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Glycogen synthase kinase-3 (Gsk-3) activity is an important regulator of numerous signal
transduction pathways. Gsk-3 activity is the sum of two largely redundant proteins, Gsk-
3a and Gsk-3B, and in general, Gsk-3 is a negative regulator of cellular signaling. Genetic
deletion of both Gsk-3a and Gsk-3p in mouse embryonic stem cells (ESCs) has previously
been shown to lead to the constitutive activation of the WWnt/B-catenin signaling pathway.
However, in addition to Wnt signaling, all Gsk-3-regulated pathways, such as insulin sig-
naling, are also affected simultaneously in Gsk-3a~/~; Gsk-38~/~ ESCs. In an effort to
better understand how specific signaling pathways contribute to the global pattern of gene
expression in Gsk-30~/~; Gsk-3p~/~ ESCs, we compared the gene expression profiles in
Gsk-3a~/~; Gsk-38~/~ ESCs to mouse ESCs in which either Wnt/B-catenin signaling or
phosphatidylinositol 3-kinase (PI3K)-dependent insulin signaling are constitutively active.
Our results show that Wnt signaling has a greater effect on up-regulated genes in the Gsk-
3a~/~; Gsk-38~/~ ESCs, whereas PI3K-dependent insulin signaling is more responsible
for the down-regulation of genes in the same cells. These data show the importance of
Gsk-3 activity on gene expression in mouse ESCs, and that these effects are due to the
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combined effects of multiple signaling pathways.
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INTRODUCTION
Glycogen synthase kinase-3 (Gsk-3) is an intracellular ser-
ine/threonine kinase activity that was originally identified as the
rate-limiting step in the glycogen synthesis pathway (1). When the
genes encoding Gsk-3 were cloned, Gsk-3 activity was revealed
as the combined action of two distinct genes, Gsk-30 and Gsk-
3B (2). Gsk-3 isoforms show a high degree of similarity at the
amino acid level, including 98% similarity within the catalytic
domain. Despite divergence at the amino- and carboxyl-termini
of each isoform, it appears that the unstructured carboxyl-termini
are essential for Gsk-3 activity (3). Rare among kinases, Gsk-3 is
active at a basal state, while pathway activation from upstream
signaling cascades results in the inhibition of Gsk-3 activity (4-6).
There are two primary mechanisms responsible for Gsk-3 inhi-
bition — one that regulates the phosphorylation of Gsk-3a and
Gsk-3B on serines 21 and 9, respectively, and another that is
independent of this phosphorylation event. Several signaling path-
ways, including protein kinase A (PKA), Hedgehog, transforming
growth factor-f (TGF-f), nuclear factor of activated T-cells (NF-
AT), and phosphatidylinositol 3-kinase (PI3K)-dependent insulin
signaling, all affect Gsk-3 activity via phosphorylation of the

amino-terminal serines (4—6). Insulin binding to its receptor trig-
gers the activation of PI3K, which phosphorylates and activates
Akt, which in turn phosphorylates and inhibits Gsk-3 activity (7).
We have previously shown that stable expression of a constitutively
active form of the p110a catalytic subunit of PI3K (termed p110*)
(8) in WT mouse ESCs can effectively lead to the phosphorylation
of Gsk-3 (9), and expression of p110* has been shown to activate
insulin signaling in mouse ESCs (10).

Gsk-3 activity also plays a central role in Wnt signaling as it is
part of a cytosolic protein complex termed the B-catenin destruc-
tion complex (11). The role of Gsk-3 is to directly phosphorylate
p-catenin (12, 13), which targets B-catenin for ubiquitin-mediated
degradation (14), keeping the Wnt pathway inactive. Activation of
the Wnt signaling pathway inhibits Gsk-3 activity, but this effect
is not mediated through amino-terminal serine phosphorylation.
Instead, upon Wnt ligand binding to a Frizzled/Lrp receptor com-
plex, the destruction complex is neutralized via the translocation
of Gsk-3 to the cell membrane, where it phosphorylates Lrp (15,
16). Gsk-3 is then subsequently endocytosed into multivesicular
bodies, further insulating it from p-catenin (17). Once B-catenin
protein levels accumulate to high levels in the cytoplasm, it is
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subsequently translocated to the nucleus where it can directly com-
plex with lymphocyte enhancer factor (Lef)/T-cell factor (Tcf)
proteins to activate Wnt target genes (18, 19). Gsk-3a and Gsk-
3p are redundant with respect to their roles in regulating Wnt
signaling; the genetic deletion of either Gsk-3a or Gsk-3p alone
is insufficient to activate Wnt signaling (20-25). Only upon the
deletion of three of the four total alleles for Gsk-3a and Gsk-3f is
Wnt pathway activation achieved (23). Double knockout of both
Gsk-3a and Gsk-3p in mouse embryonic stem cells (ESCs) (23)
or mouse neural progenitors (26) results in the constitutive acti-
vation of the Wnt pathway. Importantly, while Gsk-3 regulates
both insulin and Wnt signaling, these pathways do not activate
one another; Wnt signaling does not activate insulin signaling and
insulin signaling does not activate Wnt signaling (27-29).

Lithium is a direct inhibitor of Gsk-3 activity (30, 31) and is
used therapeutically for the treatment of bipolar disorder (32). The
inhibition of Gsk-3 activity has also been shown to be a potential
means to reduce the pathology associated with Alzheimer’s disease
(33-38). Because the dysregulation of Gsk-3 activity is believed
to be an important contributor to many diseases, including
Alzheimer’s disease, cancer, mental illness, and diabetes, the acqui-
sition of more fundamental knowledge about the effects of reduced
Gsk-3 activity could be important in the context of these diseases.

