives from local
T3 production in the astrocytes (24) (Figure 1). In support of this,
Mct8 inactivation also leads to roughly 50% reduction of brain
T3 (21).

Local production of T3 accounts for a much higher occupancy
of brain nuclear receptors compared to the liver. Crantz et al. (25)
estimated that local conversion of T4 to T3 accounted for 77% of
the nuclear T3 receptor occupancy in the cerebral cortex and up to
37% in the cerebellum. Circulating T3 was responsible for about
20-25% of nuclear receptor occupancy. These authors concluded
that the nuclear receptors were almost saturated by T3 in the cor-
tex, and at 60% of total receptor capacity in the cerebellum. Full
receptor saturation under euthyroid conditions may explain why
TH-responsive genes in the cortex of euthyroid animals do not
respond or do so modestly above the normal expression level after
administration of excess T3. In studies of T3 administration to
Dio3 KO mice, we found that the response to high doses of T3 was
higher in D3-deficient mice than in the WT euthyroid mice (26).
Therefore, nuclear occupancy was not a limiting factor in gene
responses to T3, and the reason why the euthyroid brain does not
respond genomically to excess T3 is due to the protective action
of D3.

Despite the importance of D2 for the local generation of T3,
D2-deficient mice showed normal expression of several genes pos-
itively regulated by T3 (24). We confirmed these observations for
additional genes, and showed that in the absence of D2, the expres-
sion levels of positively regulated genes are maintained by T3
from the circulation (22). However, expression of the negatively
regulated genes is more frequently affected by D2 inactivation,
suggesting that they are sensitive to the source of T3. The mech-
anism underlying these observations is unknown, and somehow
the source of T3 may influence directly or indirectly the cellular
T3 content.

THYROID HORMONE TRANSPORT IN THE FETAL BRAIN

The fetal brain depends almost entirely from T4 monodeiodina-
tion, so that most brain T3 is produced locally from T4 (Figure 1).
In the human fetal brain, despite the presence of T3 receptors
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FIGURE 1 | Sources of T3 in the fetal and postnatal brain. T4 from the
circulation crosses the BBB and reaches the astrocytes and is converted
to T3 by type 2 deiodinase. This is the main source of T3 in the fetal brain.
In postnatal and adult animals, T3 from the circulation can also access the
brain. The proportion of T3 from the circulation increases up to 50% in the
late postnatal stages. /n situ T3 production accounts for a high occupancy
of thyroid hormone receptors (green arrow), and is also important for
expression of genes regulated negatively by thyroid hormone.
Transporters in the cell membranes are represented by gray squares,
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without naming any specific transporter. Although in the rodent brain, the
BBB expresses Mct8 and Oatplc1, the latter is not present in the primate
BBB. T4 enters the astrocytes most likely through Oatplc1. Passage of T3
from astrocytes to neurons is facilitated by Mct8 and also other
transporters, since in Mct8 KO mice there is no apparent restriction for
the passage of astrocytic T3 to neurons. Type 3 deiodinase is localized in
the plasma membrane of neurons. BBB, blood-brain barrier; D2, type 2
deiodinase; D3, type 3 deiodinase; TR, thyroid hormone receptor; RXR,
9-cis retinoic acid receptor.

and T4 in tissues by the second trimester, and even before, only
the brain showed a significant T3 concentration in the nucleus
as compared with other tissues (27). This observation indicates
that the main source of T3 in the fetal brain is local T4 deiod-
ination. In support of this idea, D2 activity rises in the human
cerebral cortex during the second trimester in parallel with T3
concentrations (28).

In the rat (29, 30), physiological doses of T4 administered
to hypothyroid pregnant rats could normalize T3 concentrations
in the brain and increase neuronal gene expression. In contrast,
administration of even large doses of T3 to the mother failed to
increase T3 concentration in the fetal brain despite reaching other
tissues, and was not able to normalize fetal gene expression. The rat
fetal brain contains significant D2 activity (31) making it plausible
that most if not all brain T3 is produced locally.

