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Sphingolipids are components of the lipid rafts in plasma membranes, which are important
for proper function of podocytes, a key element of the glomerular filtration barrier. Research
revealed an essential role of sphingolipids and sphingolipid metabolites in glomerular disor-
ders of genetic and non-genetic origin. The discovery that glucocerebrosides accumulate
in Gaucher disease in glomerular cells and are associated with clinical proteinuria initi-
ated intensive research into the function of other sphingolipids in glomerular disorders.
The accumulation of sphingolipids in other genetic diseases including Tay–Sachs, Sand-
hoff, Fabry, hereditary inclusion body myopathy 2, Niemann–Pick, and nephrotic syndrome
of the Finnish type and its implications with respect to glomerular pathology will be dis-
cussed. Similarly, sphingolipid accumulation occurs in glomerular diseases of non-genetic
origin including diabetic kidney disease (DKD), HIV-associated nephropathy, focal segmen-
tal glomerulosclerosis (FSGS), and lupus nephritis. Sphingomyelin metabolites, such as
ceramide, sphingosine, and sphingosine-1-phosphate have also gained tremendous inter-
est. We recently described that sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b)
is expressed in podocytes where it modulates acid sphingomyelinase activity and acts
as a master modulator of danger signaling. Decreased SMPDL3b expression in post-
reperfusion kidney biopsies from transplant recipients with idiopathic FSGS correlates
with the recurrence of proteinuria in patients and in experimental models of xenotrans-
plantation. Increased SMPDL3b expression is associated with DKD. The consequences
of differential SMPDL3b expression in podocytes in these diseases with respect to their
pathogenesis will be discussed. Finally, the role of sphingolipids in the formation of lipid
rafts in podocytes and their contribution to the maintenance of a functional slit diaphragm
in the glomerulus will be discussed.

Keywords: sphingolipid, podocyte, kidney disease, glomerular disease, S1P, ASMase, SMPDL3b, ceramide

Sphingolipids, more precisely sphingomyelin, cerebroside, and
cerebrosulfatide were first described in 1884 by Johann L. W.
Thudichum who named them for their enigmatic (“Sphinx-like”)
properties (1). They are important components of the lipid rafts
in plasma membranes of mammalian cells and thus contribute
to the proper function of cells. Within the kidney, the function
and survival of major cell constituents of the glomerular filtration
barrier, i.e., podocytes, heavily depends on the integrity of lipid
rafts. Podocytes are differentiated cells of the kidney glomeru-
lus consisting of a cell body, major processes, and foot processes
(FP). The FP of podocytes are linked to the glomerular base-
ment membrane with their actin cytoskeleton. Processes from
neighboring podocytes form a characteristic interdigitating pat-
tern that leaves filtration slits in between them. The latter are
bridged by the slit diaphragm (SD) that together with the glomeru-
lar basement membrane and the fenestrated endothelium plays
an important role in the selective permeability of the filtration
barrier of the glomerulus (2–4). Integrity of this filtration bar-
rier is important in order to prevent the loss of protein into the
urine (proteinuria) and mutations in genes coding for SD proteins
cause proteinuria-associated nephropathies (5–9). Research of the

past two decades has revealed an essential role of sphingolipids in
glomerular disorders with podocyte involvement.

This review will focus on different types of sphingolipids and
sphingolipid metabolites that have been implicated in the patho-
genesis of sphingolipidoses of genetic and non-genetic origin with
podocyte involvement. We will also discuss sphingolipid signaling
in podocytes and its influence on the actin cytoskeleton.

BIOLOGY OF SPHINGOLIPIDS
Sphingolipids are a diverse class of lipids with a varying degree of
hydrophobic and hydrophilic properties. The hydrophobic region
of sphingolipids consists of a longchain sphingoid base with gener-
ally 18 carbons, such as sphingosine, which is linked to a fatty acid
via an amide bond. The hydrophilic region consists in the sim-
plest case of a hydroxyl group in the case of ceramide. Fatty acids
may vary in their composition but palmitic (C16:0) and stearic
(C18:0) are most commonly present. More complex sphingolipids
have sugar residues (glycosphingolipids) and phosphates as side
chains (phosphosphingolipids) (Figure 1).

Glycosphingolipids such as GM1 and phosphosphingolipids
such as sphingomyelins are commonly found in eukaryotes,
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FIGURE 1 | Structure of sphingolipids. In sphingolipids, the hydrophobic
region consists of a longchain sphingoid base with generally 18 carbons,
such as sphingosine, which is linked to the acyl group of a fatty acid via an
amide bond (R2). The hydrophilic region (R1) consists in the simplest case
of a hydroxyl group in the case of ceramide.

