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The morphological alterations of cortical lamination observed in mouse models of develop-
mental hypothyroidism prompted the recognition that these experimental changes resem-
bled the brain lesions of children with autism; this led to recent studies showing that
maternal thyroid hormone deficiency increases fourfold the risk of autism spectrum disor
ders (ASD), offering for the first time the possibility of prevention of some forms of ASD.
For ethical reasons, the role of thyroid hormones on brain development is currently studied
using animal models, usually mice and rats. Although mammals have in common many
basic developmental principles regulating brain development, as well as fundamental basic
mechanisms that are controlled by similar metabolic pathway activated genes, there are
also important differences. For instance, the rodent cerebral cortex is basically a primary
cortex, whereas the primary sensory areas in humans account for a very small surface
in the cerebral cortex when compared to the associative and frontal areas that are more
extensive. Associative and frontal areas in humans are involved in many neurological dis-
orders, including ASD, attention deficit-hyperactive disorder, and dyslexia, among others.
Therefore, an evo-devo approach to neocortical evolution among species is fundamental to
understand not only the role of thyroid hormones and environmental thyroid disruptors on
evolution, development, and organization of the cerebral cortex in mammals but also their

role in neurological diseases associated to thyroid dysfunction.
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INTRODUCTION

Evolutionary developmental biology (evo-devo) studies the devel-
opmental processes of different organisms to determine the ances-
tral relationships between them and to discover how develop-
mental processes evolved. It addresses the origin and evolution
of embryonic development and the modifications of develop-
mental process that produced novel features (Wikipedia, accessed
August 2014). Evo-devo teaches us that some fundamental devel-
opmental processes are preserved by the evolution among species
(1). The evo-devo approach is not only becoming crucial for
the modern study of evolution but also it helps in the under-
standing of morphofunctional alterations in human psychiatric
diseases. For instance, autism spectrum disorders (ASD) show
abnormal function of cortical areas, such as the frontal or asso-
ciative neocortices that are minimally present in rodents (2, 3).
An approach to the etiologic factors of psychiatric diseases can
be inferred by the study of homologous genetic pathways that
lead to similar developmental processes in both humans and
other mammals. A second issue is that several psychiatric diseases,
including ASD, show a wide spectrum of different phenotypes,
which are the result of both genetic (nature) and environmental
(nurture) factors (4); including among the latter the interaction

of comorbid disorders such as hypothyroidism and hypothyrox-
inemia (5). We begin this review with a summary of thyroid
hormone synthesis, transport, and cell actions, which are regu-
lated by a very complex assembly of transporters, deiodinases,
receptors, and cofactors. As such, tissues have some control over
thyroid hormone action, independent of circulating levels of
thyroid hormones. We continue with the analysis of the role
of thyroid hormones at different phases of brain development
and maturation, focusing our attention on vulnerable periods.
These periods occur during gestation and lactation when genetic
and environmental factors, which include nutrients and chem-
ical contaminants, interfere with maternal and offspring thyroid
health. There is evidence that anatomical characteristics of autistic
brains represent defects in processes that occur early in devel-
opment, in the first half of gestation. Moreover, genomic stud-
ies have revealed a catalog of critical genes for these processes
that are regulated by thyroid hormones. Finally, recent studies
have reported that thyroid hormone deficiency might contribute
to increase the number of autism phenotypes, and that disor-
ders associated with hypothyroidism and hypothyroxinemia, such
as intellectual impairment, seizures, and anxiety, are comorbid
of ASD.
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THYROID FUNCTION DURING BRAIN DEVELOPMENT

Thyroid hormones (T4, thyroxine; and T3, 3,5,3'-triiodo-L-
thyronine) are synthesized in the thyroid gland and are transported
to different tissues and organs where they regulate growth, matu-
ration, and function in many organs and systems of vertebrates.
In particular, the mammalian central nervous system (CNS) is an
important target of thyroid hormones from fetus to adult. How-
ever, the maximal vulnerability of the CNS to thyroid hormone
imbalance occurs during the earliest stages of brain development
(6-15).

In target cells, thyroid hormones can exert their action at
three levels: nuclear and mitochondrial (genomic) and non-
genomic (16). Genomic actions include (1) thyroid hormone cell
membrane transport, (2) thyroid hormone metabolism (involv-
ing its activation/degradation), and (3) binding to nuclear thy-
roid hormone receptors (TRs, also known as THRs), which are
ligand-regulated transcription factors (17-25).

THYROID HORMONE CELL MEMBRANE TRANSPORT

Thyroid hormone cell membrane transport is mediated by four
families of transporters: the Na™/taurocholate cotransporting
polypeptide (NTCP), the organic anion transporting polypep-
tide (OATP), monocarboxylate transporter (MCT), and the het-
erodimeric amino acid transporter (HAT) (26). From these,
Oatpl4, Mct8, Mctl0, Latl, and Lat2 have been found to be
expressed in the brain (20, 26-33).

THYROID HORMONE METABOLISM (ACTIVATION/DEGRADATION)
Three selenoproteins catalyzing the deiodination of T4 (thyrox-
ine) and T3 (the active form for the genomic action) have been
identified: type 1 (D1), type 2 (D2), and type 3 (D3) iodothyro-
nine deiodinases. Only D2 and D3 have been found expressed in
the CNS. D2 has been found in the astrocytes and tanycytes [spe-
cial ependymal cells, Ref. (34)] and mediates the local generation
of T3. D3 mediates the degradation of T3 to T2 (diiodothyro-
nine, 3,5-diiodo-L-thyronine) and T4 to rT3 (35-37). In addition
to deiodination, iodothyronines are also metabolized by conju-
gation of the phenolic hydroxyl group with sulfate or glucuronic
acid (38).

THYROID HORMONE NUCLEAR RECEPTORS

In the CNS, there are three nuclear TR isoforms with high-affinity
to T3: TRal (codified by the THRA gene), TRP1, and TRP2
(codified by the THRB gene) (17, 20, 39, 40). TRal is the most
ubiquitous; it has been detected in the rat brain by embryonic
day 12 (E12) and in the human brain by the 10th week of gesta-
tion (41-43), regulating the expression of genes involved in the
development and maturation of the brain (44), while TRPI is
mostly expressed in the adult. In addition, N-terminal truncated
TRal (also known as p43) can serve as a T3-dependent transcrip-
tion factor that initiates global mitochondrial transcription (16,
45, 46).

Recent studies have shown that thyroid hormone signaling is
more diverse and complex than initially concluded. For instance,
apart from the canonic role of thyroid hormones mentioned
above, novel THRs synthetic ligands might also modulate TRs
action, and intra and extracellular signals can affect cell sensitiv-
ity to T3 influencing TRs gene expression, TRs translation and its

transport into the nucleus, and the recruitment of co-activators/-
inhibitors (21, 24, 47). Furthermore, thyroid hormones can show
non-genomic actions by binding to cell surface or cytoplasmic
receptors and by interacting with other signaling pathways (16,
21, 48).

In rodents and humans, almost all T3 found in the fetal cere-
bral cortex is generated through local deiodination of circulating
maternal T4 (13, 49, 50). The fetal dependence on maternal T4
is due (i) to the late development of the fetal thyroid gland (in
rodents thyroid function begins by E17-18 and in humans by the
18-20 gestational week) and (ii) to the increased activity of D2
and D3 deiodinases in placenta and fetal tissues (13, 35, 51, 52).
As a consequence of the increased activity of deiodinases in the
fetus, serum T3 levels are maintained low and the local generation
of cerebral T3 from T4 is enhanced (13, 50). To respond to this
requirement, there is an estrogen-dependent increase of maternal
thyroid function that transiently induces an increase of (i) circu-
lating thyroxine-binding globulin, affecting the T4 extra-thyroidal
pool, and of (ii) human chorionic gonadotropin, transiently stim-
ulating thyrocytes (53). This increased maternal thyroid function
consequently needs increased iodine intake.

NUTRITIONAL AND ENVIRONMENTAL FACTORS AFFECTING
THYROID FUNCTION

Several factors can affect thyroid function during gestation and
early postnatal development, including genetic mutations, infec-
tions, nutrients, and environmental contaminants. Iodine defi-
ciency from inadequate alimentary habits is the most common
cause of maternal and fetal thyroid dysfunction (54-57). In addi-
tion, selenium (a component of deiodinases), iron (a component
of the prosthetic heme group associated to the thyroperoxidase),
and other micronutrients are required for an adequate life-long
thyroid function, especially during development and adolescence
(58). Moreover, environmental anti-thyroid contaminants are
acquiring increased importance (55, 59—67).

THYROID FUNCTION-DISRUPTING CHEMICALS FROM
ENVIRONMENTAL CONTAMINANTS

A thyroid function-disrupting chemical is an exogenous chemi-
cal, or mixture of chemicals, that can interfere with any aspect
of hormone action (67). The mechanisms of action of disrupting
chemicals on thyroid function are not fully understood; some may
reduce serum T4 without increasing serum TSH while others may
interfere with thyroid hormone action at sites other than the thy-
roid gland without altering serum TSH levels (21, 67). Howdeshell
(59) listed synthetic chemicals that interfere with thyroid hormone
synthesis, transport, and metabolism. Some are quite specific such
as perchlorate salts that block the sodium/iodide symporter (68),
but the majority affects several phases of thyroid hormone action.
Some thyroid disruptors are consumed in the diet (5, 63); for
instance, plant isoflavonoids such as genistein and daidzein from
soy inhibit thyroperoxidase that catalyzes iodination and thyroid
hormone biosynthesis; thiocyanate from cassava not only blocks
iodine uptake by thyroid and mammary glands but also inter-
feres with thyroid peroxidase. Organochlorides (including mostly
DDT and its derivative: p,p’-DDE, dichlorodiphenyl dichloroeth-
ylene; HCB, hexachlorobenzene; PBB, polybrominated biphenyls;
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and PCB, polychlorinated biphenyls) interfere with thyroid func-
tion acting upon iodine uptake, thyroid peroxidase action, thyroid
hormone binding proteins, and thyroid hormone metabolism,
resulting in a wide spectrum of thyroid-related syndromes (59,
69). The increased use of nanoparticles in several industrial,
consumer, and medical applications has revealed their unique
physico-chemical properties. However, in vitro and in vivo stud-
ies have shown that they may have toxic effects on the endocrine
system (70). It has been found that Ag-nanoparticles and cad-
mium telluride-quantum dots alone induced a reduction in the
expression TR (71).

IODINE DEFICIENCY DISORDERS AND
NEURODEVELOPMENTAL DAMAGE

As mentioned before, during gestation, the mother must produce
sufficient amounts of thyroid hormones (fundamentally T4) for
herself and her fetus. Iodine intake is the principal source of cir-
culating inorganic iodine; therefore, sufficient iodine is critical for
the thyroid gland to produce adequate amounts of thyroid hor-
mones (9, 13,53,57,72-77). The fetus also depends on the mother
for its iodine supply, as does the neonatal thyroid during lactation
(78). To achieve this, expecting mothers need to double the recom-
mended normal daily intake of iodine for non-pregnant women
by 250-300 g/day (79).

Useful food strategies developed to increase iodine intake in
iodine-deficient areas include (i) use of iodinated salt in the house-
hold, (ii) incorporation of iodine to industrially elaborated foods
(i.e., bread, milk, and cheese), and (iii) dietary diversification
(i.e., consuming food from iodine-sufficient areas and seafood).
Despite these strategies, inadequate iodine intake actually affects
a large number of women during pregnancy and lactation, and
this situation currently persists even in countries classified as free
of iodine deficiency where iodized salt consumption has been
promoted for years (79-84).

Iodine deficiency is one of the most frequent causes world-
wide of preventable mental retardation in children (85). A wide
spectrum of iodine deficiency disorders has been described dur-
ing gestation and the early postnatal period (<3vyears of age),
ranging from abortion, stillbirths, congenital anomalies, deafness,
cretinism, neurocognitive delay, epilepsy, schizophrenia, ASD, as
well as attention deficit hyperactive disorder (ADHD), among
others (3,8,63,72,86-94). In children, the severity of the neurode-
velopmental damage caused by iodine deficiency during gestation
depends on several factors: (i) the developmental period affected,
(ii) its severity, (iii) the deficiency of other nutrients such as sele-
nium and iron, and (iv) the interaction with thyroid function
disruptors (9, 10, 14, 57, 58). Epidemiological studies performed
in several countries have shown that hypothyroxinemia due to
mild iodine deficiency during gestation causes neurological alter-
ations, including low IQ in children (8, 87, 88, 95-99). As men-
tioned above, iodine deficiency in conjunction to the deficiency
of other nutrients and the interaction with thyroid function dis-
ruptors will cause a wide spectrum of syndromes associated to
thyroid pathologies. In countries with severe iodine and selenium
deficiencies, a high incidence of Kashin—Beck osteoarthropathy
associated with cretinism has been observed (100). The incidence
of myxedematous cretinism increases in countries where severe

iodine and selenium deficiency is associated with high intake of
thyroid disruptors found in foodstuffs such as cassava, which con-
tain thiocyanate (5, 101). The study of the alterations resulting
from nutritional deficiencies in combination with thyroid func-
tion disruptors should contribute to our understanding of the
multiple syndromes observed in thyroid diseases.

CRITICAL ISSUES OF CEREBRAL CORTEX DEVELOPMENT

For ethical reasons, the role of thyroid hormones on brain develop-
ment is currently studied using animal models, usually mice and
rats. However, although there are basic common developmental
principles regulating brain development between mammals, there
are also important differences. For instance, the understanding
of how different types of neocortex evolved depends on deter-
mining not only the numbers and types of cortical areas that
exist but also how the internal organization of those areas was
modified in the various lines of evolution, including modifica-
tions in columnar organization (102). Sexual dimorphism among
species also plays an important role, particularly in humans, while
in rodents little is known about sex differences between cere-
bral hemispheres (103). Changes in the organization and size
of neocortex also are reflected in the size of cortico-cortical
and subcortical projections, in turn affecting target areas (104).
Thus, increasing our evo-devo knowledge on neocortical evo-
lution among species (2) will help us to understand not only
the role of thyroid hormones and environmental thyroid dis-
ruptors on the development, organization, and evolution of the
cerebral cortex in mammals (105), but also their role in human
associated diseases. The evo-devo considers crucial for the evo-
lution that homologous developmental gene networks are shared
among species (1), and it emerges from the relationship between
developmental biology and evolution, which in turn are dynam-
ically coupled (106). For instance, basic gene networks involved
in symmetric divisions of ventricular neuroblasts during cere-
bral corticogenesis are common in rodents and humans, while
humans evolved by increasing the number of symmetrical divi-
sions, which results in an increased number of cortical columns
and therefore an increased cortical surface [see figure 2A by Rakic
(2)]. Apart from homology, convergence can also bring solu-
tions for common functional problems. However, little is known
on how functional needs have selected different functional net-
works to generate a similar function between different species,
such as the wings of birds and bats (1). Genetic (nature) and
environmental (nurture) factors cooperate along time, resulting
in differentiation (4). Psychiatric diseases, such as ASD, occur in
cerebral areas (e.g., frontal and associative) that are not present
in rodents; however, many homologous functional networks, like
those involved in radial migration, have been preserved. Fur-
thermore, ASD show a wide spectrum of different phenotypes,
resulting in different degrees of morphofunctional alterations and
in the concurrence of different comorbid disorders (107). Thy-
roid hormone deficiency increases comorbidity and the risk of
developing ASD (3). For instance, thyroid hormone deficiency
during neocorticogenesis results in abnormal development of
cortical gamma-aminobutyric acid (GABA)-ergic neurons, which
cause altered columnar function in the cerebral cortex and ASD
comorbid seizures (108).
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The cerebral cortex in all mammalian species, including
humans, differs from the development of other organs of the body
and even from the rest of the brain. It is a three-dimensional sheet
of layers, parallel to the pial surface, mostly composed of projec-
tion (or glutamatergic pyramidal) and local neuronal circuits (or
glutamatergic and GABAergic interneurons) organized in verti-
cal (or radial) columns that are stereotypically interconnected and
share extrinsic connectivity in order to achieve their functions
(109). During telencephalic corticogenesis in mammals, includ-
ing humans, layer I and subplate (deriving from the superficial
primordial plexiform layer) are the first cortical layers to appear
(110). Subsequently, young cortical neurons begin to migrate radi-
ally from the ventricular zone into the superficial cortical plate,
adjacent to layer I, following an “inside-out” gradient (111). While
in rodents, the neurogenesis of layer I is arrested when radial
migration begins, in primates neurogenesis continues during all
the periods of corticogenesis (112). Neurons migrate radially to the
increasingly distant cortex following the scaffolding of a transient
population of radial glial cells (113),in which many signaling path-
ways — such as reelin, metabolic functions, and gene expression
must be involved (114). This phase of corticogenesis is of capital
importance because an evo-devo approach of neocortical develop-
ment and evolution can be explained by the radial unit hypothesis
proposed by Rakic (115). As reported by Rakic (2) and mentioned
above, increased number of symmetrical divisions will increase the
number of functional columns, resulting in increased tangential
cortical surface, while that of asymmetrical ones will increase the
number of cells per column, resulting in increased cortical thick-
ness [see also figure 2A by Rakic (2)]. The final number of these
divisions will depend of apoptotic, anti-apoptotic, or inhibitory
factors, and will give rise to either the small lissencephalic cere-
brum of rodents or to the larger convoluted cerebrum of humans,
as well as to the emergence of new functional areas, such as the
prefrontal cortex and associative perisylvian areas (2). The graded
expression of transcription factors such as Emx2, Pax6, Coup-Tfl,
and Sp8 are implicated in the arealization of the neocortex (116,
117). Deletion or overexpression of these factors results in changes
in gene expression, contractions, and expansions in the sizes of
cortical fields, and altered patterns of connectivity from the dorsal
thalamus (117). Emx2 and Fgf genes share reciprocal functions in
regulating cortical patterning; in the frontal cortex, this is accom-
plished at least in part through controlling the levels of Erm, Er81,
Pea3, and Sp8 expression (118, 119). These results support the
protomap model (115, 120, 121) because neurons are commit-
ted to their areal position at the time of their last cell division
(the asymmetrical one) in the proliferative zones in the absence
of thalamic afferent inputs, although individual cortical areas may
be selectively changed in size during the course of evolution by
altered expression signals of their downstream transcription fac-
tor signaling mechanisms, as mentioned above (2). In addition,
changes in gene expression extrinsic to the neocortex in response
to physical stimuli in a particular environmental context might
play a crucial role in the formation of domains and areas in the
neocortex (117,122, 123).

In rodents, radially migrating neurons comprise about 80%
of the total cortical neurons and will become glutamatergic
neurons. The remaining 20% of the cortical neurons migrate

tangentially (i.e., parallel to the pial surface) from the ganglionic
eminences to their target area and will become local circuit
neurons, mostly GABAergic neurons (124-126). In humans, dif-
ferently from rodents, a subset of neocortical GABAergic neu-
rons [Mashl-positive; a marker for precursors of glutamic acid
decarboxylase (GAD)-expressing cells] originates in the ventricu-
lar/subventricular zones of the dorsal telencephalon as a distinct
neuronal stem cell lineage [Ref. (127, 128); see figure 5 by Rakic
(2)]. The identification of the telencephalic origin of local circuit
neurons in cerebral cortex of mammals is of capital importance
to understand mechanisms operating during primate brain evolu-
tion (2, 129, 130) and the pathogenesis of congenital and acquired
neurological disorders, such as ASD, related to defects of separate
classes of local circuit neurons (131, 132).

In rats, the bulk of neocortical radial migration starts by
embryonic day 13 (E13), while the last cohort of cells leaves the
ventricular zone by E20 (133). During this process of radial and
horizontal migrations, the subplate neurons attract “waiting” affer-
ents from ipsilateral and contralateral cortical areas (including
associative and commissural connections), and subcortical con-
nections [including thalamic, nucleus basalis, and monoamine
connections (2), see also the figure 2B of this reference]. At the
end of this process, neurons and glial cells grow and differenti-
ate, including the loss of juvenile transient connections, to express
their mature phenotype, which also contributes to the radial and
tangential expansion of the cortex (134). In humans, neocortical
development occurs between the 6th and 24th week of gestation
(110, 135). The main waves of radial migration in the human neo-
cortex occur during the first half of gestation, with peaks at 11 and
14 weeks of gestational age (110, 135), and mostly before onset
of fetal thyroid hormone secretion by the 18th week of gestation
(136). This roughly corresponds to waves of cell migration studied
in rats (10), which also occur before onset of fetal thyroid hormone
secretion, by E17.5-18 (136). Despite the longer development and
maturation of the CNS in humans compared with rats, similarities
may be established when the onset of fetal thyroid gland secretion
is taken as the reference point. However, when comparing the
rodent lissencephalic and the primate convoluted mature neocor-
tex, the major differences are found in the tangential rather than
in the radial expansion [see figure 1 by Rakic (2)].