In this paper, we describe the analysis of genome-wide gene
expression patterns in Gsk-3a~/~; Gsk-3~/~ ESCs. Since the loss
of Gsk-3 activity results in the activation of numerous signaling
pathways simultaneously, we further dissected the effects of los-
ing Gsk-3 activity by examining gene expression patterns in ESCs
with either constitutively active PI3K-mediated insulin signaling
or constitutively active Wnt signaling.

MATERIALS AND METHODS

MOUSE EMBRYONIC STEM CELL CULTURE

wild-type (WT) mouse ESCs (E14K), Gsk-30~"~; Gsk-3~/~ (23),
p110* (9), and B-catenin S33A (39) stable cell lines, along with
respective control WT ESCs stably transfected with puromycin-
resistant plasmids, were grown on 0.1% gelatin-coated plates in
high glucose DMEM (Life Technologies) supplemented with 15%
fetal bovine serum (Hyclone), 1% non-essential amino acids, 1%
sodium pyruvate, 1% L-glutamine, 1% penicillin/streptomycin
(Life Technologies), 55 uM 2-mercaptomethanol, and 1000 U/ml
ESGRO (Millipore). Media was replenished every other day.

RNA ISOLATION, cDNA SYNTHESIS, AND QUANTITATIVE PCR

RNA was isolated from 5x 10° to 1x 10° ESCs using the
MirVana Total RNA Isolation Kit (Applied Biosystems) accord-
ing to the manufacturer’s instructions. Two micrograms of
RNA were then used for cDNA synthesis using the high
capacity cDNA reverse transcription kit (Applied Biosystems)
following the manufacturer’s protocol. Quantitative RT-PCR
was performed on an Applied Biosystems StepOne machine
using TagMan master mix and one of the following Taq-
Man assays (Applied Biosystems): Axin2 (Mm00443610_ml),
Brachyury (MmO00436877_m1), Bhmtl (Mm04210521_gl),
Bhmt2 (Mm00517726_m1), Cdx2 (Mm01212280_m1), Ido2
(MmO00524206_m1), Anxa8 (Mm00507926_m1), Aqp8 (MmO0043
1846_m1),Gata6 (MmO00802636_m1),Wnt6 (Mm00437351_m1),

Acta2 (MmO01546133_m1), or Foxql (MmO01157333_s1). Three
biological replicates and three technical replicates were used for
each cell type. All threshold cycle (Ct) values were normalized to
a mouse Gapdh endogenous control (Mm99999915_g1) (Applied
Biosystems), and relative quantification was calculated from the
median Ct value (40). P-values were calculated using Data Assist
software (Applied Biosystems).

MICROARRAY ANALYSIS

RNA was isolated using the MirVana Total RNA Isolation Kit
(Applied Biosystems) according to the manufacturer’s instruc-
tions. The concentration of RNA was measured in a Nanodrop
ND-1000 UV-Vis spectrophotometer (Nanodrop) and an Agilent
2100 Bioanalyzer Lab-On-A-Chip Agilent 6000 Series II chip (Agi-
lent) was used to determine the integrity of the samples. RNA
from each cell line was hybridized onto a SurePrint G3 Mouse
GE 8 x 60K Microarray, 8 x 60 K, AMADID 028005 (Agilent).
Hybridization was performed overnight at 45°C. We performed
arrays for each cell line using RNA that was isolated in biological
triplicate (n=3). For Gsk-3 DKO ESCs, we used n = 4 biological
replicates. SurePrint arrays were scanned with an Agilent G2505C
Microarray Scanner (Agilent). The information about each probe
on the arrays was extracted from the image data using Agilent
Feature Extraction 10.9 (FE) and .txt files were generated. The raw
intensity values from these files in imported into the mathematical
software package “R,” which was used for all data input, diagnos-
tic plots, normalization, and quality checking steps of the analysis
process using scripts developed by Dr. Peter White, Director of
the Biomedical Genomics Core at Nationwide Children’s Hospital
specifically for this analysis. These scripts call on several Biocon-
ductor packages, an open-source and open-development software
project to provide tools for the analysis and comprehension of
genomic data (41). The algorithm used for normalization of gene
expression was designed for use with Agilent One-Color Analy-
sis. The median green (Cy3) intensities are normalized between
the arrays using the Quantile Normalization package in “R” (42).
Quantile normalization is a non-linear probe-level normalization
that results in the same empirical distribution of intensities for
each array. This is a significantly more robust approach than sim-
ply normalizing to the median value of each array. The genes that
were altered by twofold either way and had a false discovery rate
(FDR) of <10% were sorted and used for further interpretation
of the microarray data.

STATISTICAL ANALYSIS OF MICROARRAY DATA

Statistical analyses were performed using two well-validated and
commonly used approaches — significance analysis of microar-
rays (SAM) and adjusted p-value. SAM is a powerful tool for
analyzing microarray gene expression data useful for identifying
differentially expressed genes between two conditions (43). SAM
calculates a test statistic for relative difference in gene 5 expression
based on permutation analysis of expression data and calculates a
FDR using the g-value method presented in Ref. (44). In outline,
SAM identifies statistically significant genes by carrying out gene
specific ¢-tests and computes a statistic for each gene, which mea-
sures the strength of the relationship between gene expression and
a response variable. This analysis uses non-parametric statistics,
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since the data may not follow a normal distribution. The response
variable describes and groups the data based on experimental con-
ditions. In this method, repeated permutations of the data are used
to determine if the expression of any gene is significant related to
the response. The use of permutation-based analysis accounts for
correlations in genes and avoids parametric assumptions about
the distribution of individual genes. For this experiment, SAM
analysis was implemented in R using the Bioconductor Siggenes
package. In a one-color experimental design, a two-class unpaired
analysis is typically performed for each experimental comparison,
whereas in a two-color approach a one-class analysis is used. Typi-
cally, an FDR cutoff in the range of 10-20% is chosen to maximize
sensitivity without significantly impacting accuracy. For the cur-
rent study, a 10% FDR was used to generate the list of significantly
differentially expressed genes.