in some prokaryotes, and in viruses as components of plasma
membranes and membranes of organelles such as lysosomes,
endosomes, endoplasmatic reticulum (ER), and others. The flu-
idity of the plasma membrane is tightly regulated by ordered
packing of cholesterol between the phospholipid molecules,
mainly sphingomyelin (SM) and thus sphingolipids have an
important structural function. Sphingolipids are localized in the
outer leaflet of the plasma membrane where they are asym-
metrically distributed. Lipid rafts or raft-related caveolae are
sphingomyelin-rich microdomains of the membrane, which are
also enriched with cholesterol and membrane-associated pro-
teins. The formation of lipid rafts is critical for proper cell func-
tion, protein–protein interactions, and signal transduction. For
example, conversion of SM to ceramide, locally at the plasma
membrane, by sphingomyelinases (SMases) will have a direct
effect on the biophysical properties of the membrane and cell
function as ceramide accumulation will lead to the displace-
ment of cholesterol from the plasma membrane thus alter-
ing lipid rafts and signaling properties (10–12). Likewise, an
interruption of raft-dependent cell signaling or even cell death
can occur as a consequence of a cellular depletion of choles-
terol that can be achieved by the use of cholesterol-depleting
agents such as beta-cyclodextrin, methyl-beta-cyclodextrin, or
2-hydroxy-propyl-beta-cyclodextrin.

In recent years, it has become clear that, besides being inte-
gral part of membranes and having a structural function, sphin-
golipid metabolites such as ceramides, sphingosine, sphingosine-
1-phosphate (S1P), and others play also important roles as second
messengers in many biological processes including cell growth
(13), differentiation, migration, and apoptosis (14). Complex
sphingolipids were shown to interact with growth factor recep-
tors, extracellular matrix, and neighboring cells (15). In addition,
studies in yeast mutants revealed that sphingolipids have an impor-
tant role in cellular stress responses as sphingolipid mutants yeast
grew normally under usual culture conditions but were unable to
survive if challenged or stressed (16).

Ceramide represents the centerpiece of the sphingolipid meta-
bolic pathway reviewed in (17). Ceramide can be synthesized

de novo starting with the condensation of l-serine and
palmitoyl-CoA by serine palmitoyl transferase (SPT) to gen-
erate 3-ketodihydrosphinganine. The latter is then reduced by
3-ketosphinganine reductase to sphinganine, which in turn is
N-acylated by ceramide synthetase (CS) to produce dihydro-
ceramide. Finally, dihydroceramide is converted to ceramide
by the enzyme dihydroceramide desaturase. Ceramide can
also be generated by hydrolysis from sphingomyelin (SM) by
SMases producing ceramide and phosphocholine. For sphin-
golipid biosynthesis, ceramide can be converted to sphin-
gomyelin. This reaction is catalyzed by sphingomyelin syn-
thetase (SMS), an enzyme that transfers the phosphocholine head
group from phosphatidylcholine (PC) onto ceramide simulta-
neously generating diacylglycerol (DAG). Finally, ceramide can
be generated by breakdown of glycosphingolipids and galac-
tosylceramide to dihydroceramide and subsequent hydrolyza-
tion (Figure 2).

Once ceramide is generated, it can accumulate in the cell or it
may be further metabolized. Phosphorylation by ceramide kinase
will generate ceramide-1-phosphate whereas deacylation by neu-
tral or acid ceramidases will generate sphingosine, which can be
phosphorylated by sphingosine kinase to yield S1P. Endproducts
of the ceramide catabolic pathway are ethanolamine-1-phosphate
and C16 fatty aldehydes, which are generated from S1P lyase
from S1P.

SPHINGOLIPIDS IN GLOMERULAR DISEASES
In the past decade, it has become clear that there is an associa-
tion between the accumulation of sphingolipids in the kidney and
glomerular disease. The accumulation of sphingolipids in form of
glycosphingolipids, ceramide, and ceramide metabolites has been
described in several models of experimental and clinical nephropa-
thy and is characteristic of some rare genetic glycosphingolipid
(GSL) storage disorders. The observation that intracellular accu-
mulation of sphingolipids in glomerular cells such as podocytes is
also observed in the absence of genetic mutations and is associated
with the development and progression of kidney disease suggests
the existence of “acquired” sphingolipid storage disorders.

Most mammalian GSLs are synthesized from glucosylceramide
(Figure 2) and are primarily present in the outer leaflet of the
plasma membrane where they have important functions in medi-
ating cell–cell interactions and modulating activities of proteins in
their proximity. They are usually not uniformly distributed within
the plasma membrane but cluster in lipid rafts (18, 19). Gan-
gliosides are sialic acid-containing glycosphingolipids in which
one or more N -acetlyneuraminic acids (NANA) is linked to the
sugar chain and are essential components of plasma membranes
(20). Gangliosides with one NANA include GM1, GM2, GM3, gan-
gliosides with two NANAs are GD1a, GD1b, GD2, GD3, and the
gangliosides GT1b and GQ1 are characterized by three and four
NANAs, respectively. Gangliosides were first identified in nervous
tissue but are also abundantly present in the kidney (21). GM1,
GM2, GM3, GD1a, GD1b, GD2, GD3, GT1a, and GT1b are gan-
gliosides present in normal rat glomeruli (22–24). GM3, GD3, and
disialosyllactosylceramide (O-acetyl GD3) are the most abundant
gangliosides present in kidney and 9-O-acetyl GD3 is a podocyte
specific ganglioside (25, 26).
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FIGURE 2 | Sphingolipid metabolism. Ceramide is the centerpiece of the
sphingolipid metabolic pathway and can be synthesized de novo from
L-serine and palmitoyl-CoA (green), through hydrolysis of sphingomyelin
(yellow), or through hydrolysis of glycosphingolipids and sulfatites (purple).
Ceramide can also be synthesized from sphingomyelin through the action of
sphingomyelinases, or from ceramide-1-phosphate through the action of
ceramide-1-phosphate phosphatase. Finally, ceramide can be further
catabolized (blue) to sphingosine and sphingosine-1-phosphate, which are
biologically active metabolites and finally to ethanolamine-1-phosphate and