EXPERIMENTAL MODELS TO STUDY CORTICAL
ALTERATIONS CAUSED BY THYROID HORMONE DEFICIENCY
Several experimental models have been developed to study alter-
ations in the CNS caused by thyroid hormone deficiency. These
models can be grouped into (i) genetic mutants, (ii) surgically
induced hypothyroidism, (iii) metabolite deficient diets, and (iv)
thyroid function disruptor models.

Several genetic models were developed during the last decades
to study different forms of developmental and postnatal hypothy-
roidism, such as congenital hypothyroidism (137). Genetic models
can be classified into two main groups: (1) mutations affect-
ing thyroid gland development and function, and (2) mutations
affecting thyroid hormone sensitivity, which includes thyroid hor-
mone cell membrane transport, metabolism, and action (25).
The first group includes mutations of the TSH receptor (hyt~/~
mice) (138) and agenesis or functional impairment of thyrocytes
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(TTF1~/=, TTE27'~,and Pax8 '~ mice) (139). The second group
includes thyroid hormone transporters mutants such as Mct8~Y
(140, 141), Mct8~'~ (142),and Lat2~'~ (143). These mutant mice
have provided new data to understand thyroid hormone trans-
port in the cell membrane and clarified the physiopathology of
the Allan-Herndon—Dudley syndrome, which is caused by MCT8
defect (141, 144—146). Thyroid hormone metabolism in the brain
has been studied using different mutant mice affecting D2 and
D3 expression (Dio2~'~, Dio3~/~, and Dio2~'~ Mct8~"Y mice)
(147-149). Important genes associated to cortical development
are affected in Dio mutants. In particular, the neuronal genes
GIs2 (glutaminase 2), Nefh and Nefn (heavy and medium neu-
rofilament polypeptide), SemaZa (semaphorin 7A), Shh (sonic
hedgehog), Col6al and Col6a2 (type VI al and a2 collagen), as
well as Slcla3 (glial high-affinity glutamate transporter) and Itga7
(integrin a7), among others, found in glial cells (148). Mutations
of the TR gene include TRo /=, TRB~'~, and TRa~'~B~/~ mice,
as well as TRa and TRP knock-in mutations (23, 150). Mutations
of TRP gene are associated to the Refetoff syndrome (151, 152). A
classification of these mutations and their associated syndromes
of impaired sensitivity to thyroid hormone has been recently
published (25).

The most common models are based on the administration
of anti-thyroid drugs interfering either with the thyrocytes iodine
uptake by inhibiting the sodium/iodine symporter (e.g., potassium
perchlorate and thiocyanate) or with the iodination of thyroglob-
ulin by thionamide and thiourylene drugs such as propylthiouracil
(PTU) and methimazole (MMI) (153—155). In addition, PTU (and
less MMI) partially inhibits iodothyronine deiodinases affecting
the peripheral deiodination of T4 (154, 156). Anti-thyroid treat-
ments result in maternal, fetal, and neonate hypothyroidism of
greater or lesser severity (157). MMI treatment was also used
experimentally to induce mild and transient maternal hypothy-
roxinemia at the onset (E12) of fetal neocorticogenesis (158, 159).
Models for iodine deficiency during gestation include monkeys
(160), sheep (161), and rats (162, 163). These studies have shown
changes in the cerebellum with reduction in weight and cell num-
ber, and delayed maturation. The influence of iodine deficiency
on neocortical development has been studied in rats that are fed a
low iodine diet during pregnancy (163-166).

Alternatively, surgical thyroidectomy can be used to induce
hypothyroidism (167, 168), when performed in pregnant dams
it causes maternal but neither fetal nor neonate hypothyroidism.
Recently, late maternal hypothyroidism (LMH) during gestation
has been used as a model to study the role of maternal thyroid
hormones from the onset of fetal thyroid function (169).

ALTERATIONS IN CORTICAL DEVELOPMENT CAUSED BY
THYROID HORMONE DEFICIENCIES

GENES REGULATED BY THYROID HORMONES INVOLVED IN BRAIN
DEVELOPMENT

Fundamental genes involved in brain development are regulated
by thyroid hormones. The irreversibility and importance of dam-
age will depend on when, where, and how the alterations of gene
expression occur (10, 20). Early studies showed that maternal
thyroid hormones regulate gene expression in fetal development
modulating the expression of NSP and Oct-1 genes; T4 injections

produced rapid, transient, and selective effects on gene expression
in the fetal brain (170). Additional genes regulated by maternal
thyroid hormones included Nrgn (neurogranin, also known as
RC3), found to be significantly decreased (171), as well as reelin,
apolipoprotein E receptor 2 (ApoER2; a reelin receptor involved
in the migration young neocortical neurons), very-low-density
lipoprotein receptor (VLDLR; a reelin receptor that mediates the
stop signal), integrin genes, and genes involved in the downstream
phosphorylation of Dabl (very-low-density lipoprotein receptor
1) (172, 173). cDNA microarray studies have shown a number
of genes to be transcriptionally or functionally modulated by T3;
most of these are involved in cell division, migration, growth, con-
nectivity, and function of neural cells. Using rat pituitary GC cell
line, Miller et al. (174) showed that 358 out of 4,400 genes were
regulated by T3; and, in a recent study, Morte et al. (44) found
552 out of 14,209 genes regulated by fetal and maternal thyroid
hormones at the end of gestation in rats. The function of some of
these genes is unknown but most of them are involved in the reg-
ulation of key pathways for the development of the cerebral cortex
in rodents and humans. Tables 1-6 list some of the most relevant
T3-regulated genes at the transcriptional level. Among those of
relevant importance for the development of cortical connections
are Nefh, Nefl, and Nefm (coding neurofilament proteins); Slitl,
Slit2, Nos1, Camk4, and Creb1 (involved in bifurcation and growth
of neural processes); Sema3B, Slit1, and Slit2 (guiding axons); and
Slc17a7 (coding vesicular glutamate transporter 1; VGIuT1). T3
action on the regulation of the Camk4/Creb pathway and down-
stream targets (175) in neurons of the CNS is highly relevant since
Camk4 has not been found expressed in glial cells (169, 176, 177).
Camk4 is directly induced by T3 at the transcriptional level (44),
and phosphorylates Creb. Many of the genes under thyroid hor-
mone control contain Creb binding sites in their promoter region
(149). On the other hand, Camk4 regulates the transcriptional
activity of the TR, which might be due to direct phosphoryla-
tion of co-activators or by changing the equilibrium between the
co-activators and the silencing mediator for retinoid and thyroid
hormone receptors (SMRT) (178, 179). Camk4/Creb pathway and
downstream targets are involved in processes such as neurogene-
sis, biosynthesis, and assembly of cytoskeleton, cell movement and
migration, neurite development and maturation, synaptic plas-
ticity, and neurotransmission (44, 180). In humans, Camk4/Creb
pathway is involved in psychiatric disorders (181-183). There is
a strong evidence for the action of Camk4/Creb pathway in the
expression of FMRI gene, encoding fragile X mental retardation
protein (FMRP) (184, 185). Lack of FMRP causes fragile X syn-
drome, which is the most common cause of inherited mental
retardation and ASD (186, 187). In addition, brain-derived neu-
rotrophic factor (BDNF)/Erk signaling modulates FMRP function,
affecting neuronal proliferation and differentiation in the cerebral
cortex [Ref. (188, 189); Table 5].

ALTERED NEUROGENESIS AND MIGRATION DURING CORTICOGENESIS

Indirect observations based on the cell density estimates and brain
size measurements suggested a reduced number of cells in the neo-
cortex of developmentally hypothyroid rats (190). Neural progen-
itors in the ventricular zone of mouse telencephalon express TRal,
Mct8 transporters, and deiodinases, and maternal hypothyroidism
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Table 1| Significant T3-regulated genes at the transcriptional level found in the cerebral cortex of rodents, involved in cell division and
differentiation: relationship with ASD.

Symbol® Protein Process Alteration/disease
ADCYAPTR1 Adenylate cyclase-activating polypeptide Signaling pathway Decreased second messenger
receptor (PAC1)
CASP3 Caspase 3 Protease Apoptosis. Alzheimer's disease
CCND1 G1/S-specific cyclin-D1 Interact with tumor suppressor protein Rb  Abnormal cell cycle G1/S transition
CNN1 Calporin (actin binding protein; fimbrin type)  Actin associated protein Abnormal cohesion between parental
centrioles
CREB1 cAMP-responsive element binding protein 1 Transcription factor Altered development. ASD
CREM cAMP-responsive element modulator Transcription factor modulating CREB Altered development. ASD
CTNNB1 B-catenin Regulates the coordination of cell-cell Altered asymmetric cell division,
adhesion and gene transcription epithelial-to-mesenchymal transition. ASD
DYRK1A Dual specificity tyrosine-phosphorylation- Nuclear signaling Abnormal cell proliferation and may be
regulated kinase 1A involved in brain development. ASD
GNB1L Guanine nucleotide-binding protein subunit Six WD40 repeat-containing protein Abnormal cell cycle progression.
B-like protein 1 Schizophrenia. ASD
FLT1 Vascular endothelial growth factor receptor 1 Protein kinase Abnormal control of cell proliferation and
differentiation. ASD
HISTTH1T Histone H1t Compaction of chromatin Abnormal cell cycle and differentiation
HSD11B2 Corticosteroid 11-B-dehydrogenase isozyme 2 Hydrolysis of cortisol Cortisol induction of growth-inhibition and/or
pro-apoptosis embryonic development
MAPK1 Mitogen-activated protein kinase 1 (ERK2) CREB1 phosphorylation signaling pathway ~ ASD
RGS3 Regulator of G-protein signaling 3 Ephrin-B signaling pathway Early cell cycle exit and precocious

differentiation

2Bold shows T3-regulated genes that have been found to be abnormally expressed in autistic humans. Other genes found in autistic humans not regulated by T3 at

the transcriptional level have not been included.

reduces the cell cycle length of these progenitors (191). Since in
hypothyroid fetuses the bulk of the neocortical BrdU-labeling
occurs between E12 and E19 as in control rats (192), the data by
Mohan etal. (191) clearly indicated that the total neuronal progen-
itor number is reduced in the cerebral cortex. Using *H-thymidine
labeling, a significant reduction was observed in cell acquisition in
the granular layer of the hippocampal dentate gyrus in postna-
tal PTU treated pups (193). These authors also observed that the
radial migration of newly generated hippocampal granular cells
could be arrested and that the decreased number of labeled cells
in the granular layer might result from deficient migration rather
that decreased mitotic activity. Several genes involved in cell cycle
regulation during neurogenesis have been found to be regulated
by T3 [Ref. (44); Table 1]. CCND1 (G1/S-specific cyclin-D1) is
downregulated by T3, resulting in an abnormal cell cycle pro-
gression (194). In addition, T3-regulated regulator of G-protein
signaling 3 (RGS3) plays a key role in ephrin-B signaling, control-
ling cell cycle exit, and differentiation of neural progenitors (195),
and dual specificity tyrosine-phosphorylation-regulated kinase 1A
(DYRKI1A) is involved in the control of cell proliferation in ASD,

causing arrested brain growth (196). Other T3-regulated genes
such as CNNT1 (calporin), which is an actin associated protein, also
exerts a control of cell cycle during neurogenesis (197). Recently, it
has been found that developmental mild and severe hypothyrox-
inemia and MMI-induced hypothyroidism alters Shh signaling
pathway in the cerebellar granule cell precursors, resulting in
downregulation of D1 and D2 cyclins, of E2F1 expression, and in
reduced cell proliferation (198). However, it still remains unclear to
what extent thyroid hormones affect symmetrical and asymmetri-
cal divisions of neocortical progenitor cells. Studies on the mouse
barrel cortex (192) suggest that both symmetrical and asymmetri-
cal divisions are altered in hypothyroid rats, because the tangential
area of the posteromedial barrel subfield stained with cytochrome
oxidase (resulting from symmetrical divisions) and the thickness
of the barrel cortex (resulting from asymmetrical divisions) are
reduced by 27 (Figures 1A-D) and 12.5% (Figure 1E), respec-
tively, in hypothyroid rats. Nevertheless, from these data we could
argue that most likely the symmetrical divisions are compara-
tively more affected in hypothyroid rats. The reduced thickness of
the cortex in hypothyroid rats could be explained by a reduction
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Table 2 | Significant T3-regulated genes at the transcriptional level found in the cerebral cortex of rodents, involved in cytoskeleton organization

and cell migration: relationship with ASD.

Symbol® Protein Process Alteration/disease
APOER2 Apolipoprotein E receptor 2 (Lrp8) Reelin signaling pathway Alzheimer, major depressive disorder
CALR Calreticulin Endoplasmic reticulum calcium-binding Abnormal calcium storage in the
protein hippocampus. Alzheimer’s disease
CREB1 cAMP-responsive element binding protein 1 Transcription factor Altered development. ASD
CREM cAMP-responsive element modulator Transcription factor modulating CREB Altered development. ASD
CTSS Cathepsin S Protease Abnormal microglial function
DAB1 Disabled-1 Reelin signaling pathway Abnormal migration. Alzheimer's
disease, temporal lobe epilepsy. ASD
DYNLL1 Dynein light chain 1, cytoplasmic Microtubule associated protein Abnormal intracellular transport and
motility
FMOD Fibromodulin Proteoglycan that sequesters TGF-f into Abnormal regulation of proliferation
the extracellular matrix and differentiation of hippocampal
granule neurons
FN1 Fibronectin Extracellular matrix protein Abnormal cell adhesion, growth,
migration, and differentiation. ASD
GNAS G-protein a subunit (Gs-a) Signaling pathway ASD. ADHD
HSPD1 Chaperonin (HSP60) Chaperone Prevent traumatic brain injury
MAPK1 Mitogen-activated protein kinase 1 (ERK2) CREB phosphorylation signaling pathway ~ ASD

NEFH, NEFM, NEFL

NOV

OPCML

PAFAH1B1

RELN

SERPINH1

SLIT1, SLIT2

TGFB2

TPM1

VLDLR

Neurofilament protein (heavy, medium, and
light)

Nephroblastoma overexpressed

Opioid-binding protein/cell adhesion
molecule

Platelet-activating factor acetylhydrolase IB
subunit a (Lis1)

Reelin

Heat shock protein 47

Slit homolog 1 and 2 proteins

Transforming growth factor-g 2

Tropomyosin a-1 chain

Very-low-density-lipoprotein receptor

Intermediate filaments

Extracellular matrix protein that binds to
integrin receptors

Cell adhesion molecule

Interact with dynein and VLDLR

Extracellular matrix protein

Chaperone

Extracellular matrix protein.
Chemorepulsive signal

Extracellular matrix protein

Actin associated protein

Reelin signaling pathway

Abnormal neuronal cytoskeleton.
ASD

Abnormal cell adhesion, migration,
proliferation, differentiation,
and survival

Abnormal proliferation and growth of
cortical astrocytes

Lissencephaly. ASD

Abnormal migration. Alzheimer’s
disease, temporal lobe epilepsy. ASD

Abnormal collagen binding. ASD

Abnormal axon guidance. Abnormal
angiogenesis

Abnormal regulation of proliferation
and differentiation of hippocampal
granule neurons

Abnormal neuronal cytoskeleton

Abnormal migration. Alzheimer’s
disease, temporal lobe epilepsy. ASD

2Bold shows T3-regulated genes that have been found to be abnormally expressed in autistic humans. Other genes found in autistic humans not regulated by T3 at

the transcriptional level have not been included.
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Table 3 | Significant T3-regulated genes at the transcriptional level found in the cerebral cortex of rodents, involved in neurite growth, guidance,

branching, and maturation: relationship with ASD.

Symbol® Protein Process Alteration/disease
ANK3 Ankyrin-3 Cytosol protein that interacts with Abnormal clustering of voltage-gated sodium
voltage-gated sodium channels and channels at the axon hillock and node of Ranvier
cytoskeletal proteins abnormal action potential firing. ASD
ARX Aristaless-related homeobox Transcription factor X-linked intellectual disability, epilepsy, lissencephaly,
agenesis of the corpus callosum. ASD
BDNF Brain-derived neurotrophic factor Extracellular signal Abnormal synaptic structure, function, and plasticity.
Fragile X syndrome. ASD
CAMK4 Calcium/calmodulin-dependent protein  CREB phosphorylation signaling ASD
kinase type IV pathway
CHN1 Chimerin 1 (GTPase-activating protein)  Signal transduction Abnormal axon pruning
CNTN4 Contactin-4 Cell adhesion molecule Abnormal connectivity in the developing nervous
system. ASD
CREB1 cAMP-responsive element binding Transcription factor Altered development. ASD
protein 1
CREM cAMP-responsive element modulator ~ Transcription factor modulating CREB  Altered development. ASD
FLT1 Vascular endothelial growth factor Protein kinase. Signal transduction Abnormal control of cell proliferation and
receptor 1 differentiation. ASD
FN1 Fibronectin Extracellular matrix protein Abnormal cell adhesion, growth, migration, and
differentiation. ASD
HAP1 Huntingtin-associated protein 1 Interacts with huntingtin and Abnormal vesicular trafficking and organelle transport
cytoskeletal proteins
KLF9 Kruppel-like factor 9 Transcription factor Altered development of neurons
MAPK1 Mitogen-activated protein kinase 1 CREB phosphorylation signaling ASD
(ERK2) pathway
NEFH, NEFM, Neurofilament protein (heavy, medium, Intermediate filaments Abnormal neuronal cytoskeleton. ASD
NEFL and light chains)
NOS1 Nitric oxide synthase 1 Neurotransmitter, signaling pathway Abnormal signaling pathway. Neuroglial
inflammation. ASD
PLXNAZ2,3 Plexin-A2 Semaphorin co-receptor Abnormal axon guidance. Schizophrenia, anxiety
SEMA3B Semaphorin-3B Signal transduction Abnormal axon guidance

SLIT1, SLIT2

TGFB2

Slit homolog 1 and 2 proteins

Transforming growth factor-g 2

Extracellular matrix protein.
Chemorepulsive signal

Extracellular signaling protein

Abnormal axon guidance. Abnormal angiogenesis

Abnormal regulation of proliferation and
differentiation of hippocampal granule neurons

2Bold shows T3-regulated genes that have been found to be abnormally expressed in autistic humans. Other genes found in autistic humans not regulated by T3 at

the transcriptional level have not been included.

of the columnar neuropile more than by a reduction in the cel-
lular components of the columns. T3-regulated CASP3 (caspase
3) and CTNNBI (B-catenin) genes are crucial for cerebral cortex
expansion (Table 1). Experimental studies using caspase 3 and 9
KO mice (lacking apoptotic signals) (2, 199) and transgenic mice
expressing B-catenin (which increases the number of precursor

cells) lead to an abnormally convoluted mouse cortex (200). Cas-
pase 3 pathway is downregulated in the cerebral and cerebellar
cortices of hypothyroxinemic and hypothyroid rats (201, 202),
while B-catenin is T3-downregulated in rat pituitary cultured cells
(174). These data show that thyroid hormone deficiency alters the
tangential and radial organization of the cortex and might have
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Table 4 | Significant T3-regulated genes at the transcriptional level found in the cerebral cortex of rodents, involved in synaptogenesis and

plasticity: relationship with ASD.

Symbol® Protein Process Alteration/disease
ANXA6 Annexin A6 Calcium-binding protein Abnormal vesicle aggregation and fusion in the
hippocampal neuron’s axon initial segment
ATP2B2 Ca(?t+)-ATPase Plasma membrane calcium-ATPase Abnormal translocation of calcium to the endoplasmic
reticulum in hippocampal neurons. ASD
BDNF Brain-derived neurotrophic factor Synaptic structure, function, and Abnormal synaptic structure, function, and plasticity.
plasticity. fragile X syndrome autism Fragile X syndrome. ASD
CAMK4 Calcium/calmodulin-dependent protein  CREB phosphorylation signaling ASD
kinase type IV pathway
CNTN4 Contactin-4 Cell adhesion molecule Abnormal connectivity in the developing nervous
system. ASD
CREB1 cAMP-responsive element binding Transcription factor Altered development. ASD
protein 1
CREM cAMP-responsive element modulator Transcription factor modulating CREB Altered development. ASD
EXOC7 Exocyst complex component 7 Rho3 signaling Abnormal cell polarity, regulation of actin polarity and
transport of exocytic vesicles
HAP1 Huntingtin-associated protein 1 Interacts with huntingtin and Abnormal vesicular trafficking and organelle transport
cytoskeletal proteins
HRH3 Histamine H3 receptors Signal transduction Abnormal presynaptic inhibition of neurotransmitter
release
MAPK1 Mitogen-activated protein kinase 1 CREB phosphorylation signaling ASD
(ERK2) pathway
NR4A1 Nuclear receptor related 1 protein Transcription factor Abnormal synaptic plasticity in the hippocampus.
(NURR77) Altered long-term potentiation. Schizophrenia
NRGN Neurogranin Calmodulin-binding protein. Abnormal synaptic plasticity and long-term
Component of postsynaptic density potentiation. Schizophrenia. ASD
PAFAH1B1 Platelet-activating factor Interacts with dynein and VLDLR Lissencephaly. ASD
acetylhydrolase IB subunit a (Lis1)
PICALM Phosphatidylinositol binding clathrin Coated vesicles Abnormal coated vesicles. Alzheimer's disease

SLIT1, SLIT2

SNAP23
SNX16
SQSTM1

SYT2
SYTL5

TGFB2

VAMP4

assembly protein

Slit homolog 1 and 2 proteins

Synaptosomal-associated protein 23
Sorting nexin 16

Sequestosome-1

Synaptotagmin-2

Synaptotagmin-like protein 5

Transforming growth factor-p 2

Extracellular matrix protein.
Chemorepulsive signal

SNARE associated protein
Membrane associated protein

Ubiquitin binding protein

Synaptic vesicles docking

Synaptic vesicles docking. Marker for
parvalbumin immunoreactive buttons

Extracellular signaling protein

Vesicle-associated membrane protein 4  Synaptic vesicles docking

(synaptobrevin)

Abnormal axon guidance. Abnormal angiogenesis

Abnormal exocitosis
Protein sorting

Abnormal regulation of the nuclear factor kappa-B
(NF-«B) signaling pathway

Abnormal exocitosis

Abnormal exocitosis

Abnormal regulation of proliferation and differentiation
of hippocampal granule neurons

Abnormal exocitosis

2Bold shows T3-regulated genes that have been found to be abnormally expressed in autistic humans. Other genes found in autistic humans not regulated by T3 at

the transcriptional level have not been included.
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Table 5 | Significant T3-regulated genes at the transcriptional level found in the cerebral cortex of rodents, involved in neurotransmission:
relationship with ASD.