WHY DOES CIRCULATING T3 CANNOT ENTER THE FETAL
BRAIN?

The reason why the fetal brain is apparently impermeable to cir-
culating T3 is unknown. A possible explanation could be a lack
of expression of the Mct8 transporter. To address this issue, the
expression of Mct8 and of the specific T4 transporter Oatplcl
were analyzed by confocal microscopy in the prenatal rat cor-
tex. Both proteins were present in the brain capillaries and in the
epithelial cells of the choroid plexus (30).

If T3 cannot enter the brain despite expression of Mct8, what
is the role of this transporter in the fetal brain? It is possible that
Mct8 at early stages of development has a more prominent role in
TH efflux from the brain (32, 33) as proposed in the liver for Mct8
and Mct10 (34). Another possibility is that circulating T3 crossing
the BBB through Mct8-mediated transport is deposited directly in
the extracellular fluid where it could be rapidly degraded by neu-
ronal D3 activity (35). D3 is abundantly expressed in fetal tissues
including the brain (36, 37), where it is expressed in neurons (38,
39) and serves as a fine regulator of tissue TH concentrations. For

example, in the human fetal brain, D3 activity in the cerebellum
prevents the accumulation of T3 during mid-gestation (28), at the
same time that D2 activity is responsible for T3 accumulation in
the cortex. Hernandez et al. (40) demonstrated that D3 plays a
critical role in maintaining low levels of TH during fetal and early
neonatal life in mice. During postnatal development, disruption
of the Dio3 gene increases basal expression of the T3-target gene
Hr (41). The catalytic site of D3 was earlier proposed to face the
extracellular fluid (42, 43). If this was true, T3 in the extracellular
fluid of the fetal brain would be easily accessible to D3-mediated
degradation. However, more recent evidence derived from Dio3
transfection experiments indicates that D3 substrates need to be
internalized for degradation (44). Even so, it may be speculated
that the topography of D3 localization in the plasma membrane
could allow easier and faster degradation of substrates crossing
the neuronal membrane from the extracellular fluid. Within this
context, one attractive, but still speculative hypothesis is that the
increased proportion of T3 entering the brain from the circulation,
taking place from fetal to postnatal stages, is due a decrease of D3
activity. The contribution of systemic T3 would then increase in
parallel to account for approximately 50% of the total brain T3.

LOCAL GENERATION OF T3 FROM T4 IN THE CONTEXT OF
ASTROGLIAL MATURATION
The contention that in the fetal brain most T3 derives from T4
has to be examined in the context of D2 activity and maturation
of D2-expressing astrocytes during development. The main surge
of D2 activity in the rat brain is postnatal, with a peak around
postnatal day 15, a time in which the highest T3 concentration
in the brain is reached. In the fetal brain, D2 activity is low, and
shows a discrete peak just before birth, at prenatal days 18-21 (31,
45). Consequently, brain T3 concentrations during the perinatal
period are low, about half to one-third of adult rats.

Some aspects of the model are not well-understood, and should
be refined to take into account several factors. One is astrocyte
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development, which is mainly postnatal (46), increasing in number
during postnatal stages, and following a pattern similar to D2 activ-
ity. Although the role of astrocytes during the fetal and early post-
natal periods has been questioned (47), native astrocytes isolated
from the P1 mouse brain already contain a high concentration of
Dio2 mRNA (6). It may be that the small population of astrocytes
present in the last few days of fetal stages has an important role
in the local formation of T3 in the brain. Another difficulty is to
extrapolate the model to the human situation. The human brain
expresses little OATP1C1 in the BBB, and T4 and T3 transport
apparently rely exclusively on MCTS8. Therefore, entry of T4 to the
astrocytes has to take place through a different transporter. Specif-
ically addressing the patterns of thyroid hormone transporter, and
deiodinases in the fetal and postnatal human brain should shed
light on these issues.
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