C16 fatty aldehydes. SPT, serine palmitoyl transferase; 3-KSR,
3-ketosphinganine reductase; CS, ceramide synthetase; DES,
dihydroceramide desaturase; SMase, sphingomyelinase; SMS, sphingomyelin
synthetase; PC, phosphatidylcholine; DAG, diacylglycerol; C1PPase,
ceramide-1-phosphate phosphatase; CK, ceramide kinase; CDase,
ceramidase; CS, ceramide synthase; SK, spingosine kinase; S1PP,
spingosine-1-phosphate phosphatase; GCS, glycosylceramide synthase;
GCase, glycosylceramidase; GalCS, galactosylceramide synthase; Gal-CDase,
galactosylceramidase.

SPHINGOLIPID ACCUMULATION AND GLOMERULAR
DISEASE OF GENETIC ORIGIN
Sphingolipidoses are inherited disorders leading to defects in the
sphingolipid metabolism resulting in the accumulation of excess
glycosphingolipids and phosphosphingolipids. It is interesting to
note that different metabolites will tend to accumulate in different
cell types, therefore leading to highly variable clinical–pathological
findings.

Gaucher disease type 1 (OMIM #230800) is the most prevalent
GSL storage disease and is characterized by an accumulation of
glucocerebroside (GlcCer) in the affected tissues and cells, mainly
in red blood cells, liver, and spleen. Gaucher disease is of autoso-
mal recessive inheritance and it is caused by mutations in the acid
beta-glucosidase 1 (GBA1) gene on chromosome 1q22 in the vast
majority of patients (Table 1). This gene encodes for the enzyme
that cleaves the beta-glucosidic linkage of glycosylceramide and
mutations in this gene lead to accumulation of GlcCer. However,
in some patients GlcCer accumulation is due to a lack of saposin C.
Enzyme replacement therapy with macrophage-targeted recom-
binant human glucocerebrosidase is successfully used to treat
patients with Gaucher disease (27–29) and drugs that block GlcCer

synthesis are currently being tested in clinical trials (30). Although
the presence of renal pathology in Gaucher disease is rather rare,
it has been described in some patients (31) and it is associated
with the accumulation of GlcCer in form of Gaucher bodies in
glomerular mesangial and endothelial cells and in interstitial cells
of the kidney (31). Sphingolipid activator proteins (saposins A, B,
C, and D) are glycoproteins that are encoded in tandem and are
derived from a common precursor protein (prosaposin, PSAP).
Saposins stimulate the degradation of GSLs by lysosomal enzymes.
Defects in saposins are associated with the accumulation of lipids
in affected tissues in lysosomal storage disorders. Humans with
saposin C deficiency exhibit the clinical presentation of Gaucher-
like disease (32). Combined deficiency of Saposin C and D in mice
led to accumulation of GSLs and ceramide in brain and kidney
due to decreased β-glucosidase activity (33).

Tay–Sachs disease (OMIM #272800) is a genetic disorder with
autosomal recessive inheritance that is caused by mutations in
the alpha subunit of the hexoseaminidase A (HEXA) gene on
chromosome 15q23. Sandhoff disease (OMIM #268800) is caused
by mutations in the beta subunit of the hexosaminidase gene
B (HEXB) on chromosome 5q13 (Table 1). Both disorders are
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Table 1 | Sphingolipid accumulation in glomerular diseases of genetic and non-genetic origin.

Disease OMIM Mutated gene Chromosomal location Sphingolipid accumulating

SPHINGOLIPID ACCUMULATION IN GLOMERULAR DISEASE OF GENETIC ORIGIN

Gaucher 230800 Acid beta-glucosidase 1 (GBA1) 1q22 GlcCer

Tay–Sachs 272800 Hexoseaminidase A (HEXA) 15q23 GM2

Sandhoff 268800 Hexoseaminidase B (HEXB) 5q13 GM2

Fabry 301500 Alpha-galactosidase A (GLA) Xq22 Gb3, Lyso-Gb3

Hereditary inclusion body myopathy 2 600737 UDP-acetylglucosamine

2-epimerase/N -acetylmannosamine

kinase (GNE)

9p13 Hyposialylation of glycoproteins

such as podocalyxin?

Niemann–Pick 257220

607616

257200

NPC1 NPC2 SMPD1 18q11 14q24 11p15 Sphingomyelin

Nephrotic syndrome of the Finnish type 256300 NPHS1 19q13 O-actetyl-GD3

SPHINGOLIPID ACCUMULATION IN GLOMERULAR DISEASE OF NON-GENETIC ORIGIN

Diabetic kidney disease GlcCer, GM3, S1P, sphingosine?