Symbol® Protein Process Alteration/disease
ADCYAPTR1 Adenylate cyclase-activating polypeptide Signaling pathway Decreased second messenger
receptor (PAC1)
CACNG8 Calcium channel, voltage-dependent, y Transmembrane AMPA receptor Altered long-term potentiation
subunit 8 regulatory protein (TARP)
CAMK4 Calcium/calmodulin-dependent protein CREB phosphorylation signaling pathway ~ ASD
kinase type IV
CREB1 cAMP-responsive element binding protein 1 Transcription factor Altered development. ASD
CREM cAMP-responsive element modulator Transcription factor modulating CREB Altered development. ASD
HAP1 Huntingtin-associated protein 1 Interacts with huntingtin and cytoskeletal ~ Abnormal vesicular trafficking and organelle
proteins transport
HOMER1 Homer protein homolog 1 Major component of postsynaptic density ~ Abnormal synaptic plasticity and long-term
potentiation. ASD
HRH3 Histamine H3 receptors Signal transduction Abnormal presynaptic inhibition of
neurotransmitter release
KCNC1 Potassium voltage-gated channel subfamily C  Membrane channel Abnormal repolarization of cortical
member 1 interneurons
KCNJ10 ATP-sensitive inward rectifier potassium Membrane channel Abnormal repolarization. Epilepsy, ataxia,
channel 10 and deafness. ASD
KCNK2 Potassium channel subfamily K member 2 Membrane channel Abnormal neuroprotection against epilepsy
(TREK1) and brain and spinal cord ischemia
KCNS2 Potassium voltage-gated channel subfamily S Membrane channel Abnormal repolarization
member 2
KCNT2 Potassium channel subfamily T, member 2 Membrane channel Abnormal repolarization epilepsy, Alzheimer
disease
MAPK1 Mitogen-activated protein kinase 1 (ERK2) CREB phosphorylation signaling pathway  ASD
NRGN Neurogranin Calmodulin-binding protein. component of ~ Abnormal synaptic plasticity and long-term
postsynaptic density potentiation. Schizophrenia. ASD
NTS Neurotensin Neuropeptide Abnormal modulation of dopamine signaling.
ASD
PACSIN2 Protein kinase C and casein kinase substrate  Binding to endocytic proteins Arrested endocytosis
in neurons protein 2
PAFAH1B1 Platelet-activating factor acetylhydrolase I1B Interacts with dynein and VLDLR Abnormal signaling. Lissencephaly. ASD
subunit a (Lis1)
SLC17A7 Vesicular glutamate transporter 1 (VGLUT1) Synaptic vesicle membrane protein Abnormal neurotransmission

neuropsychiatric disorders. ADHD, and
schizophrenia. ASD

2Bold shows T3-regulated genes that have been found to be abnormally expressed in autistic humans. Other genes found in autistic humans not regulated by T3 at

the transcriptional level have not been included.

contributed in the evolutionary elaboration of radial columns,

modulating both cortical surface and thickness.

Altered T3-regulated opioid-binding protein/cell adhesion
molecule (OPCML; also known as OBCAM) expression affects

radial glia function and its transdifferentiation to astrocytes

[Ref. (203); Table 2]. In agreement, impaired maturation of

radial glia was observed in the hippocampus of pups born to
chronic hypothyroxinemic rats (163) and in the neocortex of
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Table 6 | Significant T3-regulated genes at the transcriptional level found in the cerebral cortex of rodents, involved in memory and behavior:
relationship with ASD.

Symbol® Protein Process Alteration/disease

ADCYS8 Adenylate cyclase type 8 G-protein associated enzyme Abnormal cAMP signaling

ADRBK2 B-adrenergic receptor kinase 2 (GRK3) G-protein-coupled receptor kinase 3 Abnormal dopamine metabolism.
Schizophrenia and bipolar disorder

CALB1 Calbindin-D28k Calcium-binding protein Abnormal synaptic plasticity and long-term
potentiation. ASD

CAMK4 Calcium/calmodulin-dependent protein CREB phosphorylation signaling pathway ASD

kinase type IV

CREB1 cAMP-responsive element binding protein 1 Transcription factor Altered development. ASD

CREM cAMP-responsive element modulator Transcription factor modulating CREB Altered development. ASD

DBP D site of albumin promoter (albumin D-box) Transcription factor Abnormal spatial learning and enhanced

binding protein susceptibility to kainate-induced seizures.

Epilepsy, schizophrenia, and bipolar disorder

GRK5 G-protein-coupled receptor kinase 5 Signal transduction Memory impairment. Alzheimer’s disease

HOMER1 Homer protein homolog 1 Major component of postsynaptic density ~ Abnormal synaptic plasticity and long-term
potentiation. ASD

HTR7 5-HT7 receptor Neuroreceptor Abnormal learning and memory.
Neuropsychiatric disorders. ASD

MAPK1 Mitogen-activated protein kinase 1 (ERK2) CREB phosphorylation signaling pathway ASD

NOS1 Nitric oxide synthase 1 Neurotransmitter, signaling pathway Abnormal signaling pathway. ASD

NR4A1 Nuclear receptor related 1 protein (NURR77) Transcription factor Abnormal synaptic plasticity in the
hippocampus. Altered long-term
potentiation. Schizophrenia

NTS Neurotensin Neuropeptide Abnormal modulation of dopamine signaling.
ASD

PVALB Parvalbumin Calcium-binding protein Alzheimer's disease and nervous system

disorders. ASD

2Bold shows T3-regulated genes that have been found to be abnormally expressed in autistic humans. Other genes found in autistic humans not regulated by T3 at

the transcriptional level have not been included.

developmentally hypothyroid pups (204). Abnormal radial migra-
tion in the neocortex of developmentally hypothyroid rats was
first described in the auditory cortex by combining BrdU and
tracer labeling (205). As a result, the radial positioning of migrat-
ing neurons was altered, including abnormally located heterotopic
neurons in the subcortical white matter (192, 205) (Figure 2C)
and corpus callosum (206). Also, altered neuronal migration in
the neocortex and hippocampus has been confirmed in hypothy-
roxinemic rats (158, 159, 164) (Figures 2A—C). Apart from TRs,
other nuclear receptors are involved in radial glia maturation and
radial migration in the neocortex such as the liver X receptor
(LXRP) that also regulates the expression of ApoER2 receptor
(207). LXRB™/~ mice showed altered cortical migration of later-
born neurons (208) and delayed transdifferentiation of radial glial
cells into astrocytes (209). Interestingly, LXRs bind to the same
response element on DNA as TRs and sometimes regulate the

same genes (150, 210). In fact, it has been shown recently that TRa
compensates for the lack of LXRS in cortical development, and a
reciprocal compensatory action can also be hypothesized (207).
Heterotopic cells in the external granular layer of the cerebellar
cortex have also been observed (212), as well as in Mct8~"Y mice
(213). The stunted migration of cerebellar cells found in previ-
ous studies (6, 214, 215) and in TRal mutant mice (212, 213)
suggests that thyroid hormones interfere with different mecha-
nisms involved in the migration of cortical and cerebellar neurons.
Cortical neurons retain most of their migratory capacity as can
be observed either in studies combining BrdU and tracer label-
ing (205) or using organotypic cultures (Figure 2D) (159). In
the latter, it was found that cells from transient hypothyroid
medial ganglionic eminence explants migrate as well as cells from
control explants when they were placed on normal host cortex;
and reversely, both control and transient hypothyroid median
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Posteromedial
barrel subfield

P40C

P40MMI

FIGURE 1 | Reduced development of cortical maps in developmental
hypothyroidism. (A) Cartoon showing the posteromedial barrel subfield of
the primary somatosensory cortex in the brain of a rat. Note the
correspondence between mysticial vibrises and the barrels of the
posteromedial barrel subfield. (B) Brain dorsal views at P40 of control (C)
and MMI pups. (C) Computer reconstruction from photomicrographs of
serial tangential sections through layer IV, showing cytochrome oxidase
labeling in the barrel cortex of normal and hypothyroid rats. Note the
reduced tangential extension of the cytochrome oxidase labeling in
hypothyroid with respect to normal rats. (D) Area measurements in normal
and hypothyroid rats. The dorsal view brain area was, on average, 24%
smaller in hypothyroid rats (upper). A similar reduction (on average, 27 %)
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was observed in the PMBSF tangential area (lower). (E) Photomicrographs
of cresyl violet stained coronal sections showing the cytoarchitecture of the
barrel cortex of the primary somatosensory cortex at P40 in control (C) and
transient MMI treated pups (MMI treatment begun at E12 and finished at
E15). Borders between layers (horizontal lines) are clearcut in C whereas
they are more blurred in MMI12 pups. In layer IV of C and dMMI pups,
barrels (arrow) are normal and well-defined and demarcated by septae
(arrowheads). In contrast, barrels in layer IV of MMI1 pups are not seen. In
developmentally hypothyroid pups there is a 10-15% reduction in the
cortical thickness of MMI pups compared to controls. (A) Modified from
Berbel and Morreale de Escobar (57). (C,D) Modified from Berbel et al.
(192). (E) Modified from Ausé et al. (158).

ganglionic eminence cells showed altered latero-medial migration
when placed on transient hypothyroid host cortex, which suggests
that in the transient hypothyroid cortex the expression of chemo-
attractive/-repulsive/-stop signals and/or of their receptors [see
review in Ref. (126)] is altered. In fact, some of them, such as Slit1,
Slit2, and Sema3B, are regulated by thyroid hormones [Ref. (44);
Table 2].

ABNORMAL CORTICAL CYTOARCHITECTURE AND CONNECTIVITY
Blurred neocortical layering can be assessed in the rodent
somatosensory barrel cortex owing to the characteristic cytoarchi-
tecture of layer IV (192, 216). The parvalbumin immunostaining
pattern in hypothyroid rats is severely altered in the neocortex
(211, 217, 218) (Figure 2E) and hippocampus (217, 219). Inter-
estingly, parvalbumin positive neurons (i.e., GABAergic chandelier
and basket neurons that migrate tangentially from the medial gan-
glionic eminence) also exhibit altered tangential migration in the
transient hypothyroxinemic cortex (159). The decreased chande-
lier and basket parvalbumin immunoreactive terminals in the neo-
cortex (211,217) and hippocampus (217) will affect the inhibitory
control of glutamatergic neurons (220) and might explain the
high incidence of audiogenic seizures reported in hypothyroid
rats (221) and in the pups of mild and transient hypothyroxinemic
pregnant rats (158) (Figure 2F).

Early postnatal hypothyroidism affects the growth of dendrites
in both the cerebral (193, 222) and cerebellar (223) cortices. Qual-
itative and quantitative ultrastructural studies of the cerebellar
molecular layer in rats show that the retardation in synaptogenesis

between Purkinje cell dendritic spines and parallel fibers was asso-
ciated to hypoplasia of Purkinje cell dendrites and to the retarded
development of parallel fibers (223). In the neocortex, it has been
found that B-catenin is downexpressed in the dentate gyrus of
postnatal hypothyroid rats (165) and the Wnt/B-catenin signal-
ing plays a crucial role for the growth and branching of dendrites
(224). Developmental hypothyroidism affects maturation of com-
missural axons (225-228). In adult hypothyroid rats, the number
of myelinated axons was 76 and 66%, respectively, in both the ante-
rior commissure and the corpus callosum compared to controls
(228); also, the maturation of cytoskeletal components was altered
(226, 229) and the growth of axon caliber was arrested (225, 228).
Development and maturation of oligodendrocytes in the forebrain
commissures of hypothyroid rats may also be affected. In fact,
cortical expression of myelin-associated glycoprotein, proteolipid
protein, and myelin basic protein in oligodendrocytes is strongly
reduced (230).

Callosal-projecting neurons were found mostly in infra-
granular layers of the auditory cortex of developing (205) and adult
hypothyroid rats (216). In addition to altered radial distribution,
the total number of callosal neurons was increased in auditory
(216) and visual (226) cortices, and in cortical projecting neurons
such as in the occipito-spinal connections (231), revealing mainte-
nance of exuberant projections in hypothyroid rats. Interestingly,
in the hypothyroid MMI model, the heterotopic white matter neu-
rons, in particular, the early BrdU-labeled ones normally destined
for the subplate, could provide a target to the transient callosal
axons as they might in normal development (134, 232).
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FIGURE 2 | Abnormal neuronal radial and tangential migration, inhibitory
local circuits and increased audiogenic seizures in developmental
hypothyroidism and hypothyroxinemia. (A,B) Photomicrographs of
NeuN-immunostained coronal sections of the primary somatosensory cortex
(A) and hippocampal CA1 (B) in LID +KI (rats fed low iodine diet plus
approximately 10 ug iodine per day, during gestation and postnatally) and LID
(rats fed low iodine diet) progeny at P40. The number of NeuN-labeled neurons
increases both in subcortical white matter [wm (A)] and in strata oriens (or)
and alveus [al (B)] of hippocampal CA1 of LID pups as compared with LID + Kl
pups. (C) GFAP- and CNP-positive astrocytes (left panel) and oligodendrocytes
(right panel), respectively (arrowheads), and BrdU-positive nuclei (arrows) are

shown in layer V of C and LID pups. LID rats received single BrdU injections at
E14, E15, and E16. Note that both GFAP-positive astrocytes and CNP-positive

oligodendrocytes are BrdU-negative. (D) Low power fluorescent photo-

micrograph collage illustrating the tangential distribution of GFP-MGE control

migrating neurons (control explant, CE) in wild control flat cortical mounts at
E15 (control cortex, CCx; left), and GFP-MGE hypothyroxinemic migrating
neurons (3dMMl,,) in hypothyroxinemic flat cortical mounts (3dMMI,,Cx;
right). Note that migrating neurons toward the medial (M) region in the
hypothyroxinemic cortical mount (right) expand less than those migrating in
the control cortical mount (left). 3dMMI, rats received MMI treatment
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FIGURE 2 | Continued

from E10 to E12. (E) Photomicrographs through layer V of the auditory
cortex immunostained for parvalbumin in normal (C) and hypothyroid
(MMI treatment from E14 onward) rats. In normal rats, immunoreactive
cells, processes and perisomatic puncta can be seen. In MMI rats,
immunoreactive cells, processes and perisomatic puncta can also be
seen but they are less prominent than in normal rats. (F) Responses of C
and 3dMMI12 (MMI treatment from E12 to E15) pups to an acoustic
stimulus. Histograms on the left correspond to the proportion (median

with 25th and 75th percentiles) of pups responding with wild runs and
with wild runs followed by a seizure, respectively. Graphs on the right
represent the cumulative frequency of pups from the same groups that
respond with wild runs alone or followed by a seizure, respectively, at the
intervals after onset of the stimulus that are shown in the abscissa. (*)
Indicates a statistically significant difference compared with control.
(A-C) Modified from Lavado-Autric et al. (164). (D) Modified from Cuevas
et al. (159). (E) Modified from Berbel et al. (211). (F) Modified from Auso
etal. (1568).

DELAYED CORTICAL MATURATION

There is a strong evidence that subplate neurons play an important
role in thalamocortical axon path finding (233, 234). Subplate neu-
rons may fire action potentials (235) and they are necessary for the
establishment of ocular dominance and orientation columns (236)
and for the maturation of inhibitory circuits in layer IV (237). The
dynamic integration of subplate neurons into the rodent neocortex
during postnatal development may play a key role in establishing
the cytoarchitectonic pattern in layer IV and to refine layer IV
circuitry (238). Recent studies have shown that subplate neurons
remain expressing Camk4 in adult hypothyroid rats, while in nor-
mal rats, Camk4 is not longer expressed in subplate neurons by
P10 [Ref. (239); Figures 3A—C]. Subplate and white matter abnor-
malities have been related to the pathogenesis of various brain
developmental disorders other than ASD, such as periventricu-
lar leukomalacia, schizophrenia, and cerebral palsy (240-244). A
recent study shows the crucial importance of the identification of
subplate cell subpopulations, which may have very different roles
in various pathologies such as ASD and schizophrenia (245).

Serotonin (5-HT) immunostaining is a good transient marker
for thalamic afferents in the visual, auditory, and somatosen-
sory areas of rats during the first postnatal days. In the barrel
cortex of hypothyroid rats, immunolabeling persisted for 5 days
until P16-17 [Ref. (246); Figure 3D]. A similar protracted expres-
sion of 5-HT transporter (5-HTT) occurred in the ventro-basal
thalamic nucleus and cerebral cortex (246). Reduced 5-HT lev-
els during barrel formation delay the differentiation of layers II,
III (247, 248) and reduce the tangential extent of thalamocortical
arbors within barrels (249). Thus, prolonged 5-HTT expression
in the hypothyroid ventro-basal thalamic nucleus should decrease
the concentrations of 5-HT in the extracellular space of sensory
cortices, affecting their organization and differentiation.

In the barrel cortex of adult hypothyroid rats, the radial distri-
bution of thalamic afferents, anterogradely labeled with dextran—
biotin amine and Dil, was reduced compared to normal rats [Ref.
(246); Figure 3G]. By single reconstructions of terminal arbors
(Figure 3H), these authors showed a reduction of the number
of axonal branches reaching layers II-IV, and a 49% reduction
in the total length of terminal axon arbors in hypothyroid rats.
This arrested growth was also reflected by a 58% reduction in
the number of buttons per terminal (Figure 3I). In hypothyroid
rats, ramification of the thalamocortical axons would appear to
be stalled postnatally, resulting in reduced synaptogenesis as sug-
gested by the reduced number of buttons in thalamocortical axons
[Ref. (246); Figure 3I] and in a decreased number of spines along
the apical shafts of the hypothyroid pyramidal cells (250). All of the
above data show that many target pyramidal cells fail to reach their

correct cortical location, not only failing to complete their normal
maturation but also that the afferents have arrested growth. In
fact, GAP-43 is downregulated, while Sema3A is upregulated in
developmentally hypothyroid and hypothyroxinemic pups (251).
In agreement, GAP-43~/~ mice failed to express 5-HTT in the
barrel cortex causing a disrupted segregation of thalamic afferents
in the barrel cortex. In addition, recent data show that the den-
sity of VGluT1-immunoreactive buttons is decreased in layer IV
of the parietal cortex of hypothyroid rats (180). These data show
that there is an asynchrony in the maturation of thalamocortical
afferents and their cortical targets in hypothyroid rats. Cortical
cells could be at a stage of maturation that does not allow them to
respond to thalamocortical signals, resulting in abnormal commu-
nication between thalamic axons and target cells (e.g., by reduced
synaptogenesis). Hypothyroidism seems to dissociate stabilization
of juvenile axons from maturation, growth in caliber and myeli-
nation, processes, which were previously thought to be necessarily
linked (134, 232, 252).