Adjusted p-value

The moderated ¢-statistic () is computer for each probe and for
each contrast in the experimental design. This has the same inter-
pretation as an ordinary ¢-statistic except that the standard errors
have been moderated across genes, i.e., shrunk toward a com-
mon value. This has the effect of borrowing information from the
ensemble of genes to aid with inference about each individual gene.
The p-value is obtained from the distribution of the moderated
t-statistic. Finally these p-values are adjusted for multiple test-
ing using the Benjamini and Hochberg’s (45) step-up method for
controlling the FDR. This is the most popular method for p-value
adjustment. If all genes with p-value below a threshold, say 0.05,
are selected as differentially expressed, then the expected propor-
tion of false discoveries in the selected group is controlled to be less
than the threshold value, in this case 5%. For the current study, the
adjusted p-values were calculated using the Bioconductor limma
package.

GENE ENRICHMENT ANALYSIS

After filtering gene lists to remove duplicates, the HGNC symbols
for genes increased or decreased by twofold or more were entered
into ToppFun, within the ToppGene Suite (toppgene.cchmc.org)
(46). ToppGene then performs functional enrichments, looking
for sets of co-regulated genes. Calculations are performed using
FDR for correction, and a p-value cutoff of <0.05.

RESULTS

We had previously analyzed the genome-wide expression in Gsk-
3a=/7; Gsk-38—/~ ESCs (hereafter referred to as Gsk-3 dou-
ble knockout; Gsk-3 DKO) using Affymetrix microarrays, and
found hundreds of genes whose expression was significantly
increased or decreased compared to WT ESCs (9). Here, we
repeated this microarray analysis using the Agilent platform.
For all of the microarray gene expression analyses, we used a
twofold or greater change in gene expression as our thresh-
old for significance. We also isolated RNA and performed the
hybridization to the microarrays at the same time to reduce
experiment-to-experiment variability. Consistent with our pre-
vious results using the Affymetrix platform, we found 1313 genes
up-regulated twofold or more in Gsk-3 DKO ESCs, while 2178
genes were down-regulated twofold or more (a complete list of

genes can be found in Datasheet 1 in Supplementary Material).
One of the important signaling pathways regulated by Gsk-3 is
the Wnt pathway (47). We therefore expected our microarray
data from Gsk-3 DKO ESCs to reveal many of the same Wnt
target genes that have been demonstrated experimentally in a vari-
ety of model systems [Wnt Homepage, www.stanford.edu/group/
nusselab/cgi-bin/wnt/target_genes]. A few well-established direct
targets of Wnt signaling, such as Brachyury (T) and Axin2, were
found to be increased substantially in Gsk-3 DKO ESCs (162.5-
and 8.6-fold, respectively) (Table 1). We were surprised, however,
to find that Brachyury and Axin2 were the exception of the 65 Wnt
putative target genes; we identified in our microarray data from
Gsk-3 DKO ESCs that only seven additional genes (Sp5, Cdxl,
Stra6, Lefl, Cyclin DI, PTTG, and Fgf18) had their expression
increased more than twofold (Table 1). In fact, 13 Wnt target genes
showed decreased expression of more than twofold (Table 1).
The relative paucity of up-regulated Wnt target genes was sur-
prising, especially, since it has been shown that a reporter construct
containing multimerized Lef/Tcf binding sites is strongly activated
in Gsk-3 DKO ESCs [(23); unpublished observation]. Therefore,
we wanted to compare the gene expression data from Gsk-3 DKO
ESCs with another mouse embryonic stem cell line that has consti-
tutively active Wnt signaling. WT ESCs stably expressing a form of
B-catenin in which serine 33 has been mutated to an alanine (S33A)
that prevents the phosphorylation by Gsk-3 on this residue as well
as subsequent ubiquitination, resulting in the constitutive activa-
tion of Wnt signaling. These cells have previously been shown to
potently activate the expression of several Wnt target genes (39).
The B-catenin S33A cells and their control cells were included in
our microarray experiment to investigate how similar the patterns
of gene expression were compared to Gsk-3 DKO ESCs.
Microarray data showed that 1468 genes were up-regulated
twofold or more in S33A cells compared to control cells, while
1412 genes were down-regulated twofold or more. As expected, we
confirmed the high levels of Brachyury, Axin2, and CdxI that were
also observed in the Gsk-3 DKO ESCs; however, only three addi-
tional genes (Sp5, Cdx4, and VEGF) showed a twofold or greater
increase in gene expression in the S33A ESCs (Table 1). And similar
to the data from Gsk-3 DKO ESCs, 12 Wnt target genes are down-
regulated twofold or more in S33A cells (Table 1). Taken together,
these data show that some Wnt target genes, such as Brachyury
and Axin2, are indeed transcribed at high levels in two different
cell lines in which Wnt signaling is constitutively active — Gsk-3
DKO and B-catenin S33A. Our data also show that many Wnt
target genes are not activated in these cell lines as was predicted.
Initially, we had expected that many of the genes whose expres-
sion was significantly increased in Gsk-3 DKO ESCs would be due
to activation of the Wnt pathway. Since we did not observe the
increased expression of Wnt target genes, we asked whether the
activation of another Gsk-3-dependent signaling pathway could
explain the data. Because the genetic deletion of Gsk-3 isoforms
likely leads to the activation of signaling pathways other than the
Wnt pathway, we speculated that the combined effect of multiple
pathway activation likely leads to new patterns of gene expression.
Another important signal transduction pathway that is regulated
by Gsk-3 activity is the insulin signaling pathway. To investi-
gate the contribution of insulin signaling to the effects on gene
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Table 1 | Comparison of known Wnt target genes to their expression
levels in Gsk-3 DKO and S33A ESCs as determined by microarray.