Puromycin aminonucleoside (PAN)-induced nephropathy GD3, O-actetyl-GD3

HIV-associated nephropathy (HIVAN) Gb3

Focal segmental glomerulosclerosis (FSGS) Sphingomyelin

Acute ischemia reperfusion injury Ceramide

characterized by an accumulation of the ganglioside GM2 in
the affected tissues and are clinically indistinguishable from each
other. GM2 accumulation occurs mainly in the brain and liver but
has also been found in the kidney (34, 35). Unlike in humans,
targeted inactivation of the Hexa and Hexb gene in mice revealed
phenotypical differences between the two models. Whereas Hexa
knockout mice showed GM2 accumulation in the brain and mem-
branous cytoplasmatic bodies in neurons in the absence of neu-
rological manifestations, Hexb knockout mice showed profound
neurological disturbances. These differences, which are not found
in patients with the two diseases, are due to differences in the
ganglioside degradation pathway between humans and mice (36).

Fabry disease (OMIM #301500) is caused by mutations in
the gene encoding alpha-galactosidase A (GLA) on chromosome
Xq22, which leads to the systemic accumulation of globotriaoslyc-
eramide (Gb3) (Table 1) and related glycosphingolipids in body
fluids and affected tissues (37), mainly brain, heart, and kid-
ney. Elevated levels of Gb3 are detected in plasma or urine of
patients with Fabry disease (38, 39) and more recently, highly
increased levels of globotriaosylsphingosine (lyso-Gb3) were also
described (40, 41). In the kidney, Gb3 accumulation occurred
mainly within lysosomal, ER, and nuclear markers of renal cells
(42). The renal pathology observed in Fabry disease includes
hypertrophic podocytes with foamy appearing vacuoles, charac-
teristic inclusion bodies of glycolipids in podocytes (zebrabodies),
and mesangial widening (43). Progressive podocyte injury due to
accumulation of Gb3 and related glycosphingolipids was shown
to be associated with albuminuria and foot process effacement.
Thereby, podocyte Gb3 inclusion volume density and foot process
effacement increased with age when compared with controls and
correlated directly with proteinuria (44, 45). Enzyme replacement

therapy using recombinant human α-GalA is the primary treat-
ment for patients with Fabry disease and was shown to attenu-
ate renal complications, halt the progression of renal pathology,
and prevent renal failure in patients with Fabry disease (44, 46).
Studies in the alpha GalA knockout mouse, a mouse model of
Fabry disease, revealed reduced levels of glycosylceramide and
ceramide in plasma, liver, spleen, kidney, and heart possibly a
consequence of Gb3 accumulation. The observation that enzyme
replacement therapy in this model normalized glycosylceramide
levels possible via increased Gb3 degradation further supported
the hypothesis that Gb3 accumulation contributes to the pheno-
type observed in these mice (46). Thereby, targeting of recom-
binant α-GalA requires the expression of endocytic receptors,
megalin, sortilin, and mannose-6-phosphate receptor (M6PR),
which are expressed in human glomerular podocytes (47). Inter-
estingly, lentiviral knockdown of α-GalA in human podocytes led
to intracellular Gb3 accumulation, which was associated with a
loss of mTOR kinase activity and dysregulated autophagy sug-
gesting a link between autophagy and glomerular injury in Fabry
disease (48).

Hereditary inclusion body myopathy 2 (HIBM2) (OMIM
#600737) is a genetic disorder with autosomal recessive inher-
itance that is caused by mutations in the gene encod-
ing UDP-acetylglucosamine 2-epimerase/N -acetylmannosamine
kinase (GNE) on chromosome 9p13 (Table 1). GNE is a key
enzyme in the sialic acid biosynthetic pathway, which catalyzes the
first two steps in NANA biosynthesis, which are main components
of gangliosides (49). The disease is a progressive neuromuscular
disorder but no renal disorders have been reported in patients
with HIBM2. Interestingly, knockin mice carrying a homozygous
M712T Gne/Mnk mutation died perinatally in the absence of
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myopathic features but were characterized by a renal phenotype.
The renal pathology observed included glomerular hematuria, seg-
mental splitting of the glomerular basement membrane, protein-
uria, and podocytopathy, including effacement of podocyte FP, and
reduced sialylation of the major podocyte sialoprotein, podoca-
lyxin. ManNAc administration to homozygous knockin mice was
associated with improved renal histology, increased sialylation
of podocalyxin, and increased Gne/Mnk protein expression and
Gne-epimerase activities (50). Likewise, mice with a V572L point
mutation in the GNE kinase domain show no apparent myopathies
or motor dysfunctions but exhibited renal impairment accompa-
nied by massive albuminuria. Histologically, kidneys of the mutant
mice showed enlarged glomeruli with mesangial matrix deposi-
tion, leading to glomerulosclerosis, and abnormal podocyte foot
process morphologies. This phenotype was partially prevented
by the administration of N -acetylneuraminic acid (Neu5Ac) to
the mutant mice (51). These studies indicate that hyposylation
of podocyte glycoproteins including podocalyxin may contribute
to albuminuria, foot process effacement, and splitting of the
glomerular basement membrane and that treatment with sialic
acid may represent a new strategy to prevent or treat glomerular
phenotypes associated with HIBM2.