Abnormal patterns of connectivity have been also found in the
hippocampus of developmentally hypothyroid rats (193). These
authors found in the hippocampus of pups born to hypothy-
roid dams that CA pyramidal neurons developed atrophic apical
(15% shorter) and fewer number of ramifications (about 31 and
36% less in dentate gyrus and CA, respectively). Blurred layering
and heterotopic neurons were also found in the hippocampus of
pups born to hypothyroxinemic pregnant rats [Ref. (158, 164);
Figure 2B]. Decreased mossy fiber zinc density (33—45% reduc-
tion) was found in perinatal hypothyroid rats after PTU treatment
from E18 to P31 (253) and in postnatal hypothyroid rats (254).
P40 pups born to late hypothyroid dams (thyroidectomized by
E16; LMH pups), showed a 41.5% decrease in the Zn-positive
area in the stratum oriens, in parallel to down expression of
the Zn transporter-3 (ZnT-3; Figure 3E) and reduced density
of VGluT1-immunoreactive buttons (Figure 3F). In addition,
pCreb/pATF1, pCreb/Creb, pErk1/Erk2, and pErk2/Erk2 ratios in
the hippocampus decreased in LMH pups (59.1, 66.7, 44.4, and
42.9%, respectively) [Ref. (169); Figures 3],K]. Recently, the hip-
pocampus of developmentally hypothyroid pups showed altered
VGIuT1/VGAT immunoreactivity (180). Although Camk4/Creb
pathway plays a fundamental role in neurites growth and estab-
lishment of synapses, other genes are involved in the develop-
ment of hippocampal connections. It has been found that the
T3-regulated BDNF is involved in the regulation of the trans-
lational expression of VGIuT1 in cultured hippocampal neurons
(255,256). Interestingly, BDNF was also found involved in the acti-
vation of Erkl1/2 signaling pathway (188), which affects not only
the differentiation of hippocampal neurons but also almost all
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FIGURE 3 | Thyroid hormones affect connectivity, maturation, and
function of the cerebral cortex. (A,B) Collages from confocal photo-
micrographs (taken with the x20 objective) showing double immunolabeling
for Camk4 [red; (A)] and Nurr1 [green; (B)] in the parietal cortex of P10

control (C), LMH (pups born to dams thyroidectomized at E16), and MMI
(MMI treatment starting at E10) pups. Most of Camk4-immunoreactive
neurons were located in layers I1-IV and upper layer V. Numerous
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FIGURE 3 | Continued

Camk4-immunoreactive neurons can be seen in layer VIb of P10LMH and
P10MMI pups (arrows) compared with P10C pups. At P10, about 60% of
Camk4-immunoreactive neurons of layer Vlb are also Nurrl-immunoreactive.
(C) Photomicrographs of coronal sections of the parietal cortex showing
NeuN-immunoreactive neurons in C and LMH pups at P15. At P15, the
border between the subplate and adjacent layer VI is more clear-cut in LMH
than in C pups, showing that a remaining subplate is still present.

(D) Photomicrographs of flattened neocortex tangential sections showing
5-HT immunostaining in the posteromedial barrel subfield of the parietal
cortex of C and MMl rats at P4 and P15. At P4, heavily immunostained barrels
can be seen. Decay of 5-HT labeling occurs by P11 in C and by P16 in MMI
rats. Note that in P15C rats, no barrels were immunostained, whereas in
P15MMI rats, they are still immunopositive. (E) Photomicrographs of coronal
sections of the area CA3 of the hippocampus showing the Zn-labeling of
mossy fibers in C and LMH pups at P40. Note the heavier labeling of mossy
fibers in the stratum oriens (arrowhead) of CA3 in C compared with LMH
pups. (F) Confocal deconvoluted images of vesicular glutamate transporter
type 1 (VGIUT1, which labels excitatory buttons) of the stratum radiatum (rm)
in CA3 in C and MMl rats at P50, labeling mossy fiber buttons. Note the
decreased density of immunoreactive buttons in P5OMMI pups compared to
controls. (G) Photomicrographs of coronal sections from P4 and P7 MMI rats
that had the lipophilic carbocyanine Dil tracer (1,1'-dioctadecyl-3,3,3',3'-

tetramethylindocarbocyanine perchlorate) implanted in the ventro-basal
thalamic nucleus. At P4, Dil-labeled thalamic afferents enter the
somatosensory cortex, and form clusters in layer V. At P7, collaterals in layer
IV form more dense clusters than at P4. These images show that hypothyroid
thalamic axons reach their somatosensory target areas as in normal rats. (H)
Coronal views of thalamocortical terminal arbors in layer IV in the
posteromedial barrel subfield of C and MMI rats at P60. The barrel limit is
marked with dashed lines. Note that in MMI rats terminal arbors have shorter
and tortuous branches. (I) Histograms representing mean values for the
number of axon segments per terminal (upper), segment length (middle), and
buttons per segment (bottom) in C (white bars) and MMI (black bars) rats for
each segment order. Note that in general MMI mean values are lower. (J,K)
Western blots obtained from the hippocampus of C and LMH pups at P40,
immunolabeled for ERK2, pERK1, and pERK2 (J) and pATF1, pCREB, and
CREB (K). Histograms showing that the pERK1/ERK2 and pERK2/ERK2 (J)
and pCREB/pATF1 and pCREB/CREB (K) ratios are reduced by 44.4, 42.9,
59.1, and 66.7 %, respectively, in LMH compared with C pups. (L) Histogram
showing step-down latencies in seconds at 1, 3, and 24 h after the initial foot
shock in C and LMH pups at P39. Pups from LMH dams show 24.9%
reduction in the step-down latency at 1 h after the foot shock. (J-L) Error bars
represent + SD; n.s., no significant differences; * P < 0.001 for LMH compared
with C group. (A,B) Modified from Navarro et al. (239). (C,E,J,K,L) Modified
from Berbel et al. (169). (D,G,H,l) Modified from Ausé et al. (246).

aspects of corticogenesis (Tables 3—6). However, the inactivation
of other pathways such as the Gsk33/CRMP2 pathway will result in
delayed axonal growth (251,257). Decreased p-Gsk3p labeling and
increased labeling of its inactivated p-CRMP2 target protein was
seen in the developmentally hypothyroid and hypothyroxinemic
rat hippocampus (251).

Altered postnatal synaptogenesis has been observed in the
molecular layer of the cerebellar cortex of hypo- and hyper-
thyroid rats (214). Neurotrophins BDNF and NT3 are down-
expressed in postnatal PTU treated rats, resulting in atrophy of
Purkinje cell dendrites and in a decreased number of synapses
(258) and BDNF is also downexpressed in the hippocampus
of developing hypothyroid rats (256). However, neurotrophins
might have a dual role in developing and adult hypothyroid rats,
because, BDNF is highly expressed in layers II, III, and V of
the neocortex and in all hippocampal areas of adult hypothy-
roid rats (259). These authors observed an increased number
of apoptotic neurons and astrocytes in the adult hypothyroid
cortex, and they suggested that the increase of BDNF in the
hypothyroid adult neocortex and hippocampus might have a
protective role against cellular stress associated to degenera-
tive processes. Interestingly, in young and adult autistic human
cerebellar samples (ages ranging from 7.5 to 34 years) a 40.3%
increase in NT3 expression was found (260). Other T3-regulated
genes, involved in synaptogenesis, plasticity, and neurotransmis-
sion, have been found [Ref. (23, 44); Tables 4 and 5]. The T3-
regulated ANXA6 gene codes for the calcium-binding protein
annexin 6 that may play a structural role in facilitating mem-
brane association at the cisternal organelle level and/or in sta-
bilizing IP3R1 microdomains in the axonal initial segment of
hippocampal neurons (261). NR4A1 codes for the transcription
factor Nurr77 that mediates in mechanisms of long-term synaptic
plasticity in the hippocampus and consequently, in the consol-
idation of long-term hippocampus-dependent memory (262).
PACSIN? codes for protein kinase C and casein kinase substrate in

neurons protein 2, which interacts with dynamin and synapsin,
which affect the recruitment of synaptic vesicles (263), while
TGB2 codes for transforming growth factor-beta 2, which is
involved in the differentiation of granule neurons of the dentate
gyrus (188).

Structural changes in the cerebral cortex result in altered
electrophysiology and behavior of thyroid deficient rats. Most
of the electrophysiological studies have been performed in the
CA1 hippocampal area. Decreased long-term potentiation (LTP)
was shown in developing rats with severe and chronic hypothy-
roidism (166, 264), as well as in adult hypothyroid rats (265).
Altered LTP was also observed in pups born to rats treated with
MMI from E12 to E15 (266). Recent studies have shown that
developmental hypothyroidism decreases the number of burst-
ing CAL cells, as well as the number of spikes per burst, resulting
from altered low-threshold Ca?* current (267). As mentioned
above, the growth of axon caliber was arrested in the anterior
commissure and the corpus callosum of hypothyroid rats (225,
228), which might be relevant for the signal transmission veloc-
ity of commissural axons (268). The behavior of hypothyroid
rats related to cerebral cortex alterations are mainly based on
tests to measure (i) locomotor functional excitability and seizure
susceptibility (158, 218, 221, 269), and (ii) learning, attention,
and memory deficits (169, 219, 264, 266, 270, 271) (Figure 3L).
Despite the differences between rodent and human cerebral cor-
tices, these studies might be useful to find morphofunctional
alterations in hypothyroid rodents that might also occur in neu-
rological and mental disorders associated to hypothyroidism in
humans, such as ASD and ADHD. Significant T3-regulated genes,
involved in memory and behavior have been found [Ref. (23,
44); Table 6]. Among these, ADCY8, ADRBK2, and GRK5 code
for proteins associated to G-protein signaling (272-274). The
transcription factors DBP, involved in kainite-involved seizures
and hippocampal plasticity (275), and NR2A1 were mentioned
above.
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ASD AND THYROID HORMONES DURING BRAIN
DEVELOPMENT

Experimental studies in rodents clearly show that thyroid hor-
mone deficiency results in delayed, temporarily, or permanently
suppressed, or abnormal, connections, resulting in behavioral
and brain dysfunction (10). Abnormal morphophysiological and
behavioral traits established during gestation and early postnatal
ages might be maintained throughout life and thereby be a risk
factor for the development of behavioral and mental disorders
later in life.

Despite differences resulting from age at autopsy and the con-
comitant effects of seizures and of intellectual disability of variable
severity, a substantial body of evidence has accumulated since the
1970s on the fundamental morphological changes affecting the
brain of patients with ASD (276, 277). Wegiel et al. (278) reviewed
available neuropathological data and concluded that ASD results
from dysregulation of the normal mechanisms of neurogenesis
and neuronal migration, plus dysplastic changes and defects of
neuronal maturation. Thus, the neuropathology of ASD is consis-
tent with a prenatal time of onset. A likely etiological hypothesis
posits that ASD may be caused by thyroid hormone deficien-
cies during cerebral cortex development, either due to a genetic
deficiency of the TRIP8 gene (thyroid receptor interacting pro-
tein), which codes for a transcriptional regulator associated with
nuclear thyroid hormone receptors (279) or associated to mater-
nal hypothyroidism, which increases fourfold the risk of ASD in
the child (3, 63).

The morphological brain changes and the genes found to be
transcriptionally or functionally involved in ASD will be briefly
reviewed here, both from post-mortem data and from in vivo
imaging, along with a summary of the neurotransmitters affected.
Finally, the relevance of thyroid hormones in accepted animal
models of ASD is presented. Thyroid hormone deficiency dis-
eases and ASD share common altered gene pathways and comor-
bid disorders, and epidemiological studies reported a relation-
ship between thyroid hormone deficiency and ASD, although
morphofunctional differences between these two conditions exist.

BRAIN ALTERATIONS

Young children with ASD are megalencephalic, with increased
brain size and weight (276, 277). Brain imaging data and head cir-
cumference studies have shown two phases of early brain growth
in ASD pathology: early brain overgrowth during the first postna-
tal years and arrest of growth during early childhood (280), which
might be overlapped with neuronal degeneration in some brain
regions by preadolescence and continued into adulthood (280,
281). Increased number of neurons could contribute to increase
brain volume. Macroscopically and on imaging, the cerebral cor-
tex in ASD exhibits an abnormal pattern of convolutions (282)
involving the orbitofrontal cortex (283) and the temporal lobes
with hyperconvoluted hippocampus (276). Counts performed in
Nissl stained sections suggests increased density of cells in the
frontal cortex (284). However, other factors, besides of the increase
in the number of neurons, can contribute to increase brain vol-
ume. Increased cerebrospinal fluid volume, and slight reductions
of gray and white matter volume in frontal, temporal, and parietal
lobes have been reported (285). In addition, recent studies have

shown focal brain inflammation (286, 287) and increased gliosis
subjacent to neuronal degeneration (281). Changes do not affect
the brain uniformly, i.e., the fusiform face area and the limbic
system have increased cell packing density and smaller neuronal
size involving hippocampus, subiculum, and amygdala, and to a
lesser extent the entorhinal cortex, mammillary bodies, and sep-
tal nuclei (277), while other areas are normal; for instance, the
posteroinferior occipitotemporal gyrus showed no differences in
pyramidal neuron number or size in layers III, V, and VI (288).
In Brodmann areas 44—45, Jacot-Descombes et al. (289) demon-
strated reduced pyramidal neuron size suggesting impairment of
neuronal networks relevant to communication and social behav-
iors. However, owing to the relatively small number of autistic
brains studied up to date and the enormous heterogeneity in
ASD phenotypes and comorbid diseases, more neuropathologi-
cal studies will be need for clarification of neuroanatomy of ASD
(107, 290).

Despite changes in brain volume in ASD, some anatomical
alterations are common with hypothyroid brains. Microscopic
examination reveals dysgenesis of the cerebral cortex (276, 277)
with increased cortical thickness, abnormal laminar patterns, high
density of hippocampal neurons, presence of neurons in the mol-
ecular layer, neuronal disorganization, poor differentiation of the
gray—white matter boundary, and neuronal heterotopias. Corti-
cal neurons are small, closely packed, lack dendritic arbors, and
appear immature; these changes are consistent with an arrest
of cerebral maturation (290, 291). Also, the cortical organiza-
tion is altered with narrower cortical minicolumns (292, 293).
The focal cortical dysplasia of ASD appears to result from loss
of synchronized radial and tangential migration of glutamatergic
and GABAergic neurons, respectively (294). The CNTNAP2 gene,
which codes for contactin associated protein-like 2, is expressed
in human frontal areas and has been found to be involved in
ASD and language impairment (295, 296). A finding consistent
with this view is the demonstration by Kotagiri et al. (297) of
cytoarchitectural changes in the ependymal cells of the subven-
tricular zone in ASD, with lower cell density in the septal but
not in the striatal zone. A subset of ependymal, astrocyte rib-
bon, and rostral migratory stream (RMS) cells expressed PCNA,
Ki67, PLP, and a-tubulin. In addition, the white matter shows
areas of focal increase in the number of heterotopias, reflect-
ing abnormal neuronal migration (278). Using imaging, Gozzi
et al. (298) showed that the magnetization transfer ratio of
the corpus callosum was significantly higher in children with
ASD than in normal controls, indicating abnormal myelination
in ASD.

According to a consensus by Fatemi et al. (299), reduction in
Purkinje cell and cerebellar granule cell density is consistently
observed in ASD (300), along with developmental abnormali-
ties of the inferior olives (301), consistent with abnormal neu-
ronal migration before the 3rd month of gestation. Purkinje cells
are decreased in the posterolateral neocerebellar cortex and the
archicerebellar cortex (302) with vermis hypoplasia on brain imag-
ing (303, 304). Using MRI tractography in children with ASD,
Jeong et al. (305) showed decreased fiber numbers connecting
cerebellar cortex to ventral and dorsal dentate nuclei confirming a
decrease in connectivity and numbers of Purkinje cells.
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NEUROTRANSMITTERS IN ASD

Perry et al. (306) investigated cholinergic biomarkers in the basal
forebrain, frontal cortex, and parietal cortex of children with ASD,
mental retardation, and epilepsy and found decreased binding of
the a4 nicotinic and the muscarinic M1 receptors (a4 nAChR and
m1AChR, respectively). In the cerebellum, Lee et al. (307) found
decreased o3 and a4 nAChR binding in granule cells, Purkinje
cells, and molecular layers along with increased a7 nAChR bind-
ing in the granule cell layer. Blatt et al. (308) found that only
the GABAergic system was significantly reduced in the hippocam-
pus in ASD; the serotoninergic, cholinergic, and glutamatergic
systems were normal. GABA, and GABAg receptor density in
the anterior cingulate cortex and fusiform gyrus is decreased
(309, 310). The dysregulation of the GABAergic system pathway
includes downregulation of GABAA and GABAg receptors (309—
311) and reduction of glutamic acid decarboxylase enzymes (312)
and metabotropic glutamate receptor type 5 [mGluR5; (313)].
FMRP and mGluRS5 are reduced in cerebellar vermis and frontal
cortex in ASD (314, 315). In addition, 5-HT neurotransmission
has been found to be deficient in ASD; in particular, Oblak et al.
(316) showed decrease in 5-HT 5 receptor and 5-HT,, receptor-
binding density, as well as in 5-HTT in posterior cingulate cortex
and fusiform gyrus. Mutations in the GABA4 receptor subunit
have been associated with ASD and epilepsy (317).

Two relevant genes in the diagnosis of ASD are SHANK3 (318)
and GABRB3 (311). SHANKS3 is a synaptic scaffolding protein
enriched in the postsynaptic density of excitatory synapses, and
plays important roles in the formation, maturation, and mainte-
nance of synapses. Several SHANK3 mutations have been identi-
fied in a particular phenotypic group of patients with ASD (318).
A study of the Danish Newborn Screening Biobank revealed levels
of BDNF in the lower 10th percentile during the neonatal period
in children later diagnosed with ASD (319). SHANK3 mutations
may be involved in ASD, cerebellar development, and cerebellar
vermis hypoplasia (320). GABRB3 codes for GABAAB3 receptor,
and is downexpressed in brains of autistic children, particularly in
the cerebellum (311).

THYROID-RELATED GENES INVOLVED IN ASD
Recently, Betancur (321) concluded that despite the more than 100
genetic and genomic disorders associated with ASD, we still lack
a clear understanding of its pathogenesis. In 2007, Castermans
et al. (279) identified in a subject with ASD a de novo chro-
mosomal anomaly on chromosome 10q21.3 that disrupted the
TRIP8 gene and the nearby REEP3 gene that codes for receptor
expression-enhancing protein 3, which is a microtubule associ-
ated protein sequestering the endoplasmic reticulum away from
chromosomes during mitosis. The authors concluded that TRIP8
codes for a protein predicted to be a transcriptional regulator asso-
ciated with nuclear thyroid hormone receptors but noted that, “no
link between thyroid gland and ASD has been reported so far.”
We summarize in Tables 1-6 a list of relevant genes that have
been found to be T3-regulated at the transcriptional level in the
rodents cerebral cortex (149, 322), and their human homolog
genes (marked in bold) that have been found mutated in ASD
patients. The list is far to be exhaustive and, most probably, the
overlapping between T3-regulated and ASD-mutated (T3/ASD)

genes will increase in the near future. Relevant are Creb/Crem
transcription factors that are involved in all critical events of cor-
ticogenesis, and Camk4 and Erk1/2 kinases that participate in
the Camk4/Creb/Crem and Erk1/2/Creb/Crem signaling pathways
(44, 183, 323-325).

As mentioned earlier, critical events at the beginning of cor-
ticogenesis are cell division and differentiation of neuroblasts to
become young migrating neurons, and the migration of young
neurons to their final destinations. T3/ASD genes involved in
cell division and differentiation (Table 1) are CTNNBI codes
for B-catenin that is involved in the transition of epithelial-
to-mesenchymal transition (symmetrical-to-asymmetrical divi-
sions; see above) and in the astrocytes’ differentiation (326);
DYRKIA codes for dual specificity tyrosine-phosphorylation-
regulated kinase 1A, which is a regulator of brain growth (196);
GNBIL code for a 6 WD40 repeats-containing protein most likely
involved in cell cycle regulation (327); and FLTI that codes for
vascular endothelial growth factor receptor 1, a tyrosine kinase
involved in the control of cell proliferation and differentiation
in angiogenesis and neurogenesis; FLT1 has been found reduced
in severe autism (328). T3/ASD genes involved in cytoskele-
ton organization and cell migration (Table 2) are GNAS that
codes for G-protein o subunit (Gs-a) (329); FNI that codes for
fibronectin, an extracellular matrix protein involved in cell adhe-
sion and migration, found increased in serum of children with
autism (330); SERPINH 1 that codes for heat shock protein 47 that
binds collagen and was found abnormally expressed in the tem-
poral cortex of ASD patients (331); and NEFH, NEFM, and NEFL
code for neurofilament subunits and has been found altered in the
frontal cortex neurons in children with autism (332). The genes
involved in the reelin signaling pathway include RELN (reelin),
DABI (disabled-1), VLDLR (very-low-density-lipoprotein recep-
tor) (331-335), and PAFAHI1BI (platelet-activating factor acetyl-
hydrolase IB subunit o; Lisl) that interacts with dimein and
VLDLR. Fatemi et al. (312) reported decreased blood levels of
reelin in children with ASD. Also, using post-mortem material
from superior frontal, parietal, and cerebellar cortex from autis-
tic brains and matched controls, significant reductions in reelin
protein, reelin mRNA, and dabl mRNA along with elevations
in VLDLR mRNA in frontal and cerebellar cortex, indicative
of impairments in the reelin/dabl signaling pathway in ASD
were observed (336). Genetic susceptibility polymorphisms of
the RELN gene have been described in ASD (337-340), although
other studies have been negative (341-344). A recent meta-analysis
by Wang et al. (345) revealed that the RELN variant rs362691,
rather than rs736707 or the GGC repeat variant, might contribute
significantly to ASD risk.