Gene DKO S33A
Brachyury 162.5 41.7
SP5 75.8 15.1
Cdx1 16.5 82.5
Axin-2 8.6 4.6
Stra6 4.8 1.3
LEF1 4 -7

Cyclin D 3.1 -3.56
Pituitary tumor transforming gene (PTTG) 2.2 1.8
FGF18 2.1 -2.9
BMP4 1.8 1.2
PPARS 1.6 1.1
Endothelin-1 1.5 1.4
Telomerase 15 1.4
LGR5/GPR49 1.5 -1.2
Jagged 1.4 1

sFRP-2 1.4 -1.5
CD44 1.3 1.4
c-myc binding protein 1.3 -19
Msl1 1.3 1.2
Nitric oxide synthase 2 1.3 1.4
Nkx2.2 1.3 1.2
c-myc 1.2 -3.3
Met 1.2 -1.2
Claudin-1 1.1 1

ld2 1.1 1.2
FoxN1 1.1 1.1
Gbx2 1.1 2.2
MMP-7 1 1

Osteoprotegerin 1 1

Wnt3a 1 1.2
Neurogenin 1 1 1.1
Tiam1 1.1 -1.2
FGF20 1.1 -1.4
Cdx4 1.1 2.3
Sox17 -1.2 -1.6
Oct-4 -1.2 -1.3
Runx2 -1.3 1

Sox2 -1.3 1.4
Frizzled 7 -1.3 -2.1
Gastrin -1.4 1.3
Sox9 14 —-1.1
CCN1/Cyr61 -1.4 -1.2
Follistatin —-1.4 1.2
NeuroD1 -15 -5.6
c-jun -1.6 -2.2
Nr-CAM -1.6 -1.5
SALL4 -1.6 -2.3
Nanog -1.6 1.4
FGF9 -1.7 1

Irx3 and Six3 -1.8 -1.4
Cacnaly -1.8 -1.8

(Continued)

Table 1| Continued

Gene DKO S33A
MMP2, MMP9 -19 1.6
LBH -2 1.4
Pitx2 -2.1 -1.5
ITF-2 -2.3 -1.9
Twist 2.4 -2

Periostin —-2.4 1

VEGF —-2.5 2.4
Snail -2.8 -1.5
Tcf-1 (Hnf1a) -3 -1.1
n-myc -3.4 -3.4
Gremlin -3.5 -3.56
EGF receptor -3.8 -15
Delta-like 1 -9.8 —-4.3
WISP -10 —-1.1

The list of genes was found at The Wnt Homepage website (www.stanford.edu/
group/ nusselab/ cgi-bin/ wnt/ target_genes). Genes whose expression increased
more than twofold are shown in red, while genes whose expression decreased
more than twofold are shown in green.

expression seen in the Gsk-3 DKO ESCs, we analyzed genome-wide
microarray gene expression data from WT ESCs stably expressing
a constitutively active form of the p110 subunit of PI3K (p110*)
(9, 10). Eight hundred sixty-four genes were up-regulated twofold
or more in p110* ESCs compared to control cells, while 1660 genes
were down-regulated twofold or more.

After compiling the list of genes whose expression was signif-
icantly changed in Gsk-3 DKO, p110%, and S33A ESCs, we were
curious as to the similarities and disparities in the patterns of
gene expression in these cell lines. To perform this evaluation,
we removed all duplicate probes from our lists of genes from the
microarray experiment, and we then sorted based on changes seen
in each list. The Gsk-3 DKO and p110* ESCs had 1313 and 864
genes, respectively, that were up-regulated twofold or more. Of
these, 206 genes were up-regulated in both cell types (Figure 1A).
Similarly, 1468 genes were up-regulated by at least twofold in S33A
cells, and 336 of these genes overlapped with the 1313 genes up-
regulated in the Gsk-3 DKO ESCs (Figure 1A). As we expected,
there was relatively little overlap in the genes up-regulated in both
p110* and S33A ESCs; only 119 genes were in common between
these gene sets (Figure 1A). This comparison of up-regulated
genes shows a greater degree of overlap between Gsk-3 DKO and
S33A ESCs than with Gsk-3 DKO and p110* ESCs.

