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Kisspeptin (KISS) plays a key role in regulating reproduction by binding to its receptor,
GPR54. Because of the Arg-Phe (RF) sequence at its carboxyl terminus, KISS has been
proposed to be a member of the RF-amide peptide family consisting of neuropeptide FF
(NPFF), neuropeptideVF (NPVF), pyroglutamylated RF-amide peptide (QRFP), and prolactin-
releasing hormone (PRLH). Evolutionary relationships of protein families can be determined
through phylogenetic analysis. However, phylogenetic analysis among related peptide
families often fails to provide sufficient information because only short mature peptide
sequences from full preprohormone sequences are conserved. Considering the concept
of the coevolution of peptide ligands and their cognate receptors, evolutionary relation-
ships among related receptor families provide clues to explore relationships between their
peptides. Although receptors for NPFF, NPVF, and QRFP are phylogenetically clustered
together, receptors for PRLH and KISS are on different branches of the phylogenetic tree.
In particular, KISS has been proposed to be a member of the KISS/galanin/spexin family
based on synteny analysis and the phylogenetic relationship between their receptors.This
article discusses the evolutionary history of the receptors for the proposed RF-amide pep-
tide family and proposes that, from an evolutionary aspect, KISS has emerged from an
ancestor, which is distinct from those of the other RF-amide peptides, and so should be
classed separately.

Keywords: kisspeptin, RF-amide, spexin, galanin, coevolution, gene duplication, evolutionary history

INTRODUCTION
The RF-amide peptides that harbor the Arg-Phe-amide sequence
in their carboxyl (C)-termini were first discovered in a species
of mollusk, Macrocallista nimbosa (1). Following this discovery,
various RF-amide peptides have been identified in other inver-
tebrate species (2, 3). In vertebrates, neuropeptide FF (NPFF)
along with its receptor GPR74 (NPFFR2) was the first to be iden-
tified in the central nervous system of mammals (4). Fifteen
years later, paralogous peptides, gonadotropin-inhibitory hor-
mone (GnIH) in quail brain (5), and neuropeptide VF (NPVF)
in mammals (6, 7) were identified. Currently, GnIH and NPVF
are found to be orthologous to each other and activate the
receptor GPR147 (NPFFR1) (6–10). Another paralogous pep-
tide, pyroglutamylated RF-amide peptide (QRFP or 43RF-amide
peptide), and its receptor GPR103 (QRFPR) have been identified
in the hypothalamus and spinal cord of mammals (11–13). The
receptors for these three vertebrate RF-amide peptides, NPFFR1,
NPFFR2, and QRFPR, are phylogenetically very close to each other
(Figure 1), indicating an evolutionarily common origin for these
receptors. The other RF-amide-related peptides in vertebrates
are prolactin-releasing hormone (PRLH or PrRP) and kisspeptin
(KISS). Interestingly, the receptors for PRLH (PRLHR) and KISS
(KISSR) are phylogenetically distant from NPFFR1, NPFFR2, and
QRFPR. They are more closely related to neuropeptide Y (NPY)
receptors (14, 15) and galanin (GAL) receptors (16), respectively
(Figure 1).

The RF-amide peptides do not exhibit any sequence similarity
to each other, other than the presence of the common RF-amide
at their C-termini (17). As most neuropeptides have coevolved
with their cognate receptors (18, 19), phylogenetic analysis of the
related receptor families may mirror the evolutionary history of
the peptide families (20, 21). Phylogeny of the RF-amide peptide
receptor family, however, revealed distant relationships between
PRLHR, KISSR, and the other RF-amide receptors (15, 16). This
suggests that PRLH and KISS, at least, are likely to have orig-
inated from ancestors different from that of NPFF, NPVF, and
QRFP. Therefore, it is timely to redefine the RF-amide family group
members according to the evolutionary histories of individual RF-
amide peptides. This article reviews the evolutionary relationships
between KISS, and the other RF-amide peptides along with their
paired receptors, and proposes that KISS is independent from the
RF-amide peptide family.