The T3/ASD genes involved in neurite development and mat-
uration (Table 3) are ANK3 that codes for ankyrin-3, which
participates in the recruitment of voltage-gated sodium channels
at the axon hillock and node of Ranvier (346); ARX that codes
for the transcription factor Aristaless-Related Homeobox, associ-
ated to several neurological and psychiatric disorders, including
ASD (347, 348); BDNF has high-affinity for TrkB receptor and
is involved in neurite development, neuronal plasticity, LTP, and
apoptosis of CNS neurons (348, 349); CNTN4 codes for contactin-
4, an Ig-cell adhesion molecule involved in the development
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and plasticity of neuronal circuits (350); NOSI codes for nitric
oxide synthase 1 that is involved in glutamate-mediated neu-
rotransmission and toxicity (351); FLT1, FNI, and NEFs were
mentioned above. T3/ASD genes involved in synaptogenesis and
plasticity (Table 4) are ATP2B2 that codes for plasma membrane
calcium-ATPase, involved in the translocation of calcium to the
endoplasmic reticulum (352); NRGN that codes for neurogranin,
involved in synaptic plasticity and LTP (353); BDNF, CNTN4, and
PAFAHI1BI mentioned above.

The T3/ASD genes involved in neurotransmission (Table 5)
are HOMER!I that codes for homer protein homolog 1, is a major
component of postsynaptic density involved in metabotropic glu-
tamate receptor signaling (354); KCNJI0 that codes for ATP-
sensitive inward rectifier potassium channel 10, involved in axonal
membrane repolarization (355); NTS that codes for neurotensin
is involved in modulation of dopamine signaling and focal brain
inflammation, and was found increased in serum of ASD chil-
dren (286); SLC17A7 codes for vesicular glutamate transporter 1
(VGluT1), and is involved in glutamatergic transmission (333);
NRGN and PAFAHI1BI were mentioned above.

The T3/ASD genes involved in memory and behavior (Table 6)
are CALBI and PVALB that encode calbindin-D28k and parvalbu-
min, respectively, are involved in GABAergic transmission (332);
HTR?7 that codes 5-HT7 receptor is involved in serotonin sig-
nal transduction (333, 356); HOMERI, NOSI, and NTS were
mentioned above.

ANIMAL MODELS OF ASD

A number of animal models of ASD are the result of inser-
tion/deletion of different ASD-related genes and exposure to envi-
ronmental factors [reviewed by Gadad et al. and Provenzano et al.
(357, 358)]. Sadamatsu et al. (359) proposed the rat with mild
and transient neonatal hypothyroidism as a novel model for ASD.
Other models include the repetitive behavior observed in C58/J,
C57BL/6]J, and Grinl knockdown mice (360). The homeobox-
containing transcription factor engrailed-2 (En2) is involved in
patterning and neuronal differentiation; Sgado et al. (361, 362)
showed that adult En2~/~ mice exhibit reduced brain interneuron
expression of GABAergic marker mRNAs, and reduction in par-
valbumin, somatostatin, and neuropeptide Y in the cerebellum and
cerebral cortex (including hippocampus). The genetically inbred
BTBR T Itpr3"™) mouse model of ASD exhibits social impair-
ment and stereotypic behavior suggestive of mTOR overactivation
(363). The BTBR model shows extensive anatomical abnormalities
in the white matter of the corpus callosum and the hippocam-
pal commissure (364). Uchino and Waga (365) identified novel
SHANKS3 transcripts whose transcription started at the vicinity of
the CpG-island 2 in the mouse brain and developed the Shank3
mutant mice that exhibit autistic-like behaviors. Waga et al. (366)
identified two different amino-terminus truncated Shank3 tran-
scripts, Shank3c-3 and Shank3c-4, expressed from the intron 10
of the Shank3 gene, and suggested the epigenetic regulation of
the expression of these transcripts via methyl CpG-binding pro-
tein 2 (MeCP2). Interestingly, MeCP2 mediates activity-dependent
regulation of synaptic strength during the process of circuit for-
mation and prevents uncontrolled recurrent excitation that may
result in a pathophysiological increase of neuronal excitability,

aberrant network activity, and seizures, which are common Rett
patients (182).

The valproic acid model of ASD has become widely used (367—
371). However, it is not widely known that valproic acid at the
usual therapeutic doses used for the treatment of epilepsy has
anti-thyroid effects (372) and induces hearing loss in patients
(373).

CONCLUSION

Thyroid hormones exert both genomic and non-genomic actions
in many tissues, organs, and systems over the course of a lifetime. In
particular, they are crucial during early neurodevelopment, since
key phases of the CNS development depend of the expression
of thyroid hormones regulated genes. These genes affect, among
other things, proliferation, migration, and maturation of neu-
rons and glial cells, which under certain circumstances can result
in abnormal connectivity, and consequently in behavioral dys-
function. Morphofunctional alterations caused during pregnancy
and early postnatal are permanent, and thus they are a risk fac-
tor for the development of behavioral and mental disorders later
in life. The knowledge of how thyroid hormones regulate these
phases of development may help to understand altered regulatory
mechanisms in neurodevelopmental diseases such as ASD, ADHD,
schizophrenia, and epilepsy with cytoarchitectonic alterations sim-
ilar to those found in hypothyroidism and hypothyroxinemia and
vice versa. By combining basic and clinical investigation, new data
will be obtained to better understand the basic phases of brain
development and the genetic and physiological events underly-
ing some of the human diseases mentioned above. Despite of
obvious differences between humans and other mammals in cor-
tical organization and function, animal models might be a useful
tool to approach the understanding of common etiological factors
in hypothyroidism and ASD since, as the evo-devo tell us, both
rodents and humans share homologous gene pathways involved
in these diseases.

ACKNOWLEDGMENTS

Supported by grants from the Spanish Ministerio de Ciencia e
Innovacién SAF2009-10689 and the Universidad Miguel Hernén-
dez Institutional Funding for Research to Pere Berbel, and from
the Nancy Lurie Marks Family Foundation, Wellesley, MA, USA,
to Gustavo C. Roman.

REFERENCES

1. De Robertis EM. Evo-devo: variations on ancestral themes. Cell (2008)
132:185-95. doi:10.1016/j.cell.2008.01.003

2. Rakic P. Evolution of the neocortex: a perspective from developmental biology.
Nat Rev Neurosci (2009) 10:724-35. do0i:10.1038/nrn2719

3. Romén GC, Ghassabian A, Bongers-Shokking JJ, Jaddoe VW, Hofman A, de
Rijke YB, etal. Association of gestational maternal hypothyroxinemia and
increased autism risk. Ann Neurol (2013) 74:733—42. d0i:10.1002/ana.23976

4. Stiles J. Brain development and the nature versus nurture debate. Prog Brain
Res (2011) 189:3-22. doi:10.1016/B978-0-444-53884-0.00015-4

5. Romén GC. Nutritional disorders in tropical neurology. Handb Clin Neurol
(2013) 114:381-404. doi:10.1016/B978-0-444-53490-3.00030-3

6. Legrand J. Hormones thyroidiennes et maturation du systéme nerveux. J Phys-
iol (Paris) (1983) 78:603-52.

7. Morreale de Escobar G, Escobar del Rey F. Maternal thyroid deficiency during
pregnancy and subsequent neuropsychological development of the child. N
Engl ] Med (1999) 341:2015—6. doi:10.1056/NEJM199912233412613

www.frontiersin.org

September 2014 | Volume 5 | Article 146 | 19


http://dx.doi.org/10.1016/j.cell.2008.01.003
http://dx.doi.org/10.1038/nrn2719
http://dx.doi.org/10.1002/ana.23976
http://dx.doi.org/10.1016/B978-0-444-53884-0.00015-4
http://dx.doi.org/10.1016/B978-0-444-53490-3.00030-3
http://dx.doi.org/10.1056/NEJM199912233412613
http://www.frontiersin.org
http://www.frontiersin.org/Thyroid_Endocrinology/archive

Berbel et al.

Thyroid hormones and cortical development: autism

o

Nl

10.

1

—

12.

13

14.

16.

17.

18.

19.

20.

2

—

22.

23.

24.

25.

26.

27.

28.

29.

30.

3

—

. Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J,

etal. Maternal thyroid deficiency during pregnancy and subsequent neu-
ropsychological development of the child. N Eng Med J (1999) 341:549-95.
doi:10.1056/NEJM199908193410801

. Zoeller RT, Rovet J. Timing of thyroid hormone action in the developing brain:

clinical observations and experimental findings. J Neuroendocrinol (2004)
16:809-18. doi:10.1111/j.1365-2826.2004.01243.x

Berbel P, Obregén MJ, Bernal J, Escobar del Rey F, Morreale de Escobar G.
Todine supplementation during pregnancy: a public health challenge. Trends
Endocrinol Metab (2007) 18:338—43. doi:10.1016/j.tem.2007.08.009

. Berbel P, Bernal J. Hypothyroxinemia: a subclinical condition affecting neu-

rodevelopment. Expert Rev Endocrinol Metab (2010) 5:563-75. doi:10.1586/
eem.10.37

Ahmed OM, El-Gareib AW, El-Bakry AM, Abd El-Tawab SM, Ahmed RG. Thy-
roid hormones states and brain development interactions. Int | Dev Neurosci
(2008) 26:147-209. doi:10.1016/j.ijdevnen.2007.09.011

. Morreale de Escobar G, Ares S, Berbel P, Obregén MJ, Escobar del Rey F. The

changing role of maternal thyroid hormone in fetal brain development. Semin
Perinatol (2008) 32:380-6. doi:10.1053/j.semperi.2008.09.002

Williams GR. Neurodevelopmental and neurophysiological actions of thyroid
hormone. J Neuroendocrinol (2008) 20:784—94. doi:10.1111/j.1365-2826.2008.
01733.x

. Stagnaro-Green A, Pearce E. Thyroid disorders in pregnancy. Nat Rev

Endocrinol (2012) 8:650—8. doi:10.1038/nrendo.2012.171

Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions.
Endocr Rev (2010) 31:139-70. doi:10.1210/er.2009-0007

Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol
Rev (2001) 81:1269-304.

Forrest D, Reh TA, Riisch A. Neurodevelopmental control by thyroid hormone
receptors. Curr Opin Neurobiol (2002) 12:49-56. doi:10.1016/S0959-4388(02)
00289-1

Anderson GW, Schoonover CM, Jones SA. Control of thyroid hormone
action in the developing rat brain. Thyroid (2003) 13:1039-56. doi:10.1089/
105072503770867219

Bernal J. Thyroid hormones and brain development. Vitamn Horm (2005)
71:95-122. doi:10.1016/S0083-6729(05)71004-9

. Flamant F, Gauthier K, Samarut J. Thyroid hormones signaling is getting

more complex: STORMs are coming. Mol Endocrinol (2007) 21:321-33.
doi:10.1210/me.2006-0035

Bernal J, Morte B. Thyroid hormone receptor activity in the absence of ligand:
physiological and developmental implications. Biochem Biophys Acta (2013)
1830:3893-9. doi:10.1016/j.bbagen.2012.04.014

Chatonnet F, Guyot R, Benoit G, Flamant F. Genome-wide analysis of thyroid
hormone receptors shared and specific functions in neural cells. Proc Natl Acad
Sci US A (2013) 110:E766-75. doi:10.1073/pnas.1210626110

Dumitrescu AM, Refetoff S. The syndromes of reduced sensitivity to thyroid
hormone. Biochim Biophys Acta (2013) 1830:3987-4003. doi:10.1016/j.bbagen.
2012.08.005

Refetoff S, Bassett JH, Beck-Peccoz P, Bernal J, Brent G, Chatterjee K, et al.
Classification and proposed nomenclature for inherited defects of thyroid
hormone action, cell transport, and metabolism. Thyroid (2014) 24:407-9.
doi:10.1089/thy.2013.3393.nomen

Friesema EC, Jansen J, Milici C, Visser TJ. Thyroid hormone transporters. Vitam
Horm (2005) 70:137—-67. doi:10.1016/S0083-6729(05)70005-4

Abe T, Suzuki T, Unno M, Tokui T, Ito S. Thyroid hormone transporters:
recent advances. Trends Endocrinol Metab (2002) 13:215-20. doi:10.1016/
$1043-2760(02)00599-4

Sugiyama D, Kusuhara H, Taniguchi H, Ishikawa S, Nozaki Y, Aburatani H, et al.
Functional characterization of rat brain-specific organic anion transporter
(Oatpl4) at the blood-brain barrier: high affinity transporter for thyroxine.
J Biol Chem (2003) 278:43489-95. doi:10.1074/jbc.M 306933200

Bernal J. Role of monocarboxylate anion transporter 8 (MCT8) in thyroid
hormone transport: answers from mice. Endocrinology (2006) 147:4034-5.
doi:10.1210/en.2006- 0695

Braun D, Kinne A, Briuer AU, Sapin R, Klein MO, Kéhrle ], et al. Developmental
and cell type-specific expression of thyroid hormone transporters in the mouse
brain and in primary brain cells. Glia (2011) 59:463—71. doi:10.1002/glia.21116

. Rodrigues TB, Ceballos A, Grijota-Martinez C, Nuiiez B, Refetoff S, Cerdédn S,

et al. Increased oxidative metabolism and neurotransmitter cycling in the brain

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

of mice lacking the thyroid hormone transporter SLC16A2 (MCT8). PLoS One
(2013) 8(10):e74621. doi:10.1371/journal.pone.0074621

Miiller J, Heuer H. Expression pattern of thyroid hormone transporters in the
postnatal mouse brain. Front Endocrinol (2014) 5:92. doi:10.3389/fendo.2014.
00092

Wirth EK, Schweizer U, Kohrle J. Transport of thyroid hormone in brain. Front
Endocrinol (2014) 5:98. doi:10.3389/fendo.2014.00098

Guadafio-Ferraz A, Escimez MJ, Morte B, Vargiu P, Bernal J. Transcriptional
induction of RC3/neurogranin by thyroid hormone: differential neuronal sen-
sitivity is not correlated with thyroid hormone receptor distribution in the
brain. Brain Res Mol Brain Res (1997) 49:37—44. d0i:10.1016/S0169-328X(97)
00119-8

Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cel-
lular and molecular biology, and physiological roles of the iodothyronine-
selenodeiodinases. Endocr Rev (2002) 23:38—-89. doi:10.1210/edrv.23.1.0455
Bianco AC, Kim BW. Deiodinases: implications of the local control of thyroid
hormone action. J Clin Invest (2006) 116:2571-9. d0i:10.1172/JCI129812
Morte B, Bernal J. Thyroid hormone action: astrocyte-neuron communication.
Front Endocrinol (2014) 5:82. d0i:10.3389/fendo.2014.00082

Visser TJ, van Haasteren GA, Linkels E, Kaptein E, van Toor H, de Greef WJ.
Gender-specific changes in thyroid hormone-glucuronidating enzymes in rat
liver during short-term fasting and long-term food restriction. Eur ] Endocrinol
(1996) 135:489-97. doi:10.1530/eje.0.1350489

Flamant E Baxter JD, Forrest D, Refetoff S, Samuels H, Scanlan TS, et al. Inter-
national union of pharmacology. LIX. The pharmacology and classification of
the nuclear receptor superfamily: thyroid hormone receptors. Pharmacol Rev
(2006) 58:705-11. doi:10.1124/pr.58.4.3

Oetting A, Yen PM. New insights into thyroid hormone action. Best Pract Res
Clin Endocrinol Metab (2007) 21:193-208. doi:10.1016/j.beem.2007.04.004
Bernal ], Pekonen E. Ontogenesis of the nuclear 3,5,3’-triiodothyronine recep-
tor in the human fetal brain. Endocrinology (1984) 114:677-9. doi:10.1210/
endo-114-2-677

Perez-Castillo A, Bernal J, Ferreiro B, Pans T. The early ontogenesis of thy-
roid hormone receptor in the rat fetus. Endocrinology (1985) 117:2457-61.
doi:10.1210/endo- 117-6-2457

Bradley DJ, Towle HC, Young WS I1I. Spatial and temporal expression of alpha-
and beta-thyroid hormone receptor mRNAs, including the beta 2-subtype, in
the developing mammalian nervous system. J Neurosci (1992) 12:2288-302.
Morte B, Diez D, Aus6 E, Belinchén MM, Gil-Ibanez P, Grijota-Martinez C,
et al. Thyroid hormone regulation of gene expression in the developing rat
fetal cerebral cortex: prominent role of the Ca2+/calmodulin-dependent pro-
tein kinase pathway. Endocrinology (2010) 151:810-20. doi:10.1210/en.2009-
0958

Casas F, Rochard P, Rodier A, Cassar-Malek I, Marchal-Victorion S, Wiesner
RJ, et al. A variant form of the nuclear triiodothyronine receptor c-ErbAalphal
plays a direct role in regulation of mitochondrial RNA synthesis. Mol Cell Biol
(1999) 19:7913-24.

Casas F, Pessemesse L, Grandemange S, Seyer P, Baris O, Gueguen N, et al. Over-
expression of the mitochondrial T3 receptor induces skeletal muscle atrophy
during aging. PLoS One (2009) 4(5):e5631. doi:10.1371/journal.pone.0005631
Wang D, Xia X, Liu Y, Oetting A, Walker RL, Zhu Y, et al. Negative regula-
tion of TSHalpha target gene by thyroid hormone involves histone acetyla-
tion and corepressor complex dissociation. Mol Endocrinol (2009) 23:600-9.
do0i:10.1210/me.2008-0389

Xu M, Iwasaki T, Shimokawa N, Sajdel-Sulkowska EM, Koibuchi N. The effect
of low dose lipopolysaccharide on thyroid hormone-regulated actin cytoskele-
ton modulation and type 2 iodothyronine deiodinase activity in astrocytes.
Endocr J (2013) 60:1221-30. doi:10.1507/endocrj.EJ13-0294

Calvo R, Obregén MJ, Ruiz de Onia C, Escobar del Rey F, Morreale de Escobar
G. Congenital hypothyroidism, as studied in rats. Crucial role of maternal thy-
roxine but not of 3,5,3’-triiodothyronine in the protection of the fetal brain. J
Clin Invest (1990) 86:889-99. doi:10.1172/JCI114790

Kester MH, Martinez de Mena R, Obregén M]J, Marinkovic D, Howatson A,
Visser TJ, et al. Iodothyronine levels in the human developing brain: major reg-
ulatory roles of iodothyronine deiodinases in different areas. J Clin Endocrinol
Metab (2004) 89:3117-28. d0i:10.1210/jc.2003-031832

Huang CB, Chen FS, Chung MY. Transient hypothyroxinemia of prematurity is
associated with abnormal cranial ultrasound and illness severity. Am J Perinatol
(2002) 19:139-47. doi:10.1055/s-2002-25308

Frontiers in Endocrinology | Thyroid Endocrinology

September 2014 | Volume 5 | Article 146 | 20


http://dx.doi.org/10.1056/NEJM199908193410801
http://dx.doi.org/10.1111/j.1365-2826.2004.01243.x
http://dx.doi.org/10.1016/j.tem.2007.08.009
http://dx.doi.org/10.1586/eem.10.37
http://dx.doi.org/10.1586/eem.10.37
http://dx.doi.org/10.1016/j.ijdevneu.2007.09.011
http://dx.doi.org/10.1053/j.semperi.2008.09.002
http://dx.doi.org/10.1111/j.1365-2826.2008.01733.x
http://dx.doi.org/10.1111/j.1365-2826.2008.01733.x
http://dx.doi.org/10.1038/nrendo.2012.171
http://dx.doi.org/10.1210/er.2009-0007
http://dx.doi.org/10.1016/S0959-4388(02)00289-1
http://dx.doi.org/10.1016/S0959-4388(02)00289-1
http://dx.doi.org/10.1089/105072503770867219
http://dx.doi.org/10.1089/105072503770867219
http://dx.doi.org/10.1016/S0083-6729(05)71004-9
http://dx.doi.org/10.1210/me.2006-0035
http://dx.doi.org/10.1016/j.bbagen.2012.04.014
http://dx.doi.org/10.1073/pnas.1210626110
http://dx.doi.org/10.1016/j.bbagen.2012.08.005
http://dx.doi.org/10.1016/j.bbagen.2012.08.005
http://dx.doi.org/10.1089/thy.2013.3393.nomen
http://dx.doi.org/10.1016/S0083-6729(05)70005-4
http://dx.doi.org/10.1016/S1043-2760(02)00599-4
http://dx.doi.org/10.1016/S1043-2760(02)00599-4
http://dx.doi.org/10.1074/jbc.M306933200
http://dx.doi.org/10.1210/en.2006-0695
http://dx.doi.org/10.1002/glia.21116
http://dx.doi.org/10.1371/journal.pone.0074621
http://dx.doi.org/10.3389/fendo.2014.00092
http://dx.doi.org/10.3389/fendo.2014.00092
http://dx.doi.org/10.3389/fendo.2014.00098
http://dx.doi.org/10.1016/S0169-328X(97)00119-8
http://dx.doi.org/10.1016/S0169-328X(97)00119-8
http://dx.doi.org/10.1210/edrv.23.1.0455
http://dx.doi.org/10.1172/JCI29812
http://dx.doi.org/10.3389/fendo.2014.00082
http://dx.doi.org/10.1530/eje.0.1350489
http://dx.doi.org/10.1124/pr.58.4.3
http://dx.doi.org/10.1016/j.beem.2007.04.004
http://dx.doi.org/10.1210/endo-114-2-677
http://dx.doi.org/10.1210/endo-114-2-677
http://dx.doi.org/10.1210/endo-117-6-2457
http://dx.doi.org/10.1210/en.2009-0958
http://dx.doi.org/10.1210/en.2009-0958
http://dx.doi.org/10.1371/journal.pone.0005631
http://dx.doi.org/10.1210/me.2008-0389
http://dx.doi.org/10.1507/endocrj.EJ13-0294
http://dx.doi.org/10.1172/JCI114790
http://dx.doi.org/10.1210/jc.2003-031832
http://dx.doi.org/10.1055/s-2002-25308
http://www.frontiersin.org/Thyroid_Endocrinology
http://www.frontiersin.org/Thyroid_Endocrinology/archive

Berbel et al.