Interestingly, the similarities between gene sets were even
greater when examining the genes whose expression was down-
regulated twofold or more. Two thousand one hundred seventy-
eight genes showed decreased expression in Gsk-3 DKO ESCs,
compared with 1660 genes in p110* ESCs and 1412 genes in
S33A ESCs. Furthermore, we found that 987 genes were in com-
mon between p110* and Gsk-3 DKO ESCs, while only 516 genes
were shared between S33A and Gsk-3 DKO ESCs (Figure 1B).
This pattern is striking in that it is the opposite of what was seen
with the up-regulated genes, with a greater overlap between Gsk-3
DKO and p110* ESCs. In addition, the overlap between p110* and
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FIGURE 1 | Venn diagram representing the overlap in genes
whose expression is changed at least twofold in Gsk-3 DKO,
p110*, and B-catenin S33A ESCs. (A) Representation of genes
whose expression was increased in Gsk-3 DKO (blue; 1313 genes
total), p110* (red; 864 genes total), and S33A ESCs (green; 1468
genes total). Genes whose expression is increased in multiple genes

DKO

fors ok

S33A

sets are denoted by the numbers at the interface of the gene sets.
(B) Representation of genes whose expression was decreased in
Gsk-3 DKO (blue; 2178 genes total), p110* (red; 1660 genes total),
and S33A ESCs (green; 1412 genes total). Genes whose expression
is decreased in multiple genes sets are denoted by the numbers at
the interface of the gene sets.

S33A ESCs was also more pronounced, with the same 289 genes
down-regulated at least twofold in both cell lines (Figure 1B).
These data suggest that the loss of Gsk-3 in ESCs results in the up-
regulation of mostly distinct genes in either p110* or S33A ESCs,
but that those genes that are down-regulated in the absence of
Gsk-3 share a greater overlap in cells with activated PI3K signaling
and activated Wnt signaling.

Since different sets of genes were either increased or decreased
in expression in p110* and S33A ESCs, we bioinformatically per-
formed enrichment analyses to see if functionally related genes
were co-regulated in a signaling pathway-specific fashion (Tables 2
and 3). Genes that were up-regulated in Gsk-3 DKO ESCs were
involved in gene ontology (GO): molecular function of protein
domain (GO:0019904) and also the GO: biological process for cil-
ium organization (GO:0044782). In addition, genes encoding for
CD molecules, tumor necrosis factor receptor superfamily, and
intraflagellar transport homologs were up-regulated. Genes that
were increased in expression in p110* ESCs showed an enrichment
for the GO: molecular function of piRNA binding (GO:0034584)
and an showed an increase in expression in genes encoding for zinc
fingers, C2H2, and BTB domain-containing (ZBTB). In addition,
both Gsk-3 DKO and p110* ESCs showed increased expression
of genes involved in urothelium and lower urinary tract devel-
opment. For genes up-regulated in S33A ESCs, the top GO:
molecular function clusters were genes involved in organic acid
binding (GO:0043177) and protein homodimerization activity
(G0O:0042803). Also, a significant number of genes that contain
homeobox domains were up-regulated in the S33A ESCs, as well
as a high number of genes encoding for CD molecules.

We found it notable that the enrichments among down-
regulated genes were more robust than among the up-regulated
genes (Table 4). For genes decreased twofold or more in Gsk-3
DKO ESCs, the greatest enrichment for GO: molecular function
was in genes encoding for sequence-specific DNA binding, i.e.,
transcription factors (GO:0043565). In addition, a large number

of genes involved in the development of the cardiovascular sys-
tem (GO:0072358) were down-regulated in Gsk-3 DKO ESCs.
Also decreased in expression were genes involved in extracellu-
lar matrix organization and elastic fiber formation. For down-
regulated genes in p110* ESCs, the most enriched GO: molecular
function was for genes involved in receptor binding (GO:0005102),
while the highest enrichment for GO: biological processes were for
organ morphogenesis (GO: 0009887), extracellular matrix orga-
nization (GO:0030198), and cardiovascular system development
(GO:0072358). Furthermore, many genes involved in extracel-
lular matrix organization were decreased in p110* ESCs. Genes
down-regulated in S33A ESCs were enriched for genes encoding
sequence-specific DNA binding (GO:0043565), as well as enrich-
ment for genes involved in neurogenesis (GO:0022008) and car-
diovascular system development (GO:0072358). The results from
these enrichment analyses showed several similarities and differ-
ences with respect to the genes that have increased or decreased
expression in Gsk-3 DKO, p110*, and S33A ESCs, and provide
a framework for beginning to better understand the complex
interrelationships between PI3K-mediated signaling and Wnt sig-
naling, as well as providing important insights into the patterns of
gene expression seen in Gsk-3 DKO ESCs.

While the data obtained from microarray experiments can
provide an excellent overall view of differential patterns of gene
expression, it is nonetheless very important to use an independent
technique to experimentally validate the changes in gene expres-
sion that were observed via microarray. Therefore, we selected a
handful of genes whose expression patterns we of interest, and we
performed quantitative reverse-transcriptase PCR (qPCR) using
TagMan probes on RNA isolated from Gsk-3 DKO, p110*, S33A
ESCs, and their respective control cell lines. As an initial quality
control measure, we performed qPCR to validate the expression of
the known Wnt target genes, Axin2 and Brachyury. As expected,
we saw substantial increases in gene expression in both Gsk-3 DKO
and S33A ESCs for Axin2 (up 7-fold in Gsk-3 DKO and 3.7-fold
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Table 2 | Summary of enrichment analysis of genes up-regulated in
Gsk-3 DKO, p110*, and S33A ESCs.

Table 3 | Summary of enrichment analysis of genes down-regulated in
Gsk-3 DKO, p110*, and S33A ESCs.