Farber disease or Farber lipogranulomatosis (OMIM #228000)
is a genetic disorder with autosomal recessive inheritance that
is caused by mutations in the gene encoding acid ceramidase
(ASAH1) on chromosome 8p22, the enzyme, which is responsible
for the degradation of ceramide into sphingosine and free fatty
acids (Table 1). Lipid accumulation is mainly seen in the joints,
tissues, and the central nervous system, but also in liver, heart,
and kidneys. Ceramide accumulation in the kidney leading to a
particular phenotype of lipogranlulomatosis was described (52).

Niemann–Pick is a genetic disorder with autosomal recessive
inheritance that is caused by mutations in the NPC1 gene on chro-
mosome 18q11 (OMIM #257220), by mutations in the NPC2
gene on chromosome 14q24 (OMIM #607616), and by muta-
tions in the sphingomyelin phosphodiesterase-1 (SMPD1) gene
on chromosome 11p15 (OMIM #257200). Mutations in these
genes lead to the accumulation of lipids in form of cholesterol
(NPC1 and NPC2 mutations) and sphingomyelin (SMPD1 muta-
tion) (Table 1). Acid sphingomyelinase (ASMase) deficiency in
Niemann–Pick disease due to mutations in the SMPD1 gene leads
accumulation of sphingomyelin in the affected tissues including
the kidney. The occurrence of lipid-laden macrophages resembling
foam cells was described in the bone marrow, liver, and kidney in
patients with Niemann–Pick disease and in SMPD1 knockout mice
(53, 54). Enzyme replacement therapy using recombinant human
ASM in SMPD1 knockout mice led to significant improvements
in the organs of the reticuloendothelial system but neurological
deficits remained (55).

Nephrotic syndrome of the Finnish type (OMIM #256300) is
a genetic disorder caused by homozygous or compound heterozy-
gous mutations in the gene NPHS1 encoding for the SD protein
nephrin (Table 1). Nephrotic syndrome of the Finnish type occurs
in association with deposits of disialoganglioside O-acetyl GD3
(56). Accumulation of galactosylceramides, mainly sulfatides, was
also described in nephrotic syndrome of non-genetic, idiopathic
orgin (57). However, what causes the accumulation of O-acetyl

GD3 in nephrotic syndrome remains unclear. Saposins do not
seem to play an important role as mRNA expression in diseased
kidneys was found normal and no mutations in the PSAP gene
were found in cDNA clones (56). It has been suggested that tumor
necrosis factor alpha (TNFα) and CD95 may play an important
role in the pathogenesis of nephrotic syndrome. TNFα and CD95
were found significantly increased in patients with nephrotic syn-
drome (58). It was shown in lymphoid and myeloid tumor cells
that accumulation of GD3 induced Fas (APO-1/CD95)-mediated
apoptosis in a caspase-independent manner that was the conse-
quence of the disruption of the mitochondrial transmembrane
potential. This phenotype was prevented by pharmacological inhi-
bition of GD3 synthesis (59). In other studies, an important role
of membrane-associated ASMase was suggested in Fas-mediated
apoptosis as activation of ASMase leads to the generation of free
ceramide, which then can be converted to GD3 (60, 61). A similar
pathway has been recently described in TNFα-mediated apoptosis
(62, 63). Significant 9-O-acetyl GD3 accumulation, together with
increases in GM2 and GM4 gangliosides in glomerular cells was
also observed after low level and long term lead exposure and was
associated with decreased apoptosis in glomerular cells suggesting
that GD3-O acetylation could represent a new strategy to attenuate
apoptosis in renal glomerular cells and contribute to cell survival
as observed during lead exposure (64).

SPHINGOLIPID ACCUMULATION IN GLOMERULAR DISEASE
OF NON-GENETIC ORIGIN
Diabetic kidney disease (DKD) is the most common cause of
end-stage renal disease and renal failure in the US and podocyte
injury and the consequent loss of podocytes (podocytopenia) is
an important feature of DKD in patients with type 1 and type 2
diabetes (65–69). Increased levels of sphingolipids such as gly-
cosphingolipids (70), ceramide (71, 72), sphingosine (73), and
sphinganine (72, 73) have been described in the plasma of patients
with diabetes. More recently, it has become clear that the intracel-
lular sphingolipid composition in podocytes and other cells of
the kidney glomerulus may contribute to the pathogenesis and
progression of the disease (Table 1).