GENERAL MECHANISM FOR THE EVOLUTION OF
NEUROPEPTIDES AND THEIR RECEPTORS
Neuropeptide and receptor families have expanded through
whole-genome duplications (WGD) and local tandem gene dupli-
cations before and after WGD during vertebrate evolution (14,
16, 20, 22–26). To date, synteny analyses of vertebrate genome
fragments and comparison of entire chromosomes of evolution-
arily distinct taxa support two rounds (2R) of WGD during
early vertebrate evolution. These events produced four paralogous
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FIGURE 1 | Maximum likelihood phylogenetic tree for human
rhodopsin-like neuropeptide GPCRs. The amino acid sequences of the
receptors were aligned using MUSCLE, and the tree was constructed by
MEGA 5.1. The RF-amide peptide receptor groups are indicated with
colored boxes and corresponding peptides are connected by dashed lines.
Bootstrap values represent 100 replicates. MLNR, motilin receptor; GHSR,
ghrelin receptor; NTSR, neurotensin receptor; NMUR, neuromedin U
repceptor; TRHR, thyrotropin-releasing hormone receptor; NMBR,
neuromedin B receptor; GRPR, gastrin-releasing peptide receptor; BRS,
bombesin receptor; EDNR, endothelin receptor; PRLHR,

prolactin-releasing hormone receptor; NPYR, neuropeptide Y receptor;
PROKR, prokineticin receptor; TACR, tachykinin receptor; CCKR,
cholecystokinin receptor; HCRTR, hypocretin (orexin) receptor; QRFPR,
pyroglutamylated RFamide peptide receptor; NPFFR, neuropeptide FF
receptor; AVPR, arginine vasopressin receptor; OXTR, oxytocin receptor;
NPSR, neuropeptide S receptor; GnRHR, gonadotropin-releasing hormone
receptor; UTSR, urotensin receptor; GALR, galanin receptor; KISSR,
kisspeptin receptor; MCHR, melanin-concentrating hormone receptor;
SSTR, somatostatin receptor; NPBWR, neuropeptides B/W receptor; OPR,
opioid receptor.

chromosomal regions (paralogons) sharing similar sets of genes
(27–29). A third round (3R) of WGD during an early phase
of bony fish emergence resulted in octupled paralogons in
teleosts (30).

The evolutionary history of a gene family can be traced by phy-
logenetic analysis. However, in the case of peptide gene families,
phylogenetic analysis often does not provide sufficient informa-
tion to conclude the evolutionary relationship among related pep-
tide gene families (20, 31). In general, signal peptide sequences are
not conserved and propeptide sequences, other than the mature
peptide, are highly variable because they are free from evolution-
ary selective pressure (32). Sequence comparison of only a short,
conserved mature peptide is not enough to extrapolate correct
relational information. Furthermore, paralogous peptide genes
that arose by local gene duplication before 2R exhibit consider-
able variation even in the mature peptide sequences (20, 31). For
instance, the mature peptide sequences of the ligand genes for class
B (secretin-like) G-protein-coupled receptors (GPCR) are highly
variable (20, 31) while maintaining conserved three-dimensional
structure to a general extent (33). Thus, alternative methods need
to be applied to explore the evolutionary relationships among
peptide gene families.

In contrast to peptide genes, evolutionary relationships among
related receptor families can be readily assessed by phylogenetic
analysis since the transmembrane domains of the receptors are
relatively conserved across vertebrate species and the amino acid
sequences of receptors are long enough to generate a convinc-
ing phylogenetic tree. Thus, tracing relationships among related
receptor families can provide clues to understand the evolution-
ary history of their corresponding peptide genes. For instance, the

evolutionary histories of receptors for secretin family peptides,
including corticotropin-releasing hormone, calcitonin, parathy-
roid hormone, glucagon, and secretin subfamilies may allow us
to speculate about possible evolutionary histories for the cognate
peptide genes, for which the sequence similarities are not well
preserved (20, 25, 31). In addition, locating related peptide genes
on the reconstructed pre-2R ancestral chromosomes (or linkage
group) is an alternative tool to explore the relationships among
related gene families (20, 34). Paralogous genes that emerged
through local duplications before 2R reside in the same vicinity on
the pre-2R linkage group. For instance, many secretin family pep-
tide genes are located on the same pre-2R linkage group, indicating
close evolutionary relationships among the peptide genes (20). The
gene families of the neuropeptides, KISS, GAL, and spexin (SPX),
are in the vicinity of the same pre-2R linkage group (16). This pos-
sibility is further supported by phylogenetic relationships among
the receptors of these peptides (Figure 1) (16). The neuropep-
tide Y (NPY ) gene and its paralogous genes, including peptide
YY (PYY ) and pancreatic polypeptide (PPY ), reside on the same
chromosome or on paralogons (35, 36). Likewise, the NPY recep-
tor (NPYR) family seems to have been generated by local gene
duplications followed by 2R WGD (14, 15, 37).