Name ID p-Value Hit count Name ID p-Value  Hit count
GSK-3 DKO ESCs GSK-3 DKO ESCs
GO: molecular function GO: molecular function
Protein domain specific binding ~ G0:0019904 1.01 x 107®  55/633  Sequence-specific DNA binding ~ G0O:0043565 8.59 x 10713 109/726
GO: biological process Sequech-speoiﬂc DN_A.binding GO:0003700 728 x10~'2 141/1067
Cilium organization GO:0044782 606x10-6 19123 Uenscription factoractivity
Gene family GO: Piological process .
CD molecules cb 5.14 % 10-8 21/276 Cardiovascular system G0:00722358 2.15 x 10~ 148/871
Tumor necrosis factor receptor TNFRSF 5.77 x 107 4/12 development
superfamily Pathway
Intraflagellar transport homologs IFT 152 x 1074 4/15 Extracellular matrix organization 140x 1079  50/264
. Elastic fiber formation 151 x 1077 15/41
Coexpression Atlas
Mendel_RNAseq_e17.5_urothelium 2.74x10°'6  101/989  P110* ESCs
tl?:(\flgg);g lower urinary 1.04 x 10713 82/802 GO: molecular function
B Receptor binding G0:0005102 151 x 10~ 133/1341
P110% ESCs GO: biological process
GO: molecular function Organ morphogenesis G0:0009887 2.09 x 10734 147/876
piRNA binding G0:0034584 3.17 x 1075 3/3 Extracellular matrix organization ~ G0:0030198 1.59 x 10=22  70/330
. Cardiovascular system G0:0072358 2.34 x 10722 124/871
Gene family
Zinc fingers, C2H2, and BTB ZBTB  533x10° a7  Cevelopment
domain containing Pathway
. Extracellular matrix organization 6.17 x 1071 54/264
Coexpression Atlas
Mendel_RNAseq_e17.5_urothelium 158 x 10710 65/989 S33A ESCs
Developing lower urinary 1.30 x 1076 30/802 )
tract e13.5 GO: molecular function
- Sequence-specific DNA binding ~ G0:0043565 2.15x 10710 81/726
S33A ESCs Sequence-specific DNA binding ~ GO:0003700 3.54 x 100 105/1067
GO: molecular function transcription factor activity
Organic acid binding G0:0043177 4.93x107° 26/230 GO: biological process
Protein homodimerization G0:0042803 5.15x 107>  56/674  Neurogenesis G0:0022008 3.88x 1078 143/1360
activity Extracellular matrix organization ~ G0:0072358 1.21 x 10~'*  104/871
Gene family Bonferroni correction method.
CD molecules cD 5.08x107%  18/276

Bonferroni correction method.
All p-Value cutoffs — 0.05.

in S33A ESCs) and Brachyury (up 622-fold in Gsk-3 DKO and
38-fold in S33A ESCs), while both genes has reduced expression
in p110* ESCs (0.4- and 0.7-fold changes, respectively) (Figure 2).
These results are consistent with Axin2 and Brachyury being Wnt
target genes.

We then proceeded to validating the expression of addi-
tional genes whose expression levels were shown to be substan-
tially increased or reduced in the microarray experiments. We
selected four genes, Bhmtl (Betaine-homocysteine methyltrans-
ferase), Bhmt2 (Betaine-homocysteine methyltransferase 2), Cdx2
(Caudal-type homeobox 2), and Ido2 (Indoleamine 2,3-dioxygenase
2), whose expression, by microarray, was shown to be up-regulated

All p-Value cutoffs — 0.05.

inboth Gsk-3DKO and S33A ESCs, but not p110* ESCs. Validation
by qPCR showed that the expression of Bhmtl was up 14.1- and
70.1-fold in Gsk-3 DKO and S33A ESCs, respectively, compared
to a modest 2.8-fold increase in p110* ESCs (Figure 3). Similarly
Bhmt2 expression was shown to be increased 13.1-fold in Gsk-3
DKO ESCs and 56.5-fold in S33A ESCs, while expression was only
increased by 1.3-fold in p110* ESCs (Figure 3). The expression
of Cdx2 was increased 5.3- and 12.5-fold in Gsk-3 DKO ESCs
and S33A ESCs, respectively, but remained unchanged in p110*
ESCs (Figure 3). Finally, qQPCR showed that Ido2 expression was
increased 81.4-fold in Gsk-3 DKO ESCs and 20-fold in S33A ESCs,
while showing a minimal 1.4-fold increase in expression in p110*
ESCs (Figure 3).

Next, we chose to perform similar qPCR validation on genes
whose expression was changed in Gsk-3 DKO and p110* ESCs, but
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notin S33A ESCs. We selected six genes for analysis — Wnt6, Anxa8
(Annexin 8), Gata6 (GATA binding protein 6), Aqp8 (Aquaporin 8),
Foxql (Forkhead box QI), and Acta2 (actin, a2, smooth muscle,
aorta). All of the genes that we assayed showed lower changes in
gene expression compared to that seen by microarray. For example,
microarray data showed that Wnt6 and Anxa8 were up-regulated

Table 4 | Summary of comparison between microarray and qPCR gene
expression data in Gsk-3 DKO, S33A, and p110* ESCs for genes
described in this work.

DKO S33A p110*

Microarray gqPCR Microarray PCR Microarray ¢PCR

in p110* ESCs 10.1- and 6.8-fold, respectively; however, qPCR
revealed that the expression of Wnt6 and Anxa8 was about half
of that — 5.7- and 3.6-fold, respectively (Figure 4). Similarly,
while Gata6, Aqp8, Foxql, and Acta2 all showed at least 30-fold
reductions in gene expression in p110* ESCs by microarray, the
qPCR results revealed more subtle changes, ranging from a 3.4-
fold increase for Gata6 to a 2.5-fold reduction in Acta2 (Table 3).
Importantly, the expression of these genes in S33A ESCs was quite
different. For example, while Gata6 expression was up 3.4-fold
in p110* ESCs, Gata6 expression was decreased 2.5-fold in S33A
ESCs (Figure 5). Similarly, Acta2 expression was decreased 2.5-
fold in p110* ESCs, while Acta2 expression was increased 2.3-fold
in S33A ESCs (Figure 5). These results are consistent with oppos-
ing effects of PI3K-mediated insulin signaling and Wnt signaling
having distinct effects on gene expression.