Several studies investigated the effects of streptozotocin (STZ)-
induced diabetes in rats on intracellular sphingolipid accumu-
lation and its association with glomerular cell proliferation and
glomerular hypertrophy. Accumulation of S1P was observed in
rat glomeruli after 4 days of diabetes induction and was associated
with an increase in neutral ceramidase and sphingosine kinase
activity, the two enzymes involved in the conversion of ceramide
to S1P (74). In another study, accumulation of GlcCer and GM3
occurred in the kidneys of rats 16 days after STZ-induced diabetes
(75) whereas reduced GM3 and sialic acid content was detected
in the glomeruli of rats 15 days after STZ-induced diabetes (76).
Increased ceramide production due to increased expression of
SPT, a key enzyme in the ceramide de novo synthesis pathway
(Figure 2), was described in tubular epithelial cells and microvas-
cular endothelial cells and was associated with increased apop-
tosis. Rapamycin treatment significantly reduced apoptosis and
proteinuria indicating an important function of the Akt/mTOR
pathway in STZ-induced DKD (77). We recently showed that
the expression of sphingomyelin phosphodiesterase acid-like 3b
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(SMPDL3b) is increased in glomeruli from patients with DKD, in
DKD sera treated human podocytes and in glomeruli of diabetic
mice (db/db). Because SMPDL3b is a protein with homology to
ASMase, we hypothesized that SMPDL3b may activate SM meta-
bolic pathways leading to the accumulation of sphingolipids other
than sphingomyelin. Increased SMPDL3b expression was associ-
ated with increased RhoA activity and apoptosis but prevented
αVβ3 integrin activation via its interaction with soluble urokinase
plasminogen activating receptor (suPAR) in human podocytes cul-
tured in the presence of sera from patients with DKD and in db/db
mice (78). Because ceramide, sphingosine, and S1P are known
sphingolipid metabolites to accumulate in apoptotic cells, we
determined the ceramide content in kidney cortexes of db/db mice
and found ceramide levels to be decreased in kidney cortexes of
these mice. We therefore concluded that increased SMPDL3b lev-
els may lead to increased cellular sphingosine or S1P content in the
kidneys of db/db mice as it is the case in glomerular mesangial and
tubular cells in db/db mice (79, 80), and in adipocytes of ob/ob mice
(81). Taken together, these studies indicate a possible link between
sphingolipid accumulation in form of S1P, GlcCer, and GM3 and
glomerular proliferation and hypertrophy in DKD whereas the
accumulation of ceramide and other ceramide metabolites such as
sphingosine may contribute to podocytopenia observed in DKD.
Thus, targeting sphingolipids and sphingolipid metabolites may
represent a new strategy to treat patients with DKD.

Puromycin aminonucleoside (PAN) induced nephropathy is a
model for human minimal change disease. Following PAN injec-
tion in rats, significant decreases in kidney GD3 and O-acetyl GD3
occurred in a dose- and time-dependent manner and preceded
the development of proteinuria indicating a possible causative
effect (82). Because sialoglycoproteins contribute significantly to
the negative charge of the glomerular filtration barrier, it seems
possible that decreases of GD3 and O-acetyl GD3 contribute to
decreases in the negative charge of the filtration barrier and to
the changes in glomerular permeability observed in PAN-induced
nephropathy (83). Likewise, it was shown that PAN treatment of
human podocytes led to a loss of sialic acid which was accompa-
nied by increased generation of superoxide anions, a phenotype
that was prevented by sialic acid supplementation (84).

HIV-associated nephropathy (HIVAN) is the classic renal dis-
ease associated with HIV infection. HIV-1 infection of renal
tubular and glomerular podocytes leads to dedifferentiation and
increased proliferation of podocytes (85, 86). Because podoyctes
do not express HIV-1 receptors, it has been suggested lipid raft
mediated endocytosis may facilitate the viral entry (87) underlin-
ing an important role for sphingolipids in mediating viral entry
into the host cell. Most of our understanding of the pathogene-
sis of HIVAN has come from the Tg26 transgenic mouse model in
which the gag/pol-deleted HIV-1 provirus is expressed. Transgenic
mice show glomerular epithelial cell dedifferentiation and prolif-
eration that is associated with proteinuria and renal failure. Renal
histology revealed focal segmental glomerulosclerosis (FSGS) and
microcystic tubular dilatation, resembling human HIVAN (85,
88). Studies in human podocytes in culture and transgenic mice
showed that stable expression of Nef was sufficient to induce
increased proliferation and loss of contact inhibition (89–92). In
addition, recent studies have shown a strong association between

HIVAN and the APOL1 gene on human chromosome 22 (93)
and, although not found in glomeruli, significant accumulation of
Gb3 was found in renal tubular epithelial cells of HIV transgenic
mice (94) (Table 1) indicating a possible role for (sphingo-) lipid
metabolism in HIVAN.