Thyroid hormones and cortical development: autism

52.

53.

54.

55.

56.

57.

58.

59.

60.

6

—

62.

63.

64.

65.

66.

67.

68.

69.

70.

7

—

72.

73.

Chan SY, Vasilopoulou E, Kilby MD. The role of the placenta in thyroid hor-
mone delivery to the fetus. Nat Clin Pract Endocrinol Metab (2009) 5:45-54.
doi:10.1038/ncpendmet1026

Glinoer D. The importance of iodine nutrition during pregnancy. Public Health
Nutr (2007) 10:1542-6. doi:10.1017/51368980007360886

Gaitan JE, Mayoral LG, Gaitan E. Defective thyroidal iodine concentration
in protein-calorie malnutrition. J Clin Endocrinol Metab (1983) 57:327-33.
doi:10.1210/jcem-57-2-327

Vanderpas J. Nutritional epidemiology and thyroid hormone metabolism.
Annu Rev Nutr (2006) 26:293-322. doi:10.1146/annurev.nutr.26.010506.
103810

Leung AM, Pearce EN, Braverman LE. Iodine nutrition in pregnancy and lac-
tation. Endocrinol Metab Clin North Am (2011) 40:765-77. doi:10.1016/j.ecl.
2011.08.001

Berbel P, Morreale de Escobar G. Iodine and brain development. In: Preedy
VR, Watson RR, Martin CR, editors. International Handbook of Behavior, Food
and Nutrition. New York, NY: Springer Press (2011). p. 2105-34.

Kohrle J. Selenium and the thyroid. Curr Opin Endocrinol Diabetes Obes (2013)
20:441-8. doi:10.1097/01.med.0000433066.24541.88

Howdeshell KL. A model of the development of the brain as a construct of the
thyroid system. Environ Health Perspect (2002) 110:337—48. doi:10.1289/ehp.
0211083337

Zoeller TR, Dowling AL, Herzig CT, Iannacone EA, Gauger KJ, Bansal R. Thy-
roid hormone, brain development, and the environment. Environ Health Per-
spect (2002) 110:355-61. doi:10.1289/ehp.02110s3355

. Koibuchi N, Iwasaki T. Regulation of brain development by thyroid hormone

and its modulation by environmental chemicals. Endocr J (2006) 53:295-303.
doi:10.1507/endocrj.KR-69

Kimura-Kuroda J, Nagata I, Kuroda Y. Disrupting effects of hydroxy-
polychlorinated biphenyl (PCB) congeners on neuronal development of
cerebellar Purkinje cells: a possible causal factor for developmental brain dis-
orders? Chemosphere (2007) 67:5412-20. doi:10.1016/j.chemosphere.2006.05.
137

Roman GC. Autism: transient in utero hypothyroxinemia related to maternal
flavonoid ingestion during pregnancy and to other environmental antithyroid
agents. J Neurol Sci (2007) 262:15-26. d0i:10.1016/j.jns.2007.06.023

Parent AS, Naveau E, Gerard A, Bourguignon JP, Westbrook GL. Early develop-
mental actions of endocrine disruptors on the hypothalamus, hippocampus,
and cerebral cortex. J Toxicol Environ Health B Crit Rev (2011) 14:328—45.
doi:10.1080/10937404.2011.578556

Gilbert ME, Rovet J, Chen Z, Koibuchi N. Developmental thyroid hormone
disruption: prevalence, environmental contaminants and neurodevelopmen-
tal consequences. Neurotoxicology (2012) 33:842-52. d0i:10.1016/j.neuro.2011.
11.005

de Cock M, Maas YG, van de Bor M. Does perinatal exposure to endocrine dis-
ruptors induce autism spectrum and attention deficit hyperactivity disorders?
Acta Paediatr (2012) 101:811-8. doi:10.1111/j.1651-2227.2012.02693.x
Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM, et al.
Endocrine-disrupting chemicals and public health protection: a statement of
principles from the endocrine society. Endocrinology (2012) 153:4097-110.
doi:10.1210/en.2012-1422

Bizhanova A, Kopp P. Controversies concerning the role of pendrin as an api-
cal iodide transporter in thyroid follicular cells. Cell Physiol Biochem (2009)
28:485-90. doi:10.1159/000335103

Langer P. The impacts of organochlorines and other persistent pollutants
on thyroid and metabolic health. Front Neuroendocrinol (2010) 31:497-518.
doi:10.1016/j.yfrne.2010.08.001

Tavicoli I, Fontana L, Leso V, Bergamaschi A. The effects of nanomateri-
als as endocrine disruptors. Int ] Mol Sci (2013) 14:16732-801. doi:10.3390/
ijms140816732

. Hinther A, Vawda S, Skirrow RC, Veldhoen N, Collins P, Cullen JT, etal.

Nanometals induce stress and alter thyroid hormone action in Amphibia at
or below North American water quality guidelines. Environ Sci Technol (2010)
44:8314-21. doi:10.1021/es101902n

Hetzel BS. Iodine deficiency disorders (IDD) and their eradication. Lancet
(1983) 2:1126-9. d0i:10.1016/50140-6736(83)90636-0

Delange F. The disorders induced by iodine deficiency. Thyroid (1994)
4:107-28. doi:10.1089/thy.1994.4.107

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91

92.

93.

94.

95.

Morreale de Escobar G, Obregén MJ, Escobar del Rey F. Maternal thyroid hor-
mones early in pregnancy and fetal brain development. Best Pract Res Clin
Endocrinol Metab (2004) 18:225-48. doi:10.1016/j.beem.2004.03.012

Glinoer D. The regulation of thyroid function during normal pregnancy:
importance of the iodine nutrition status. Best Pract Res Clin Endocrinol Metab
(2004) 18:133-52. doi:10.1016/j.beem.2004.03.001

Dumont JE, Optiz R, Christophe D, Vassart G, Roger PP, Maenhaut C. The
phylogeny, ontogeny, anatomy and regulation of the iodine metabolizing thy-
roid. In: DeGroot L], editor. Thyroid Disease Manager. South Dartmouth, MA:
Endocrine Education, Inc (2008). p. 1-109.

Leung AM, Pearce EN, Braverman LE. Perchlorate, iodine and the thyroid. Best
Pract Res Clin Endocrinol Metab (2010) 24:133—-41. doi:10.1016/j.beem.2009.
08.009

Azizi F, Smyth P. Breast feeding and maternal and infant iodine nutrition. Clin
Endocrinol (Oxf) (2009) 70:803-9. doi:10.1111/j.1365-2265.2008.03442.x
Stagnaro-Green A, Abalovich M, Alexander E, Azizi F, Mestman J, Negro R,
et al. Guidelines of the American thyroid association for the diagnosis and
management of thyroid disease during pregnancy and postpartum. Thyroid
(2011) 21:1081-125. doi:10.1089/thy.2011.0087

Azizi F, Aminorroya A, Hedayati M, Rezvanian H, Amini M, Mirmiran P. Uri-
nary iodine excretion in pregnant women residing in areas with adequate iodine
intake. Public Health Nutr (2003) 6:95-8. doi:10.1079/PHN2002366

Travers CA, Guttikonda K, Norton CA, Lewis PR, Mollart L], Wiley V, et al.
Todine status in pregnant women and their newborns: are our babies at risk of
iodine deficiency? Med J Aust (2006) 184:617-20.

Lazarus JH, Smyth PPA. Iodine deficiency in the UK and Ireland. Lancet (2008)
372:888. doi:10.1016/50140-6736(08)61390-2

Andersson M, Karumbunathan V, Zimmermann MB. Global iodine sta-
tus in 2011 and trends over the past decade. J Nutr (2012) 142:744-50.
doi:10.3945/jn.111.149393

Leung AM, Pearce EN, Braverman LE. Sufficient iodine intake during preg-
nancy: just do it. Thyroid (2013) 23:7-8. doi:10.1089/thy.2012.0491

World Health Organization. Trace Elements in Human Nutrition and Health.
Geneva: World Health Organization (1996).

Hetzel BS. Iodine and neuropsychological development. J Nutr (2000)
130:4935-5S.

Pop V], Brouwers EP, Vader HL, Vulsma T, van Baar AL, de Vijlder JJ. Mater-
nal hypothyroxinaemia during early pregnancy and subsequent child devel-
opment: a 3-year follow-up study. Clin Endocrinol (Oxf) (2003) 59:282-8.
doi:10.1046/j.1365-2265.2003.01822.x

Vermiglio F, Lo Presti VP, Moleti M, Sidoti M, Tortorella G, Scaffidi G, et al.
Attention deficit and hyperactivity disorders in the offspring of mothers
exposed to mild-moderate iodine deficiency: a possible novel iodine deficiency
disorder in developed countries. J Clin Endocrinol Metab (2004) 89:6054—60.
d0i:10.1210/jc.2004-0571

Morreale de Escobar G, Obregén MJ, Escobar del Rey F. Iodine deficiency and
brain development in the first half of pregnancy. Public Health Nutr (2007)
10:1554-70. doi:10.1017/S1368980007360928

Zimmermann MB, Jooste PL, Pandav CS. Iodine-deficiency disorders. Lancet
(2008) 372:1251-62. doi:10.1016/S0140-6736(08)61005-3

. Andersson M, Aeberli I, Wiist N, Piacenza AM, Bucher T, Henschen I, et al. The

Swiss iodized salt program provides adequate iodine for school children and
pregnant women, but weaning infants not receiving iodine-containing com-
plementary foods as well as their mothers are iodine deficient. J Clin Endocrinol
Metab (2010) 95:5217-24. doi:10.1210/jc.2010-0975

Santos NC, Costa P, Ruano D, Macedo A, Soares M]J, Valente J, et al. Revis-
iting thyroid hormones in schizophrenia. J Thyroid Res (2012) 2012:569147.
doi:10.1155/2012/569147

Bath SC, Steer CD, Golding J, Emmett P, Rayman MP. Effect of inadequate
iodine status in UK pregnant women on cognitive outcomes in their children:
results from the Avon longitudinal study of parents and children (ALSPAC).
Lancet (2013) 382:331-7. doi:10.1016/S0140-6736(13)60436-5

Hamza RT, Hewedi DH, Sallam MT. Iodine deficiency in Egyptian autistic
children and their mothers: relation to disease severity. Arch Med Res (2013)
44:555-61. doi:10.1016/j.arcmed.2013.09.012

Kooistra L, Crawford S, van Baar AL, Brouwers EP, Pop VJ. Neonatal effects
of maternal hypothyroxinemia during early pregnancy. Pediatrics (2006)
117:161-7. doi:10.1542/peds.2005- 0227

www.frontiersin.org

September 2014 | Volume 5 | Article 146 | 21


http://dx.doi.org/10.1038/ncpendmet1026
http://dx.doi.org/10.1017/S1368980007360886
http://dx.doi.org/10.1210/jcem-57-2-327
http://dx.doi.org/10.1146/annurev.nutr.26.010506.103810
http://dx.doi.org/10.1146/annurev.nutr.26.010506.103810
http://dx.doi.org/10.1016/j.ecl.2011.08.001
http://dx.doi.org/10.1016/j.ecl.2011.08.001
http://dx.doi.org/10.1097/01.med.0000433066.24541.88
http://dx.doi.org/10.1289/ehp.02110s3337
http://dx.doi.org/10.1289/ehp.02110s3337
http://dx.doi.org/10.1289/ehp.02110s3355
http://dx.doi.org/10.1507/endocrj.KR-69
http://dx.doi.org/10.1016/j.chemosphere.2006.05.137
http://dx.doi.org/10.1016/j.chemosphere.2006.05.137
http://dx.doi.org/10.1016/j.jns.2007.06.023
http://dx.doi.org/10.1080/10937404.2011.578556
http://dx.doi.org/10.1016/j.neuro.2011.11.005
http://dx.doi.org/10.1016/j.neuro.2011.11.005
http://dx.doi.org/10.1111/j.1651-2227.2012.02693.x
http://dx.doi.org/10.1210/en.2012-1422
http://dx.doi.org/10.1159/000335103
http://dx.doi.org/10.1016/j.yfrne.2010.08.001
http://dx.doi.org/10.3390/ijms140816732
http://dx.doi.org/10.3390/ijms140816732
http://dx.doi.org/10.1021/es101902n
http://dx.doi.org/10.1016/S0140-6736(83)90636-0
http://dx.doi.org/10.1089/thy.1994.4.107
http://dx.doi.org/10.1016/j.beem.2004.03.012
http://dx.doi.org/10.1016/j.beem.2004.03.001
http://dx.doi.org/10.1016/j.beem.2009.08.009
http://dx.doi.org/10.1016/j.beem.2009.08.009
http://dx.doi.org/10.1111/j.1365-2265.2008.03442.x
http://dx.doi.org/10.1089/thy.2011.0087
http://dx.doi.org/10.1079/PHN2002366
http://dx.doi.org/10.1016/S0140-6736(08)61390-2
http://dx.doi.org/10.3945/jn.111.149393
http://dx.doi.org/10.1089/thy.2012.0491
http://dx.doi.org/10.1046/j.1365-2265.2003.01822.x
http://dx.doi.org/10.1210/jc.2004-0571
http://dx.doi.org/10.1017/S1368980007360928
http://dx.doi.org/10.1016/S0140-6736(08)61005-3
http://dx.doi.org/10.1210/jc.2010-0975
http://dx.doi.org/10.1155/2012/569147
http://dx.doi.org/10.1016/S0140-6736(13)60436-5
http://dx.doi.org/10.1016/j.arcmed.2013.09.012
http://dx.doi.org/10.1542/peds.2005-0227
http://www.frontiersin.org
http://www.frontiersin.org/Thyroid_Endocrinology/archive

Berbel et al.

Thyroid hormones and cortical development: autism

96.

97.

98.

99.

100.

10

—_

102.

103.

104.

105.

106.

107.

108.

109.

110.

11

—

112.

113.

114.

115.

116.

117.

118.

119.

Kasatkina EP, Samsonova LN, Ivakhnenko VN, Ibragimova GV, Ryabykh AV,
Naumenko LL, et al. Gestational hypothyroxinemia and cognitive function in
offspring. Neurosci Behav Physiol (2006) 36:619—24. doi:10.1007/s11055-006-
0066-0

Li Y, Shan Z, Tengm W, Yu X, Li Y, Fan C, et al. Abnormalities of maternal
thyroid function during pregnancy affect neuropsychological development
of their children at 25-30 months. Clin Endocrinol (Oxf) (2010) 72:825-9.
doi:10.1111/j.1365-2265.2009.03743.x

Berbel P, Mestre JL, Santamaria A, Palazon I, Franco A, Graells M, et al. Delayed
neurobehavioral development in children born to pregnant women with mild
hypothyroxinemia during the first month of gestation: the importance of early
iodine supplementation. Thyroid (2009) 19:511-9. doi:10.1089/thy.2008.0341
Suérez-Rodriguez M, Azcona-San Julidn C, Alzina de Aguilar V. Hypothyrox-
inemia during pregnancy: the effect on neurodevelopment in the child. Int J
Dev Neurosci (2012) 30:435-8. doi:10.1016/j.ijdevneu.2012.07.004
Moreno-Reyes R, Suetens C, Mathieu F, Begaux F, Zhu D, Rivera MT, et al.
Kashin-Beck osteoarthropathy in rural Tibet in relation to selenium and iodine
status. N Engl ] Med (1998) 339:1112-20. doi:10.1056/NEJM199810153391604

. Thilly CH, Swennen B, Bourdoux P, Ntambue K, Moreno-Reyes R, Gillies J,

et al. The epidemiology of iodine-deficiency disorders in relation to goitrogenic
factors and thyroid-stimulating-hormone regulation. Am J Clin Nutr (1993)
57:2675-70S.

Kaas JH. Evolution of columns, modules, and domains in the neocortex of
primates. Proc Natl Acad Sci U S A (2012) 109:10655-60. doi:10.1073/pnas.
1201892109

Luders E, Narr KL, Thompson PM, Rex DE, Jancke L, Steinmetz H, etal.
Gender differences in cortical complexity. Nat Neurosci (2004) 7:799-800.
doi:10.1038/nn1277

Kaas JH. The evolution of brains from early mammals to humans. Wiley Inter-
discip Rev Cogn Sci (2013) 4:33—45. doi:10.1002/wcs.1206

Stenzel D, Huttner WB. Role of maternal thyroid hormones in the develop-
ing neocortex and during human evolution. Front Neuroanat (2013) 7:19.
doi:10.3389/fnana.2013.00019

Innocenti GM. Development and evolution: two determinants of cortical con-
nectivity. Prog Brain Res (2011) 189:65-75. doi:10.1016/B978-0-444-53884-0.
00018-X

Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends
Neurosci (2008) 31:137—45. doi:10.1016/.tins.2007.12.005

Coghlan S, Horder J, Inkster B, Mendez MA, Murphy DG, Nutt DJ. GABA sys-
tem dysfunction in autism and related disorders: from synapse to symptoms.
Neurosci Biobehav Rev (2012) 36:2044-55. doi:10.1016/j.neubiorev.2012.07.
005

Mountcastle V. The evolution of ideas concerning the function of the neocor-
tex. Cereb Cortex (1995) 5:289-95. d0i:10.1093/cercor/5.4.289

Marin-Padilla M. Dual origin of the mammalian neocortex and evolution of
the cortical plate. Anat Embryol (1978) 152:109-26. doi:10.1007/BF00315920

. Angevine JB Jr, Sidman RL. Autoradiographic study of cell migration dur-

ing histogenesis of cerebral cortex in the mouse. Nature (1961) 192:766-8.
doi:10.1038/192766b0

Zecevic N, Rakic P. Development of layer I neurons in the primate cerebral
cortex. J Neurosci (2001) 21:5607—19.

Rakic P. Mode of cell migration to the superficial layers of fetal monkey neo-
cortex. ] Comp Neurol (1972) 145:61-83. d0i:10.1002/cne.901450105

Rakic P, Cameron RS, Komuro H. Recognition, adhesién, transmembrane sig-
naling and cell motility in guided neuronal migration. Curr Opin Neurobiol
(1994) 4:63-9. doi:10.1016/0959-4388(94)90033-7

Rakic P. Specification of cerebral cortical areas. Science (1988) 241:170—6.
doi:10.1126/science.3291116

O’Leary DD, Sahara S. Genetic regulation of arealization of the neocortex. Curr
Opin Neurobiol (2008) 18:90-100. doi:10.1016/j.conb.2008.05.011

Krubitzer LA, Seelke AM. Cortical evolution in mammals: the bane and beauty
of phenotypic variability. Proc Natl Acad Sci U S A (2012) 109:10647-54.
do0i:10.1073/pnas.1201891109

Cholfin JA, Rubenstein JL. Frontal cortex subdivision patterning is coordi-
nately regulated by Fgf8, Fgf17, and Emx2. ] Comp Neurol (2008) 509:144-55.
doi:10.1002/cne.21709

Mallamaci A. Molecular bases of cortico-cerebral regionalization. Prog Brain
Res (2011) 189:37-64. doi:10.1016/B978-0-444-53884-0.00017-8

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

Caviness VS Jr, Rakic P. Mechanisms of cortical development: a view from
mutations in mice. Annu Rev Neurosci (1978) 1:297-326. doi:10.1146/annurev.
ne.01.030178.001501

McConnell SK. Fates of visual cortical neurons in the ferret after isochronic
and heterochronic transplantation. J Neurosci (1988) 8:945-74.