Axin2 6.7x 7.0x 3.6x 3.7x 1.7x —2.5x
Brachyury 162.5x 622x 41.7x 38x —1.bx —1.4x DISCUSSION
Bhmt2 5.7x 131x  608x  565x  —26x 13x The analysis of gene expression changes in Gsk-3 DKO ESCs
Cdx?2 276 53x  333x  125x 12x 15 revealed almost 3500 genes whose expression increased or
Bhmt1 6.5x 141x  491x  701x  —B5Bx 28« decreased at least twofold, reinforcing the notion that Gsk-3 activ-
Ido?2 9.4% 81.4x 34x 20x% 13x 14x itybroadlyregulates the expression of many genes. Our data, which
Wnt6 2 3% 12% 15x  —14x  101x 57« examined global changes in gene expression in several clonal cell
Anxa8 1 Bx 17x 1 Bx 1 4x 6.8 36x lines, illuminated numerous interesting and unexpected features
GataB “14x  —11x  —31 _2B5x  —318x 345 Of Gsk-3-dependent signal transduction.
Aqp8 _15Bx 16x —-26 _33x  —48.9x 17x We had initially expected to find many known Wnt target
Foxql “14x —11x  —29x 15x —3165x _17x genes to be up-regulated in a Gsk-3 and P-catenin-dependent
Acta? _4003x  —B.0x  —18x 23x —1656x —25x fashion and this was indeed true for Axin2 (48) and Brachyury.
However, most of the other Wnt target genes did not show signif-
Decreases in gene expression are denoted by negative values. icant increases in expression, and in fact, almost twice as many
DKO S33A p110*
A *
7.0x 3.7x : . Axin2
, , -2.5x
B *

38x

Brachyury

FIGURE 2 | Validation of the expression of the Wnt target genes,
Axin2 and Brachyury in Gsk-3 DKO ESCs, B-catenin S33A ESCs, and
p110* ESCs. (A) Quantitative PCR of Axin2 showing the expression,
relative to WT control. (B) Quantitative PCR of Brachyury showing the
expression, relative to WT control. For both results: RQ =relative

quantification (all values were normalized to a Gapdh endogenous
control). Error bars represent standard error of the mean (SEM) between
biological replicates (n=23) and technical replicates (n=3; n=9 total for
each gene in each cell line) (*p < 0.001, two-tailed t-test). Fold changes
compared to WT are shown.
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* Z -
20x 14x | ldo2
FIGURE 3 | Validation of genes whose expression is increased in Gsk-3 relative to WT control. For all results shown: RQ =relative quantification (all
DKO and g-catenin S33A ESCs, but not p110* ESCs. (A) gPCR of Bhmt2 values were normalized to a Gapdh endogenous control); error bars represent
showing the expression, relative to WT control. (B) gPCR of Cdx2 showing standard error of the mean (SEM) between biological replicates (n=3) and
the expression, relative to WT control. (C) gPCR of Bhmt7 showing the technical replicates (n=3; n=9 total for each gene in each cell line)
expression, relative to WT control. (D) gPCR of /do2 showing the expression, (*p < 0.001, two-tailed t-test); and fold changes compared to WT are shown.

genes showed decreases in expression. It is possible that this
simply reflects differences in the regulation of gene expression
between cell types; alternatively, this data could provide a read-
out of affected genes due to the constitutive activation of Wnt
signaling arising from the genetic deletion of Gsk-3a and Gsk-3p.
Furthermore, since these ESCs have been deficient in Gsk-3o and
Gsk-3p since their successful homologous recombination event,
it is possible that downstream negative feedback effects serve to
modify the expression of Wnt target genes, making the changes in
gene expression not appear as dramatic as expected.

We do, however, identify several putative novel Wnt target
genes, whose expression is increased in both Gsk-3 DKO and
B-catenin S33A ESCs. Cdx2, Ido2, Bhmtl, and Bhmt2 were all

confirmed by qPCR to conform to the microarray expression
profiling. Interestingly, the transcription factor Cdx2, was recently
shown to be a direct target of Wnt signaling in the mouse, inde-
pendently confirming our observation (49). Furthermore, while
Ido1 has been shown to be a Wnt target gene (50), Ido2 has not. In
the mouse genome, the Ido1 and Ido2 genes lie next to each other
on chromosome 8 (8qA2) and are transcribed in the same direc-
tion. Thus, one possibility is that f-catenin-mediated transcription
could influence both genes from the IdoI promoter. Alternatively,
there may be additional Lef/Tcf binding sites in the Ido2 promoter.
An in silico search (51, 52) for Lef/Tcf binding sites in the mouse
Ido2 promoter identified eight putative binding sites within 2 kb
of the transcription start site (TSS). Further detailed studies will
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. 2 Whnt6
: 5.7x
B 18 * B ¥
: e Anxa8
: 3.6x
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*
1 L ” L
: - Gata6
o 3.4x
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| ‘. : Aqp8
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FIGURE 4 | Validation of genes whose expression is increased in p110* error bars represent standard error of the mean (SEM) between biological
ESCs, but not S33A ESCs. (A) gPCR of Wnt6. (B) gPCR of Anxa8. (C) gPCR replicates (n=3) and technical replicates (n=3; n=9 total for each gene in
of Wnt6. (D) gPCR of Anxa8. For all results shown: RQ =relative each cell line) (*p < 0.001, two-tailed t test); and fold changes compared to
quantification (all values were normalized to a Gapdh endogenous control); WT are shown.

be required to verify whether any of these putative binding sites
are bona fide Lef/Tcf binding sites.