Focal segmental glomerulosclerosis is a glomerular disease that
is characterized by proteinuria and progression to end-stage renal
disease. FSGS is the leading cause of nephrotic syndrome and the
most common cause of primary glomerular disease in adults (95).
Several mutations in genes coding for proteins that are expressed
in podocytes have been shown to cause FSGS. We will focus in this
paragraph on non-genetic forms of FSGS, mainly FSGS recurrence
after transplantation, which occurs in about one third of patients
(96–98) and on primary (idiopathic) forms of FSGS. We recently
reported an important role of sphingomyelin-like phosphodi-
esterase 3b (SMPDL3b) gene in FSGS. Studying 41 patients at high
risk for recurrent FSGS, we showed that the number of SMPDL3b-
positive podocytes in post-reperfusion biopsies was decreased in
patients who developed recurrent FSGS. As mentioned above,
SMPDL3b is a protein with homology to ASMase and we hypothe-
sized that decreased expression of SMPDL3b may lead to decreased
ASMase activity and accumulation of sphingomyelin contributing
to the pathogenesis of FSGS (Table 1). Indeed,we were able to show
that human podocytes treated with the sera from patients with
FSGS had decreased SMPDL3b expression and decreased ASMase
activity. In addition, this was associated with actin cytoskeleton
remodeling and apoptosis, a phenotype that was prevented by
overexpression of SMPDL3b in podocytes or by treatment with
rituximab, a monoclonal antibody directed against CD20 that
we have found to also bind SMPDL3b in podocytes. The per-
centage of cells characterized by actin cytoskeleton remodeling in
form of a loss of stress fibers correlated with proteinuria suggest-
ing an important role of sphingomyelin in the pathogenesis of
FSGS (99). Because decreased SMPDL3b expression in podocytes
per se does not cause actin cytoskeleton remodeling and apopto-
sis, it seems possible that accumulation of sphingomyelin renders
podocytes more susceptible to apoptosis and may act as a mas-
ter modulator of danger signaling in podocytes. Supporting an
important role of SMPDL3b in actin cytoskeleton remodeling and
apoptosis, it was recently demonstrated that administration of rit-
uximab to baboons after xeno-kidney transplantation from pigs
delayed, but did not prevent, the post-transplant occurrence of
proteinuria. As in the case of our study investigating the role of
SMPDL3b in FSGS, this study demonstrated that rituximab was
also able to prevent pig podocyte injury and prevented decreases in
SMPDL3b expression in podoytes after exposure to naive baboon
sera in association with preservation of cell viability (100). Finally,
sequestration of plasma membrane lipids by cyclodextrin was
shown to prevent suPAR-mediated αVβ3 integrin activation in
podocytes (101), a pathway that may be causative of protein-
uria in FSGS. Because circulating suPAR levels are elevated in
FSGS patients, associate with decreased SMPDL3b expression, and
suPAR-dependent αVβ3 integrin activation in podocytes (78, 99,
101, 102), whereas cyclodextrin protects podoctyes from injury
in DKD where SMPDL3b expression is increased in podocytes
(78, 103), we investigated if SMPDL3b expression modulates the
podocyte injury phenotype in these two kidney diseases. We
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demonstrated that contrary to what is observed in FSGS, increased
SMPDL3b expression in DKD prevented αVβ3 integrin activation
via its interaction with suPAR and led to increased RhoA activ-
ity rendering podocytes more susceptible to apoptosis (78). These
observations suggest that SMPDL3b and thus sphingomyelin or
sphingomyelin catabolites are important modulators of podocyte
function shifting suPAR-mediated podocyte injury from a migra-
tory to an apoptotic phenotype. Therefore, modulating sphin-
golipids in podocytes may represent a new strategy to prevent or
treat podocyte injury in FSGS and DKD.

SPECIAL CONSIDERATIONS FOCUSING ON S1P AND S1P
RECEPTORS IN RENAL DISEASE
Sphingosine-1-phosphate is generated by phosphorylation of
sphingosine by sphingosine kinases (SPHK1, SPHK2) in response
to various stimuli including growth factors, cytokines, G-protein-
coupled receptor agonists, antigens, and others (Figure 2). Exam-
ples of factors that can transiently increase levels of S1P are TNFα

and factors such as angiogenic growth factor, platelet derived
growth factor (PDGF), and vascular endothelial growth factor
(VEGF) all of which have been implicated in the pathogenesis
of glomerular diseases. S1P signaling governs important cellu-
lar processes that determine cell fate. Thereby, extracellular S1P
signaling is mediated via binding of S1P to G-protein-coupled-
receptors (GPCRs). A family of five GPCRs termed S1P1–S1P5

[reviewed in Ref. (104, 105)] has been identified to date. Depend-
ing on the receptor subtype being expressed in the target cell,
exogenous S1P can bind, and regulate a variety of important
cellular functions including cell survival, cytoskeletal rearrang-
ment, mitogenesis, cell differentiation, migration, and apoptosis.
In the kidney, the receptors S1P1 (EDG1), S1P2 (EDG5), S1P3

(EDG3), and S1P5 (EDG8) are expressed in glomerular mesangial
cells (106, 107) and whereas expression of S1P1, S1P2, S1P3, and
S1P4, but not S1P5, was shown to be expressed in an immortal-
ized mouse podocyte cell line (108). Increases in S1P synthesis
mediated by sphingosine kinase, the use of S1P1 receptor ago-
nists, such as FTY720 (an unselective S1P receptor agonist) and
SEW2871 (a selective S1P1 receptor agonists) or by SPHK1 gene
delivery were shown to protect from renal ischemia reperfusion
injury (109–112), which is associated with increased ceramide
expression (113–115), from DKD (108), and from various forms
of glomerulonephritis (116–118) (Table 1). In addition, FTY720
and KRP-203, another S1P1 receptor agonist, have proven highly
effective in preventing graft rejection in preclinical models of renal
transplantation (119, 120). Whereas the activation of the S1P/S1P1

receptor pathway seems to be beneficial in the context of kidney
disease, it was suggested that excessive S1P/S1P2 receptor path-
way in renal tubular cells in DKD may play an important role in
Rho kinase activation and renal fibrosis (80). Such mechanism
could also explain activation of RhoA and increased apoptosis in
podocytes in DKD as we previously described (78). In patients
with lupus nephritis (LN), an inflammation of the kidney caused
by systemic lupus erythematosus (SLE), a disease of the immune
system, circulating S1P levels are increased (121). Likewise, S1P
and dihydro-S1P levels in serum and kidney tissues from a mouse
model of LN were elevated and treatment of these mice with a spe-
cific SPHK2 inhibitor, ABC294640 improved renal injury (122).