EVOLUTIONARY HISTORY OF NPFF/NPVF, QRFP, AND PRLH
Neuropeptide NPFF was the first RF-amide peptide characterized
in the central nervous system of mammals (4, 8, 38, 39). NPFF is
known to be involved in morphine tolerance, adipogenesis, and
anorectic activity (40–45). In 2000, Tsutsui et al. found a new
RF-amide peptide, GnIH, in quail brain (5, 46). This turned out
to be an ortholog of NPVF in humans (9, 47). Albeit with some
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cross-reactivity, NPFF has a high affinity to NPFFR2 (4) while
NPVF more selectively activates NPFFR1 (6, 48, 49).

The neuropeptides NPFF and NPVF seem to be 2R-generated
paralogs (ohnologs) as their genes are located on two 2R-generated
paralogons of human chromosomes. NPFF is located in the vicin-
ity of the neuropeptide tachykinin 3 (TAC3) gene on human
chromosome 12 while NPVF is on human chromosome 7, which
also contains the TAC1 gene. Likewise, the receptors NPFFR1 and
NPFFR2 are ohnologous to each other since NPFFR1/TACR2 and
NPFFR2/TACR3 pairs are on paralogons of human chromosomes
10 and 4, respectively (6, 15, 50). It is of interest to note that
human chromosome 10 also harbors PRLHR and PPYR (a recep-
tor for NPY family peptides) and that human chromosome 4
has QRFPR and three NPYRs, NPY1R, NPY2R, and NPY5R (14,
15, 51). The phylogenetic tree in Figure 1 also shows that these
receptors are clustered together. These observations suggest that
NPFFRs, QRFPR, TACRs, NPYRs, and PRLHR may have emerged
through local duplications from a common ancestor before 2R and
expanded their members via 2R. Although the hypocretin (orexin)
receptor (HCRTR) is shown in that branch, the HCRTR gene is
not shown in the paralogons. This may be due to translocation
of the gene to other chromosomal regions during evolution (20).
Similarly, many peptide genes for these receptors are clustered on
2R-generated paralogons. For instance, the HCRT, PYY, PPY, and
TAC4 genes are closely located on a region of human chromosome
17, which is likely another paralogon of NPFF/TAC-containing
regions of human chromosomes 7 and 12 (15). Thus, it seems
likely that these peptide genes arose during vertebrate evolution
in a manner similar to that of receptor genes. It is noteworthy that
the chicken C-RF-amide peptide (PRLH2), an ohnolog of PRLH
resides near NPY, TAC1, and NPVF on the chromosomes of chick-
ens, medaka, and tetraodon (52, 53). These findings suggest the
presence of evolutionary relationships between the NPFF family
and the other RF-amide peptides QRFP and PRLH, along with
non-RF-amide peptides such as NPY, TAC, and HCRT.

Pyroglutamylated RF-amide peptide (43RF-amide), a long
form of 26RF-amide, has been discovered in the hypothalamus
and spinal cord of humans (11–13, 54). Intravenous or intracere-
broventricular administration of QRFP increased plasma aldos-
terone levels and food intake in rats (11, 12, 55). While humans
have only one QRFP receptor (12, 13), rodents have two recep-
tors QRFPR1 and QRFPR2 (56, 57). QRFPR2 appears to be an
ohnolog of QRFPR1. A region of mouse chromosome 6 has
QRFPR2 and TACR1, indicating that this region is another par-
alogon for the QRFPR/NPFFR/TACR-containing chromosomal
regions as described previously. As the phylogenetic tree reveals
a close relationship between QRFPR and NPFFRs, an evolution-
arily close relationship between QRFR and NPFF/NPVF can be
postulated.

Prolactin-releasing hormone was first identified by a reverse
pharmacological approach in 1998 (58). Physiological roles of
PRLH include regulation of stress response (59–61), reduced
appetite (62–64), and stimulation of luteinizing hormone and fol-
licle stimulating hormone (65). The orphan receptor GPR10 was
identified as the receptor for PRLH (58, 66, 67). PRLHR exhibits
a close relationship in its sequence identity with the NPYR fam-
ily (14, 15). NPY4R, a member of the NPYR family is positioned

together with PRLHR1 on the same chromosome of humans and
chickens (15). There are also some structural similarities between
PRLH and NPY family peptides. Both PRLH and NPY family
genes have two coding exons. The first coding exon contains a
signal peptide sequence followed by the N-terminal region of the
mature peptide sequence. The second coding exon contains the
C-terminal region of the mature peptide with conserved Arg-Phe-
Gly (RFG) or Arg-Tyr-Gly (RYG) residues followed by a dibasic
cleavage site. Like PRLH, some NPY peptide family members such
as bovine PYY and PPY have RF-amide sequences, while NPY,
PPY, and PYY from most vertebrates contain the Arg-Tyr-amide
(RY-amide) sequence (15, 68, 69). It is also interesting to note that
the NPY peptide is able to activate PRLHR1 at micromolar levels
(15). These observations together with phylogenetic analysis of
neuropeptide receptors suggest that the PRLH/NPY family genes
and their receptor genes emerged by local gene duplications during
early vertebrate evolution (14, 15). These local duplication events
are likely to have occurred after the genes split from their common
ancestors into the PRLH/NPY and NPFF/QRFP systems.