Similarly, Bhmtl and Bhmt2 are also contiguous in the mouse
genome (13qC3). Neither gene had previously been shown to be
regulated by Wnt signaling, but we find both genes have increased
expression in Gsk-3 DKO ESCs (14.1- and 13.1-fold, respectively)
and even more potently expressed in B-catenin S33A ESCs (up
70.1- and 56.5-fold, respectively). Bhmtl and Bhmt2 both encode
for betaine—-homocysteine S-methyltransferase enzymes, partici-
pating in the regulation of homocysteine levels (53). Interestingly,
variations in BHMT1 and BHMT?2 have also been implicated in the
development of cleft palate in certain human populations (54-56).

Interestingly, mice deficient in Gsk-3p develop cleft palate (21,
24, 25). It is unclear whether this phenotype is a consequence of
altered expression of Bhmtl or Bhmt2, but based on the data pre-
sented here, there may be a functional connection between these
observations.

While not as dramatic as the changes seen for putative Wnt
target genes, we found several genes whose expression was insen-
sitive to constitutively active Wnt signaling, but were increased
or decreased in expression in a Gsk-3/PI3K-dependent manner.
It has been demonstrated in animal models of various cancers
that the transcription factor ZEB1 activates PI3K signaling (57—
59) and this results in increased expression of Gata6 (60). Our
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FIGURE 5 | Validation of genes whose expression is decreased in standard error of the mean (SEM) between biological replicates (n=23)
p110* ESCs, but not S33A ESCs. (A) gPCR of FoxqT. (B) gPCR of and technical replicates (n=3; n=9 total for each gene in each cell line)
Acta2. For both results: RQ =relative quantification (all values were (*p < 0.001, two-tailed t test); and fold changes compared to WT are
normalized to a Gapdh endogenous control); error bars represent shown.

data from mouse ESCs stably expressing a constitutively active
form of the p110 subunit of PI3K corroborates these findings
and show that the PI3K-mediated increase in Gata6 expression
is not limited to cancer cell populations. Wnt6, Anxa8, and Agp8
also showed increased expression in p110* ESCs, while all but
Anxa8 had reduced expression in S33A ESCs. While PI3K sig-
naling has been shown to regulate the subcellular localization of
Agp8 in hepatocytes (61), this is the first report that activation of
PI3K signaling has an effect on Agp8 transcription. Anxa8 expres-
sion has been shown to be down-regulated by epidermal growth
factor (EGF)-stimulated PI3K signaling in a model of metastatic
cholangiocarcinoma (62), while we find that Anxa8 expression is
increased 3.6-fold in p110* ESCs, likely reflecting cell-type differ-
ences in Anxa8 gene regulation. It should be mentioned that we
selected Gata6, Wnt6, Anxa8, and Agp8 for validation by qPCR
because these genes showed increased expression in both Gsk-3
DKO and p110* ESCs by microarray; however, the qPCR results
showed only modest changes in gene expression in the Gsk-3 DKO
ESCs, highlighting the importance of not relying on microarray
gene expression data alone.

Finally, we also found that the expression of Foxql and Acta2
were decreased in p110* ESCs. Acta2 showed the most robust
changes in expression (down fivefold in Gsk-3 DKO ESCs, down
2.5-fold in p110* ESCs, and up 2.3-fold in S33A ESCs). We did
find that Foxql expression is modestly decreased in p110* ESCs
and increased 1.5-fold in S33A ESCs. Foxql has recently been
shown to be one of the most highly expressed genes in human
colorectal cancer and has been shown to be a direct target of
Wnt signaling, which is often constitutively activated in colorec-
tal cancer cells (63). Based on these data, we expected to find

increased Foxql expression in both Gsk-3 DKO and S33A ESCs,
but we did not observe these expected increases. It will be inter-
esting to determine the mechanism responsible for the lack of
response by Foxql to constitutively activated Wnt signaling in the
context of mouse ESCs.

Taken together, our data shows that, while many genes have
their expression changed in Gsk-3 DKO ESCs, only a fraction of
the changes we observe are due to activated Wnt signaling or acti-
vated PI3K signaling, meaning that there are likely several other
signaling pathways whose activation affects Gsk-3-dependent gene
expression. Thus, our data provide a framework for future analyses
to make these connections. Furthermore, while these studies were
performed in mouse ESCs, we believe that the findings from this
study can be used in future studies examining the role of insulin
or Wnt signaling pathways in other biological settings, such as the
study of insulin resistance in the diabetic brain.
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Datasheet 1 | Microarray gene expression data for Gsk-3 DKO ESCs,
B-catenin S33A ESCs and p110* ESCs. Tabs at the bottom of the spreadsheet
contain the microarray data, either as All Data, or sorted by fold changes in
expression as seen in Gsk-3 DKO, p110*, or B-catenin S33A ESCs. Within each
tab is found the Agilent probe ID, Gene symbol, Gene name, NCBI accession
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number, Entrez Gene ID, fold-changes (FC) compared to WT ESCs,
false-discovery rates (FDR) compared to WT ESCs, and adjusted P-values (AdjP)
compared to WT ESCs. The normalized microarray values for each individual
sample, as well as the averages, are also shown.
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