Krubitzer L, Campi KL, Cooke DE. All rodents are not the same: a mod-
ern synthesis of cortical organization. Brain Behav Evol (2011) 78:51-93.
doi:10.1159/000327320

Kaas JH. The evolution of neocortex in primates. Prog Brain Res (2012)
195:91-102. doi:10.1016/B978-0-444-53860-4.00005-2

O’Rourke NA, Dailey ME, Smith SJ, McConnell SK. Diverse migratory path-
ways in the developing cerebral cortex. Science (1992) 258:299-302. doi:10.
1126/science.1411527

Anderson SA, Eisenstat DD, Shi L, Rubenstein JL. Interneuron migration
from basal forebrain to neocortex: dependence on DIx genes. Science (1997)
278:474—6. doi:10.1126/science.278.5337.474

Marin O. Cellular and molecular mechanisms controlling the migration of neo-
cortical interneurons. Eur J Neurosci (2013) 38:2019-29. doi:10.1111/ejn.12225
Letinic K, Rakic P. Telencephalic origin of human thalamic GABAergic neu-
rons. Nat Neurosci (2001) 4:931-6. d0i:10.1038/nn0901-931

Letinic K, Zoncu R, Rakic P. Origin of GABAergic neurons in the human neo-
cortex. Nature (2002) 417:645-9. doi:10.1038/nature00779

Jones EG. The origins of cortical interneurons: mouse versus monkey and
human. Cereb Cortex (2009) 19:1953—6. doi:10.1093/cercor/bhp088

Le Magueresse C, Monyer H. GABAergic interneurons shape the functional
maturation of the cortex. Neuron (2013) 77:388-405. doi:10.1016/j.neuron.
2013.01.011

Rubenstein JL. Annual research review: development of the cerebral cor-
tex: implications for neurodevelopmental disorders. J Child Psychol Psychiatry
(2011) 52:339-55. doi:10.1111/j.1469-7610.2010.02307.x

Westerink RH, Beekwilder JP, Wadman WJ. Differential alterations of synap-
tic plasticity in dentate gyrus and CA1 hippocampal area of calbindin-D28K
knockout mice. Brain Res (2012) 1450:1-10. doi:10.1016/j.brainres.2012.02.
036

Bayer SA, Altman J. Neocortical Development. New York, NY: Raven Press
(1991).

Innocenti GM. Exuberant development of connections, and its possible
permissive role in cortical evolution. Trends Neurosci (1995) 18:397-402.
doi:10.1016/0166-2236(95)93936-R

Rakic P. A small step for the cell, a giant leap for mankind: a hypothesis
of neocortical expansion during evolution. Trends Neurosci (1995) 18:383-8.
doi:10.1016/0166-2236(95)93934-P

Obregon MJ, Mallol J, Pastor R, Morreale de Escobar G, Escobar del Rey F.
L-thyroxine and 3,5,3’-triiodo-L-thyronine in rat embryos before onset of fetal
thyroid function. Endocrinology (1984) 114:305-7. doi:10.1210/endo-114-1-
305

Kratzsch J, Pulzer E Thyroid gland development and defects. Best Pract Res
Clin Endocrinol Metab (2008) 22:57-75. doi:10.1016/j.beem.2007.08.006
Biebermann H, Griiters A, Schoneberg T, Gudermann T. Congenital hypothy-
roidism caused by mutations in the thyrotropin-receptor gene. N Engl ] Med
(1997) 336:1390-1. doi:10.1056/NEJM199705083361914

Pasca di Magliano M, Di Lauro R, Zannini M. Pax8 has a key role in
thyroid cell differentiation. Proc Natl Acad Sci U S A (2000) 97:13144-9.
doi:10.1073/pnas.240336397

Dumitrescu AM, Liao XH, Weiss RE, Millen K, Refetoff S. Tissue-specific thy-
roid hormone deprivation and excess in monocarboxylate transporter (mct) 8-
deficient mice. Endocrinology (2006) 147:4036—43. doi:10.1210/en.2006-0390
Friesema EC, Grueters A, Biebermann H, Krude H, von Moers A, Reeser
M, etal. Association between mutations in a thyroid hormone transporter
and severe X-linked psychomotor retardation. Lancet (2004) 364:1435-7.
do0i:10.1016/S0140-6736(04)17226-7

Trajkovic M, Visser TJ, Mittag J, Horn S, Lukas J, Darras VM, et al. Abnormal
thyroid hormone metabolism in mice lacking the monocarboxylate transporter
8. J Clin Invest (2007) 117:627-35. doi:10.1172/JCI28253

Braun D, Wirth EK, Wohlgemuth F, Reix N, Klein MO, Gruters A, etal.
Aminoaciduria, but normal thyroid hormone levels and signalling, in mice
lacking the amino acid and thyroid hormone transporter Slc7a8. Biochem ]
(2011) 439:249-55. doi:10.1042/BJ20110759

Frontiers in Endocrinology | Thyroid Endocrinology

September 2014 | Volume 5 | Article 146 | 22


http://dx.doi.org/10.1007/s11055-006-0066-0
http://dx.doi.org/10.1007/s11055-006-0066-0
http://dx.doi.org/10.1111/j.1365-2265.2009.03743.x
http://dx.doi.org/10.1089/thy.2008.0341
http://dx.doi.org/10.1016/j.ijdevneu.2012.07.004
http://dx.doi.org/10.1056/NEJM199810153391604
http://dx.doi.org/10.1073/pnas.1201892109
http://dx.doi.org/10.1073/pnas.1201892109
http://dx.doi.org/10.1038/nn1277
http://dx.doi.org/10.1002/wcs.1206
http://dx.doi.org/10.3389/fnana.2013.00019
http://dx.doi.org/10.1016/B978-0-444-53884-0.00018-X
http://dx.doi.org/10.1016/B978-0-444-53884-0.00018-X
http://dx.doi.org/10.1016/j.tins.2007.12.005
http://dx.doi.org/10.1016/j.neubiorev.2012.07.005
http://dx.doi.org/10.1016/j.neubiorev.2012.07.005
http://dx.doi.org/10.1093/cercor/5.4.289
http://dx.doi.org/10.1007/BF00315920
http://dx.doi.org/10.1038/192766b0
http://dx.doi.org/10.1002/cne.901450105
http://dx.doi.org/10.1016/0959-4388(94)90033-7
http://dx.doi.org/10.1126/science.3291116
http://dx.doi.org/10.1016/j.conb.2008.05.011
http://dx.doi.org/10.1073/pnas.1201891109
http://dx.doi.org/10.1002/cne.21709
http://dx.doi.org/10.1016/B978-0-444-53884-0.00017-8
http://dx.doi.org/10.1146/annurev.ne.01.030178.001501
http://dx.doi.org/10.1146/annurev.ne.01.030178.001501
http://dx.doi.org/10.1159/000327320
http://dx.doi.org/10.1016/B978-0-444-53860-4.00005-2
http://dx.doi.org/10.1126/science.1411527
http://dx.doi.org/10.1126/science.1411527
http://dx.doi.org/10.1126/science.278.5337.474
http://dx.doi.org/10.1111/ejn.12225
http://dx.doi.org/10.1038/nn0901-931
http://dx.doi.org/10.1038/nature00779
http://dx.doi.org/10.1093/cercor/bhp088
http://dx.doi.org/10.1016/j.neuron.2013.01.011
http://dx.doi.org/10.1016/j.neuron.2013.01.011
http://dx.doi.org/10.1111/j.1469-7610.2010.02307.x
http://dx.doi.org/10.1016/j.brainres.2012.02.036
http://dx.doi.org/10.1016/j.brainres.2012.02.036
http://dx.doi.org/10.1016/0166-2236(95)93936-R
http://dx.doi.org/10.1016/0166-2236(95)93934-P
http://dx.doi.org/10.1210/endo-114-1-305
http://dx.doi.org/10.1210/endo-114-1-305
http://dx.doi.org/10.1016/j.beem.2007.08.006
http://dx.doi.org/10.1056/NEJM199705083361914
http://dx.doi.org/10.1073/pnas.240336397
http://dx.doi.org/10.1210/en.2006-0390
http://dx.doi.org/10.1016/S0140-6736(04)17226-7
http://dx.doi.org/10.1172/JCI28253
http://dx.doi.org/10.1042/BJ20110759
http://www.frontiersin.org/Thyroid_Endocrinology
http://www.frontiersin.org/Thyroid_Endocrinology/archive

Berbel et al.

Thyroid hormones and cortical development: autism

144.

145.

146.

148.

149.

150.

15

—

152.

153.

154.

155.

156.

157.

158.

159.

160.

16

—

162.

Allan W, Herndon CN, Dudley FC. Some examples of the inheritance of men-
tal deficiency: apparently sex-linked idiocy and microcephaly. Am ] Ment Defic
(1944) 48:325-34.

Dumitrescu AM, Liao XH, Best TB, Brockmann K, Refetoff S. A novel syn-
drome combining thyroid and neurological abnormalities is associated with
mutations in a monocarboxylate transporter gene. Am | Hum Genet (2004)
74:168-75. doi:10.1086/380999

Wirth EK, Roth S, Blechschmidt C, Holter SM, Becker L, Racz I, etal.
Neuronal 3’3,5-triiodothyronine (T3) uptake and behavioral phenotype of
mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-
Herndon-Dudley syndrome. ] Neurosci (2009) 29:9439-49. doi:10.1523/
JNEUROSCI.6055-08.2009

. Hernandez A, Martinez ME, Fiering S, Galton VA, St Germain D. Type 3 deio-

dinase is critical for the maturation and function of the thyroid axis. J Clin
Invest (2006) 116:476-84. doi:10.1172/JCI126240

Hernandez A, Morte B, Belinchén MM, Ceballos A, Bernal J. Critical role
of types 2 and 3 deiodinases in the negative regulation of gene expres-
sion by T3 in the mouse cerebral cortex. Endocrinology (2012) 153:2919-28.
doi:10.1210/en.2011-1905

Morte B, Ceballos A, Diez D, Grijota-Martinez C, Dumitrescu AM, Di Cosmo
C, etal. Thyroid hormone-regulated mouse cerebral cortex genes are dif-
ferentially dependent on the source of the hormone: a study in monocar-
boxylate transporter-8- and deiodinase-2-deficient mice. Endocrinology (2010)
151:2381-7. doi:10.1210/en.2009-0944

Flamant F, Samarut J. Thyroid hormone receptors: lessons from knock-
out and knock-in mutant mice. Trends Endocrinol Metab (2003) 14:85-90.
doi:10.1016/S1043-2760(02)00043-7

. Refetoff S, DeWind LT, DeGroot LJ. Familial syndrome combining deaf-

mutism, stuppled epiphyses, goiter and abnormally high PBI: possible tar-
get organ refractoriness to thyroid hormone. J Clin Endocrinol Metab (1967)
27:279-94. doi:10.1210/jcem-27-2-279

Beck-Peccoz P, Chatterjee VK. The variable clinical phenotype in thyroid hor-
mone resistance syndrome. Thyroid (1994) 4:225-32. doi:10.1089/thy.1994.4.
225

Rosenberg IN. The antithyroid activity of some compounds that inhibit per-
oxidase. Science (1952) 116:503-5. doi:10.1126/science.116.3019.503

Escobar del Rey F, Morreale de Escobar G. The effect of propylthiouracil,
methylthiouracil and thiouracil on the peripheral metabolism of 1-thyroxine
in thyroidectomized, 1-thyroxine maintained rats. Endocrinology (1961)
69:456-65. doi:10.1210/endo- 69-3-456

De Groot L], Davis AM. Studies on the biosynthesis of iodotyrosines: a soluble
thyroidal iodide-peroxidase tyrosine-iodinase system. Endocrinology (1962)
70:492-504. doi:10.1210/endo-70-4-492

Oppenheimer JH, Schwartz H, Surks L. MIPropylthiouracil inhibits the con-
version of L-thyroxine to L-triiodothyronine. An explanation of the antithy-
roxine effect of propylthiouracil and evidence supporting the concept that tri-
iodothyronine is the active thyroid hormone. J Clin Invest (1972) 51:2493-7.
doi:10.1172/JCI107063

Azizi F, Amouzegar A. Management of hyperthyroidism during pregnancy and
lactation. Eur ] Endocrinol (2011) 164:871-6. d0i:10.1530/EJE-10-1030

Aus6 E, Lavado-Autric R, Cuevas E, Escobar del Rey F, Morreale de Escobar G,
Berbel P. A moderate and transient deficiency of maternal thyroid function at
the beginning of fetal neocorticogenesis alters neuronal migration. Endocrinol-
ogy (2004) 145:4037—47. doi:10.1210/en.2004-0274

Cuevas E, Aus6 E, Telefont M, Morreale de Escobar G, Sotelo C, Berbel P.
Transient maternal hypothyroxinemia at onset of corticogenesis alters tangen-
tial migration of medial ganglionic eminence-derived neurons. Eur ] Neurosci
(2005) 22:541-51. doi:10.1111/j.1460-9568.2005.04243.x

Mano MT, Potter BJ, Belling GB, Chavadej J, Hetzel BS. Fetal brain in response
to iodine deficiency in a primate model (Callithrix jacchus). ] Neurol Sci (1987)
9:287-300. doi:10.1016/0022-510X(87)90236-X

. Potter BJ, Mano MT, Belling GB, McIntosh GH, Hua C, Cragg BG, etal.

Retarded fetal brain development resulting from severe dietary iodine defi-
ciency in sheep. Neuropathol Appl Neurobiol (1982) 8:303—13. doi:10.1111/j.
1365-2990.1982.tb00299.x

Li JQ, Wang X, Yan YQ, Wang KW, Qin DK, Xin ZF, et al. The effects on fetal
brain development in the rat of a severely iodine deficient diet derived from an
endemic area: observations on the first generation. Neuropathol Appl Neurobiol
(1986) 12:261-76.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

Martinez-Galan JR, Pedraza P, Santacana M, Escobar del Rey F, Morreale de
Escobar G, Ruiz-Marcos A. Early effects of iodine deficiency on radial glial cells
of the hippocampus of the rat fetus. A model of neurological cretinism. J Clin
Invest (1997) 99:2701-9. doi:10.1172/JCI119459

Lavado-Autric R, Aus6 E, Garcia-Velasco JV, Arufe M, Escobar del Rey F
Berbel P, et al. Early maternal hypothyroxinemia alters histogenesis and cere-
bral cortex cytoarchitecture of the progeny. J Clin Invest (2003) 111:1073-82.
doi:10.1172/JCI1200316262

Yu E, Wang Y, Xu H, Dong J, Wei W, Wang Y, et al. Developmental iodine
deficiency delays the maturation of newborn granule neurons associated with
downregulation of p35 in postnatal rat hippocampus. Environ Toxicol (2012)
29:847-55. doi:10.1002/tox.21811

Wang Y, Wei W, Wang Y, Dong ], Song B, Min H, et al. Neurotoxicity of
developmental hypothyroxinemia and hypothyroidism in rats: impairments
of long-term potentiation are mediated by phosphatidylinositol 3-kinase sig-
naling pathway. Toxicol Appl Pharmacol (2013) 271:257-65. doi:10.1016/j.taap.
2013.04.034

Scow RW, Simpson ME. Thyroidectomy in the newborn rat. Anat Rec (1945)
91:209-26. doi:10.1002/ar.1090910305

Morreale de Escobar G, Obregon M]J, Escobar del Rey F. Fetal and maternal
thyroid hormones. Horm Res (1987) 26:12-27. doi:10.1159/000180681

Berbel P, Navarro D, Ausé E, Varea E, Rodriguez AE, Ballesta JJ, et al. Role of
late maternal thyroid hormones in cerebral cortex development: an exper-
imental model for human prematurity. Cereb Cortex (2010) 20:1462-75.
doi:10.1093/cercor/bhp212

Dowling AL, Martz GU, Leonard JL, Zoeller RT. Acute changes in maternal
thyroid hormone induce rapid and transient changes in gene expression in
fetal rat brain. J Neurosci (2000) 20:2255-65.

Dowling AL, Zoeller RT. Thyroid hormone of maternal origin regulates the
expression of RC3/neurogranin mRNA in the fetal rat brain. Brain Res Mol
Brain Res (2000) 82:126-32. doi:10.1016/S0169-328X(00)00190-X
Alvarez-Dolado M, Ruiz M, Del Rio JA, Alcantara S, Burgaya F, Sheldon M.
Thyroid hormone regulates reelin and dab-1 expression during brain develop-
ment. J Neurosci (1999) 19:6979-93.

Pathak A, Sinha RA, Mohan V, Mitra K, Godbole MM. Maternal thyroid hor-
mone before the onset of fetal thyroid function regulates reelin and down-
stream signaling cascade affecting neocortical neuronal migration. Cereb Cor-
tex (2011) 21:11-21. doi:10.1093/cercor/bhq052

Miller LD, Park KS, Guo QM, Alkharouf NW, Malek RL, Lee NH, et al.
Silencing of Wnt signaling and activation of multiple metabolic pathways in
response to thyroid hormone-stimulated cell proliferation. Mol Cell Biol (2001)
21:6626-39. doi:10.1128/MCB.21.19.6626-6639.2001

Matthews RP, Guthrie CR, Wailes LM, Zhao X, Means AR, McKnight GS.
Calcium/calmodulin-dependent protein kinase types II and IV differentially
regulate CREB-dependent gene expression. Mol Cell Biol (1994) 14:6107-16.
doi:10.1128/MCB.14.9.6107

Watterson DM, Mirzoeva S, Guo L, Whyte A, Bourguignon JJ, Hibert M,
etal. Ligand modulation of glial activation: cell permeable, small molecule
inhibitors of serine-threonine protein kinases can block induction of inter-
leukin 1 beta and nitric oxide synthase II. Neurochem Int (2001) 39:459-68.
doi:10.1016/S0197-0186(01)00053-5

Murray PD, Kingsbury TJ, Krueger BK. Failure of Ca2+-activated, CREB-
dependent transcription in astrocytes. Glia (2009) 57:828-34. doi:10.1002/
glia.20809

Kuno-Murata M, Koibuchi N, Fukuda H, Murata M, Chin WW. Augmentation
of thyroid hormone receptor-mediated transcription by Ca2+/calmodulin-
dependent protein kinase type IV. Endocrinology (2000) 141:2275-8. doi:10.
1210/endo.141.6.7612

McKenzie GJ, Stevenson P, Ward G, Papadia S, Bading H, Chawla S]J,
etal. Nuclear Ca2+ and CaM kinase IV specify hormonal- and Notch-
responsiveness. ] Neurochem (2005) 93:171-85. doi:10.1111/j.1471-4159.2005.
03010.x

Navarro D, Alvarado M, Navarrete F, Giner M, Pacheco P, Morreale de Escobar
G, et al. Maternal and fetal rat’s hypothyroidism during gestation and lacta-
tion unbalances cortical VGIuT1-VGAT immunoreactivity and alters atten-
tion déficit and anxiety. Eur Thyroid ] (2012) 1(Suppl 1):208. doi:10.1159/
000339890

Carlezon WA Jr, Duman RS, Nestler EJ. The many faces of CREB. Trends Neu-
rosci (2005) 28:436—45. doi:10.1016/j.tins.2005.06.005

www.frontiersin.org

September 2014 | Volume 5 | Article 146 | 23


http://dx.doi.org/10.1086/380999
http://dx.doi.org/10.1523/JNEUROSCI.6055-08.2009
http://dx.doi.org/10.1523/JNEUROSCI.6055-08.2009
http://dx.doi.org/10.1172/JCI26240
http://dx.doi.org/10.1210/en.2011-1905
http://dx.doi.org/10.1210/en.2009-0944
http://dx.doi.org/10.1016/S1043-2760(02)00043-7
http://dx.doi.org/10.1210/jcem-27-2-279
http://dx.doi.org/10.1089/thy.1994.4.225
http://dx.doi.org/10.1089/thy.1994.4.225
http://dx.doi.org/10.1126/science.116.3019.503
http://dx.doi.org/10.1210/endo-69-3-456
http://dx.doi.org/10.1210/endo-70-4-492
http://dx.doi.org/10.1172/JCI107063
http://dx.doi.org/10.1530/EJE-10-1030
http://dx.doi.org/10.1210/en.2004-0274
http://dx.doi.org/10.1111/j.1460-9568.2005.04243.x
http://dx.doi.org/10.1016/0022-510X(87)90236-X
http://dx.doi.org/10.1111/j.1365-2990.1982.tb00299.x
http://dx.doi.org/10.1111/j.1365-2990.1982.tb00299.x
http://dx.doi.org/10.1172/JCI119459
http://dx.doi.org/10.1172/JCI200316262
http://dx.doi.org/10.1002/tox.21811
http://dx.doi.org/10.1016/j.taap.2013.04.034
http://dx.doi.org/10.1016/j.taap.2013.04.034
http://dx.doi.org/10.1002/ar.1090910305
http://dx.doi.org/10.1159/000180681
http://dx.doi.org/10.1093/cercor/bhp212
http://dx.doi.org/10.1016/S0169-328X(00)00190-X
http://dx.doi.org/10.1093/cercor/bhq052
http://dx.doi.org/10.1128/MCB.21.19.6626-6639.2001
http://dx.doi.org/10.1128/MCB.14.9.6107
http://dx.doi.org/10.1016/S0197-0186(01)00053-5
http://dx.doi.org/10.1002/glia.20809
http://dx.doi.org/10.1002/glia.20809
http://dx.doi.org/10.1210/endo.141.6.7612
http://dx.doi.org/10.1210/endo.141.6.7612
http://dx.doi.org/10.1111/j.1471-4159.2005.03010.x
http://dx.doi.org/10.1111/j.1471-4159.2005.03010.x
http://dx.doi.org/10.1159/000339890
http://dx.doi.org/10.1159/000339890
http://dx.doi.org/10.1016/j.tins.2005.06.005
http://www.frontiersin.org
http://www.frontiersin.org/Thyroid_Endocrinology/archive

Berbel et al.