COEVOLUTION OF THE SPEXIN/GALANIN/KISSPEPTIN
FAMILY
The KISS gene was first identified as a tumor suppressor gene
expressed in human melanoma and breast cancer cells (70, 71).
Later, the KISS gene was found to produce a functional peptide
with an RF-amide sequence (designated as kisspeptin or metastin)
that activates an orphan GPCR, GPR54 (KISSR) (72–74). KISS
and KISSR are involved in the onset of puberty and the control of
reproduction and food consumption (75–80). After the discover-
ies of mammalian KISS and KISSR, two paralogs of the KISS gene
(KISS2 and KISS3) and three paralogs of the KISSR gene (KISSR2,
KISSR3, and KISSR4) have been identified in a variety of verte-
brate species (32, 81–83). All these paralogs seem to be ohnologs
as each of them is located on 2R-generated paralogons (32, 82, 83).

Although KISS has been acknowledged as a member of the
RF-amide peptide family, no supporting evidence, other than the
presence of the RF-amide sequence in its C-terminus, has been
provided. KISSR was originally reported to have considerably high
degree of sequence similarity with galanin receptors (GALR) (84).
This result raises the possibility that KISS/KISSR and GAL/GALR
pairs have diverged from a common ancestor and not from the
RF-amide peptide/receptor ancestors. Recently, it was shown that
the novel neuropeptides spexin1 (SPX1) and spexin2 (SPX2) are
functional ligands for GALR2 and GALR3 but not GALR1 (16,
85). In particular, SPXs are more potent than GAL in activation
of GALR3, while they show potencies to GALR2 similar to that
of GAL (16). Synteny analysis and relocation of the gene fami-
lies on the reconstructed vertebrate ancestral linkage groups show
that SPX, GAL, and KISS family genes are distributed among 2R-
generated 4 paralogons (4 linkage groups). Three linkage groups
contain SPX1 and KISS2, SPX2 and GAL, and KISS3 and galanin-
like peptide (GALP), respectively. The fourth linkage group has
KISS1 alone (16, 86). This study proposed that ancestral forms of
KISS, GAL, and SPX arose by tandem local duplications before
2R and expanded their family members through 2R (16). Like-
wise, KISSRs and GALRs are likely to have emerged through local
duplications before 2R, producing three subgroups in vertebrates:
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FIGURE 2 | Schematic diagram for the evolutionary relationship
between KISS/GAL/SPX family peptides and their corresponding
receptors in vertebrates. Paralogs for each peptide and receptor found in
vertebrates are included. Functional interaction between the ligands and
receptors are indicated by dashed lines. The KISS peptides are able to
activate all types of KISSRs with some differences in their ligand potencies
but they do not activate any type of GALRs. GALs exhibit high potencies
toward GALR1 and GALR2 family receptors but low potencies toward
GALR3. SPXs activate GALR2 and GALR3 with high affinities but do not
activate GALR1.

KISSRs (4 KISSRs),GALR1 (GALR1a and GALR1b),and GALR2/3
(GALR2a, GALR2b, and GALR3) (Figure 2). Altogether, these
results suggest that the evolutionary origin of the KISS/SPX/GAL
family is far distant from those of the NPFF/QRFP and PRLH/NPY
families.

CONCLUSION
Rapid accumulation of genomic sequence information from var-
ious invertebrate and vertebrate species and the development of
bioinformatic tools, including phylogenetic analysis, small scale
genome comparison to identify orthologous and paralogous rela-
tionships of genes, and reconstruction of ancient chromosomes,
have facilitated exploration of the relationships and origins of pep-
tide and receptor gene families (20, 28, 32, 34, 87, 88). Based on the
phylogenetic analysis of neuropeptide receptors and the syntenic
relationships of neuropeptide genes, we suggest that the proposed
RF-amid peptide family arose from three different ancestors. NPFF
and NPVF are likely 2R-generated paralogs and have a close evolu-
tionary relationship with QRFP. PRLH is evolutionarily closer to
the NPY family than the NPFF/NPVF/QRFP group. KISS is likely
a member of the KISS/GAL/SPX peptide family and their evo-
lutionary origin is far distant from those of the other RF-amide
peptides. This study may provide an insight into the mechanism
for coevolution of neuropeptides and their receptors.
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