It was suggested that in the case of renal inflammatory disease,
extracellular S1P induces COX-2 expression via activation of S1P2,
subsequently leading to Gi and p42/p44 MAPK-dependent signal-
ing in renal mesangial cells. Although research of the past two
decades has greatly advanced our understanding of the role of S1P
and S1P/S1P receptor signaling in the pathogenesis and/or treat-
ment of kidney diseases, more studies are needed to obtain a better
and more detailed understanding of their physiological and patho-
physiological significance in vivo. Certainly, targeting S1P/S1P
receptor signaling pathways may represent a novel strategy to treat
renal diseases.

SPECIAL CONSIDERATIONS FOCUSING ON THE ACTIN
CYTOSKELETON IN RENAL DISEASE
The kidney glomerulus is a highly specialized structure ensuring
the selective ultrafiltration of plasma so that essential proteins are
retained in the blood (3). Podocytes are glomerular epithelial cells
consisting of a cell body, major processes, and FP. FP from neigh-
boring cells are bridged by a 40-µm wide extracellular structure
known as the SD (123, 124). Podocyte injury is an important fea-
ture of several renal diseases, including FSGS and DKD, in which
independent of the underlying disease, a reorganization of the FP
structure with fusion of filtration slits and apical displacement of
the SD occurs (3, 125, 126). The SD is also required to control
actin dynamics, response to injury, endocytosis, and cell viabil-
ity. These observations make actin the common denominator in
podocyte function and dysfunction (127, 128). Regulation of the
podocyte actin cytoskeleton is therefore of critical importance for
sustained function of the glomerular filter (129, 130). The con-
nection of the actin cytoskeleton to the SD is mediated by several
podocyte proteins such as CD2AP, Nephrin, ZO-1, and Podocin
(131–134). Lipid rafts in podocytes are critical for the dynamic
functional organization of the SD. Nephrin is partially associ-
ated with podocyte lipid rafts and co-immunoprecipitates with
a podocyte specific 9-O-acetylated ganglioside. Injection of an
antibody against the 9-O-acetylated ganglioside causes morpho-
logical changes of the filtration slits, resembling FP effacement
(135) further underlining the important of intact lipid rafts and
sphingolipids in the organization of the SD. Other sphingolipids
such as S1P have also been implicated in cytoskeletal remodel-
ing. S1P was shown to induce rapid reorganization of the actin
cytoskeleton resulting in stress-fiber formation in 3T3 fibroblast,
which was accompanied by transient tyrosine phosphorylation
of focal adhesion kinase (FAK) and of the cytoskeleton-associated
protein paxillin in association with RhoA activation in 3T3 fibrob-
lasts (136). In renal mesangial cells, the serine/threonine protein
kinase LIM kinase-1 (LIMK-1) was identified, which is involved in
the regulation of cytoskeletal organization, as a ceramide-induced
protein (137). Shiga toxin is a bacterial toxin that induces intracel-
lular signals in a manner that is dependent on glycolipid-enriched
membrane domains, or lipid rafts. Shiga-toxin-mediated intra-
cellular signals were shown to induce cytoskeleton remodeling
in renal tubular epithelial carcinoma cells (138). VEGF and its
receptors, FLK1/KDR and FLT1, are key regulators of angiogene-
sis. However, recently a new role for FLT1, i.e., the soluble form of
FLT, sFLT has been described in podocytes where it binds to the gly-
cosphingolipid GM3 in lipid rafts, promoting adhesion, and rapid
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actin reorganization (139). Taken together, these studies under-
line the important function of sphingolipids in the formation of
lipid rafts in podocytes thus contributing to the maintenance of a
functional SD under physiological conditions.

CONCLUDING REMARKS
Sphingolipids play an important role in modulating podocyte
function in glomerular disorders of genetic and non-genetic ori-
gin. Several genetic diseases are characterized by genetic muta-
tions in genes that code for enzymes involved in the sphingolipid
metabolism and are characterized by the accumulation of sphin-
golipids and sphingolipid metabolites in glomerular cells resulting
in glomerular pathology. Thus, targeting sphingolipid metabolism
in glomerular disease may prove beneficial in the treatment of pro-
teinuric kidney diseases with glomerular involvement. Enzyme
replacement therapy has proven to ameliorate disease progres-
sion in sphingolipid associated disorders of genetic origin such as
Gaucher and Fabry disease. However, less is known about sphin-
golipid associated disorders of non-genetic origin. While ManNAc
and rituximab are promising available therapeutic strategies for
sphingolipid associated disorders of non-genetic origin, addi-
tional therapeutic strategies specifically targeting proteins such
as SMPDL3b remain to be developed. Because sphingolipidoses of
non-genetic origin seem to be more complex, additional research
needs to be completed in order to elucidate the exact mecha-
nisms by which sphingolipids cause injury to renal cells and thus
contribute to the pathology of glomerular diseases.
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