Thyroid hormones and cortical development: autism

182.

183.

184.

185.

186.

187.

188.

189.

190.

19

—_

192.

193.

194.

195.

196.

197.

198.

199.

200.

202.

203.

.Singh R, Upadhyay G, Godbole

Qiu Z, Sylwestrak EL, Lieberman DN, Zhang Y, Liu XY, Ghosh A. The Rett syn-
drome protein MeCP2 regulates synaptic scaling. ] Neurosci (2012) 32:989-94.
doi:10.1523/J]NEUROSCI.0175-11.2012

Lv ], Xin Y, Zhou W, Qiu Z. The epigenetic switches for neural development
and psychiatric disorders. | Genet Genomics (2013) 40:339-46. doi:10.1016/j.
j8g.2013.04.007

Wang H, Fukushima H, Kida S, Zhuo M. Ca2+/calmodulin-dependent protein
kinase IV links group I metabotropic glutamate receptors to fragile X men-
tal retardation protein in cingulate cortex. J Biol Chem (2009) 284:18953-62.
doi:10.1074/jbc.M109.019141

Wang H, Morishita Y, Miura D, Naranjo JR, Kida S, Zhuo M. Roles of CREB
in the regulation of FMRP by group I metabotropic glutamate receptors in
cingulate cortex. Mol Brain (2012) 5:27. doi:10.1186/1756-6606-5-27
Krueger DD, Bear ME. Toward fulfilling the promise of molecular medicine in
fragile X syndrome. Annu Rev Med (2011) 62:411-29. doi:10.1146/annurev-
med-061109-134644

Tuchman R, Hirtz D, Mamounas LA. NINDS epilepsy and autism spectrum
disorders workshop report. Neurology (2013) 29:1630-6. doi:10.1212/WNL.
0b013e3182a9f482

LuJ, WuY, Sousa N, Almeida OF. SMAD pathway mediation of BDNF and TGF
beta 2 regulation of proliferation and differentiation of hippocampal granule
neurons. Development (2005) 132:3231-42. doi:10.1242/dev.01893

Castrén ML, Castrén E. BDNF in fragile X syndrome. Neuropharmacology
(2014) 76(Pt C):729-36. doi:10.1016/j.neuropharm.2013.05.018

Eayrs JT, Taylor SH. The effect of thyroid deficiency induced by methyl
thiouracil on the maturation of the central nervous system. J Anat (1951)
85:350-8.

. MohanV, Sinha RA, Pathak A, Rastogi L, Kumar P, Pal A, et al. Maternal thyroid

hormone deficiency affects the fetal neocorticogenesis by reducing the prolifer-
ating pool, rate of neurogenesis and indirect neurogenesis. Exp Neurol (2012)
237:477-88. doi:10.1016/j.expneurol.2012.07.019

Berbel P, Aus6 E, Garcia-Velasco JV, Molina ML, Camacho M. Role of thyroid
hormones in the maturation and organisation of rat barrel cortex. Neuroscience
(2001) 107:383-94. doi:10.1016/50306-4522(01)00368-2

Rami A, Rabié A, Patel AJ. Thyroid hormone and development of the rat
hippocampus: cell acquisition in the dentate gyrus. Neuroscience (1986)
19:1207-16. doi:10.1016/0306-4522(86)90134-X

Perez-Juste G, Aranda A. The cyclin-dependent kinase inhibitor p27(Kip1) is
involved in thyroid hormone-mediated neuronal differentiation. J Biol Chem
(1999) 274:5026-31. doi:10.1074/jbc.274.8.5026

Qiu R, Wang J, Tsark W, Lu Q. Essential role of PDZ-RGS3 in the maintenance
of neural progenitor cells. Stem Cells (2010) 28:1602—-10. doi:10.1002/stem.478
O’Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex
targeted sequencing identifies recurrently mutated genes in autism spectrum
disorders. Science (2012) 338:1619-22. doi:10.1126/science.1227764

Barr AR, Kilmartin JV, Gergely FE. CDK5RAP2 functions in centrosome to spin-
dle pole attachment and DNA damage response. ] Cell Biol (2010) 189:23-39.
doi:10.1083/jcb.200912163

Wang Y, Wang Y, Dong J, Wei W, Song B, Min H, et al. Developmental hypothy-
roxinemia and hypothyroidism reduce proliferation of cerebellar granule neu-
ron precursors in rat offspring by downregulation of the sonic hedgehog sig-
naling pathway. Mol Neurobiol (2014) 49:1143-52. d0i:10.1007/s12035-013-
8587-3

Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, et al. Reduced
apoptosis and cytochrome c-mediated caspase activation in mice lacking cas-
pase 9. Cell (1998) 94:325-37. doi:10.1016/S0092-8674(00)81476-2

Chenn A, Walsh CA. Regulation of cerebral cortical size by control of cell
cycle exit in neural precursors. Science (2002) 297:365-9. doi:10.1126/science.
1074192

MM. Hypothyroidism alters
mitochondrial morphology and induces release of apoptogenic pro-
teins during rat cerebellar development. ] Endocrinol (2003) 176:321-9.
doi:10.1677/j0e.0.1760321

Babu S, Sinha RA, Mohan V, Rao G, Pal A, Pathak A, et al. Effect of hypothy-
roxinemia on thyroid hormone responsiveness and action during rat post-
natal neocortical development. Exp Neurol (2011) 228:91-8. doi:10.1016/j.
expneurol.2010.12.012

Sugimoto C, Maekawa S, Miyata S. OBCAM, an immunoglobulin superfamily
cell adhesion molecule, regulates morphology and proliferation of cerebral

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

astrocytes. J Neurochem (2010) 112:818-28. doi:10.1111/j.1471-4159.2009.
06513.x

Martinez-Galén JR, Escobar del Rey F, Morreale de Escobar G, Santacana M,
Ruiz-Marcos A. Hypothyroidism alters the development of radial glial cells
in the term fetal and postnatal neocortex of the rat. Brain Res Dev Brain Res
(2004) 153:109-14. doi:10.1016/j.devbrainres.2004.08.002

Lucio RA, Garcia JV, Ramén Cerezo J, Pacheco P, Innocenti GM, Berbel P. The
development of auditory callosal connections in normal and hypothyroid rats.
Cereb Cortex (1997) 7:303-16. d0i:10.1093/cercor/7.4.303

Goodman JH, Gilbert ME. Modest thyroid hormone insufficiency during
development induces a cellular malformation in the corpus callosum: a model
of cortical dysplasia. Endocrinology (2007) 148:2593-7. doi:10.1210/en.2006-
1276

Tan XJ, Fan XT, Kim HJ, Butler R, Webb P, Warner M, et al. Liver X receptor
beta and thyroid hormone receptor alpha in brain cortical layering. Proc Natl
Acad Sci U S A (2010) 107:12305-10. doi:10.1073/pnas.1006162107

Fan X, Kim H]J, Bouton D, Warner M, Gustafsson JA. Expression of liver X
receptor beta is essential for formation of superficial cortical layers and migra-
tion of later-born neurons. Proc Natl Acad Sci U S A (2008) 105:13445-50.
doi:10.1073/pnas.0806974105

Guo L, Xu P, Tang X, Wu Q, Xing Y, Gustafsson JA, et al. Liver X receptor  delays
transformation of radial glial cells into astrocytes during mouse cerebral cor-
tical development. Neurochem Int (2014) 71:8-16. doi:10.1016/j.neuint.2014.
03.009

Berkenstam A, Farnegardh M, Gustafsson JA. Convergence of lipid homeosta-
sis through liver X and thyroid hormone receptors. Mech Ageing Dev (2004)
125:707-17. doi:10.1016/j.mad.2004.05.005

Berbel P, Marco P, Cerezo JR, DeFelipe J. Distribution of parvalbumin
immunoreactivity in the neocortex of hypothyroid adult rats. Neurosci Lett
(1996) 204:65-8. doi:10.1016/0304-3940(96)12318- 1

Morte B, Manzano J, Scanlan T, Vennstrom B, Bernal J. Deletion of the thyroid
hormone receptor alpha 1 prevents the structural alterations of the cerebel-
lum induced by hypothyroidism. Proc Natl Acad Sci U S A (2002) 99:3985-9.
doi:10.1073/pnas.062413299

Ceballos A, Belinchon MM, Sanchez-Mendoza E, Grijota-Martinez C,
Dumitrescu AM, Refetoff S, etal. Importance of monocarboxylate trans-
porter 8 for the blood-brain barrier-dependent availability of 3,5,3’-triiodo-L-
thyronine. Endocrinology (2009) 150:2491-6. doi:10.1210/en.2008- 1616
Nicholson JL, Altman J. The effects of early hypo- and hyperthyroidism on the
development of the rat cerebellar cortex. Synaptogenesis in the molecular layer.
Brain Res (1972) 44:25-36. doi:10.1016/0006-8993(72)90362-9

Lauder JM. Thyroid influences on the developing cerebellum and hippocam-
pus of the rat. In: DeLong GR, Robbins J, Condliffe PG, editors. Iodine and the
Brain. New York, NY: Plenum Press (1989). p. 79-90.

Berbel P, Guadafio-Ferraz A, Martinez M, Quiles JA, Balboa R, Innocenti GM.
Organization of auditory callosal connections in hypothyroid rats. Eur ] Neu-
rosci (1993) 5:1465-78. doi:10.1111/j.1460-9568.1993.tb00214.x

Gilbert ME, Sui L, Walker MJ, Anderson W, Thomas S, Smoller SN, et al. Thy-
roid hormone insufficiency during brain development reduces parvalbumin
immunoreactivity and inhibitory function in the hippocampus. Endocrinology
(2007) 148:92-102. doi:10.1210/en.2006-0164

Wallis K, Sjégren M, van Hogerlinden M, Silberberg G, Fisahn A, Nord-
strom K, et al. Locomotor deficiencies and aberrant development of subtype-
specific GABAergic interneurons caused by an unliganded thyroid hormone
receptor alphal. ] Neurosci (2008) 28:1904-15. doi:10.1523/J]NEUROSCI.
5163-07.2008

Venero C, Guadafio-Ferraz A, Herrero Al Nordstrém K, Manzano ], de Escobar
GM, et al. Anxiety, memory impairment, and locomotor dysfunction caused
by a mutant thyroid hormone receptor alphal can be ameliorated by T3 treat-
ment. Genes Dev (2005) 19:2152-63. doi:10.1101/gad.346105

Patel LS, Wenzel HJ, Schwartzkroin PA. Physiological and morphological
characterization of dentate granule cells in the p35 knock-out mouse hip-
pocampus: evidence for an epileptic circuit. J Neurosci (2004) 24:9005-14.
doi:10.1523/JNEUROSCI.2943-04.2004

Van Middlesworth L, Norris CH. Audiogenic seizures and cochlear damage in
rats after perinatal antithyroid treatment. Endocrinology (1980) 106:1686—90.
doi:10.1210/endo- 106-6- 1686

Eayrs JT, Goohead B. Postnatal development of the cerebral cortex in the rat. J
Anat (1959) 93:385-402.

Frontiers in Endocrinology | Thyroid Endocrinology

September 2014 | Volume 5 | Article 146 | 24


http://dx.doi.org/10.1523/JNEUROSCI.0175-11.2012
http://dx.doi.org/10.1016/j.jgg.2013.04.007
http://dx.doi.org/10.1016/j.jgg.2013.04.007
http://dx.doi.org/10.1074/jbc.M109.019141
http://dx.doi.org/10.1186/1756-6606-5-27
http://dx.doi.org/10.1146/annurev-med-061109-134644
http://dx.doi.org/10.1146/annurev-med-061109-134644
http://dx.doi.org/10.1212/WNL.0b013e3182a9f482
http://dx.doi.org/10.1212/WNL.0b013e3182a9f482
http://dx.doi.org/10.1242/dev.01893
http://dx.doi.org/10.1016/j.neuropharm.2013.05.018
http://dx.doi.org/10.1016/j.expneurol.2012.07.019
http://dx.doi.org/10.1016/S0306-4522(01)00368-2
http://dx.doi.org/10.1016/0306-4522(86)90134-X
http://dx.doi.org/10.1074/jbc.274.8.5026
http://dx.doi.org/10.1002/stem.478
http://dx.doi.org/10.1126/science.1227764
http://dx.doi.org/10.1083/jcb.200912163
http://dx.doi.org/10.1007/s12035-013-8587-3
http://dx.doi.org/10.1007/s12035-013-8587-3
http://dx.doi.org/10.1016/S0092-8674(00)81476-2
http://dx.doi.org/10.1126/science.1074192
http://dx.doi.org/10.1126/science.1074192
http://dx.doi.org/10.1677/joe.0.1760321
http://dx.doi.org/10.1016/j.expneurol.2010.12.012
http://dx.doi.org/10.1016/j.expneurol.2010.12.012
http://dx.doi.org/10.1111/j.1471-4159.2009.06513.x
http://dx.doi.org/10.1111/j.1471-4159.2009.06513.x
http://dx.doi.org/10.1016/j.devbrainres.2004.08.002
http://dx.doi.org/10.1093/cercor/7.4.303
http://dx.doi.org/10.1210/en.2006-1276
http://dx.doi.org/10.1210/en.2006-1276
http://dx.doi.org/10.1073/pnas.1006162107
http://dx.doi.org/10.1073/pnas.0806974105
http://dx.doi.org/10.1016/j.neuint.2014.03.009
http://dx.doi.org/10.1016/j.neuint.2014.03.009
http://dx.doi.org/10.1016/j.mad.2004.05.005
http://dx.doi.org/10.1016/0304-3940(96)12318-1
http://dx.doi.org/10.1073/pnas.062413299
http://dx.doi.org/10.1210/en.2008-1616
http://dx.doi.org/10.1016/0006-8993(72)90362-9
http://dx.doi.org/10.1111/j.1460-9568.1993.tb00214.x
http://dx.doi.org/10.1210/en.2006-0164
http://dx.doi.org/10.1523/JNEUROSCI.5163-07.2008
http://dx.doi.org/10.1523/JNEUROSCI.5163-07.2008
http://dx.doi.org/10.1101/gad.346105
http://dx.doi.org/10.1523/JNEUROSCI.2943-04.2004
http://dx.doi.org/10.1210/endo-106-6-1686
http://www.frontiersin.org/Thyroid_Endocrinology
http://www.frontiersin.org/Thyroid_Endocrinology/archive

Berbel et al.

Thyroid hormones and cortical development: autism

223.

224.

226.

227.

228.

229.

230.

232.

233.

234.

235.

236.

237.

238.

239.

240.

24

—

242.

243.

244,

245.

Vincent J, Legrand C, Rabié A, Legrand J. Effects of thyroid hormone on synap-
togenesis in the molecular layer of the developing rat cerebellum. J Physiol
(1982/1983) 78:729-38.

Yu X, Malenka RC. Beta-catenin is critical for dendritic morphogenesis. Nat
Neurosci (2003) 6:1169-77. d0i:10.1038/nn1132

. Gravel C, Sasseville R, Hawkes R. Maturation of the corpus callosum of the rat:

I1. Influence of thyroid hormones on the number and maturation of axons. J
Comp Neurol (1990) 291:147-61. doi:10.1002/cne.902910109

Gravel C, Hawkes R. Maturation of the corpus callosum of the rat: I. Influence
of thyroid hormones on the topography of callosal projections. ] Comp Neurol
(1990) 291:128-46. doi:10.1002/cne.902910109

Guadafio-Ferraz A, Escobar del Rey E Morreale de Escobar G, Innocenti
GM, Berbel P. The development of the anterior commissure in normal and
hypothyroid rats. Brain Res Dev Brain Res (1994) 81:293-308. doi:10.1016/
0165-3806(94)90315-8

Berbel P, Guadafio-Ferraz A, Angulo A, Ramén Cerezo J. Role of thyroid hor-
mones in the maturation of interhemispheric connections in rats. Behav Brain
Res (1994) 64:9-14. doi:10.1016/0166-4328(94)90114-7

Nunez J, Couchie D, Aniello E, Bridoux AM. Regulation by thyroid hormone
of microtubule assembly and neuronal differentiation. Neurochem Res (1991)
16:975-82. doi:10.1007/BF00965840

Muioz A, Rodriguez-Pena A, Perez-Castillo A, Ferreiro B, Sutcliffe JG, Bernal
J. Effects of neonatal hypothyroidism on rat brain gene expression. Mol
Endocrinol (1991) 5:273-80. doi:10.1210/mend-5-2-273

. Li CP, Olavarria JE, Greger BE. Occipital cortico-pyramidal projection in

hypothyroid rats. Brain Res Dev Brain Res (1995) 89:227-34. d0i:10.1016/0165-
3806(95)00119-X

Innocenti GM, Price DJ. Exuberance in the development of cortical networks.
Nat Rev Neurosci (2005) 6:955-65. d0i:10.1038/nrn1790

Friauf E, McConnell SK, Shatz CJ. Functional synaptic circuits in the subplate
during fetal and early postnatal development of cat visual cortex. | Neurosci
(1990) 10:2601-13.

Oeschger FM, Wang WZ, Lee S, Garcia-Moreno F, Goffinet AM, Arbonés ML,
et al. Gene expression analysis of the embryonic subplate. Cereb Cortex (2012)
22:1343-59. doi:10.1093/cercor/bhr197

Torres-Reveron J, Friedlander M]J. Properties of persistent postnatal cortical
subplate neurons. J Neurosci (2007) 27:9962—74. doi:10.1523/JNEUROSCI.
1536-07.2007

Kanold PO, Kara P, Reid RC, Shatz CJ. Role of subplate neurons in func-
tional maturation of visual cortical columns. Science (2003) 301:521-5.
doi:10.1126/science.1084152

Kanold PO, Shatz CJ. Subplate neurons regulate maturation of cortical inhi-
bition and outcome of ocular dominance plasticity. Neuron (2006) 51:627-38.
doi:10.1016/j.neuron.2006.07.008

Pinon MC, Jethwa A, Jacobs E, Campagnoni A, Molndr Z. Dynamic inte-
gration of subplate neurons into the cortical barrel field circuitry during
postnatal development in the Golli-tau-eGFP (GTE) mouse. J Physiol (2009)
587:1903-15. doi:10.1113/jphysiol.2008.167767

Navarro D, Alvarado M, Morte B, Berbel D, Sesma J, Pacheco P, et al. Late
maternal hypothyroidism alters the expression of Camk4 in neocortical sub-
plate neurons. A comparison with Nurrl labeling. Cereb Cortex (2013).
doi:10.1093/cercor/bht129

Volpe JJ. Subplate neurons — missing link in brain injury of the premature
infant? Pediatrics (1996) 97:112-3.

. VolpeJJ. Electroencephalography may provide insight into timing of premature

brain injury. Pediatrics (2009) 124:e542—4. doi:10.1542/peds.2009- 1244
Eastwood SL, Harrison PJ. Cellular basis of reduced cortical reelin expression
in schizophrenia. Am J Psychiatry (2006) 163:540-2. doi:10.1176/appi.ajp.163.
3.540

McQuillen PS, Ferriero DM. Perinatal subplate neuron injury: implica-
tions for cortical development and plasticity. Brain Pathol (2005) 15:250-60.
doi:10.1111/j.1750-3639.2005.tb00528.x

Stolp H, Neuhaus A, Sundramoorthi R, Molnér Z. The long and the short of
it: gene and environment interactions during early cortical development and
consequences for long-term neurological disease. Front Psychiatry (2012) 3:50.
doi:10.3389/fpsyt.2012.00050

Hoerder-Suabedissen A, Oeschger FM, Krishnan ML, Belgard TG,
Wang WZ, Lee S, etal. Expression profiling of mouse subplate reveals
a dynamic gene network and disease association with autism and

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

265.

schizophrenia. Proc Natl Acad Sci U S A (2013) 110:3555-60. doi:10.1073/pnas.
1218510110

Ausé E, Cases O, Fouquet C, Camacho M, Garcia-Velasco JV, Gaspar P, et al. Pro-
tracted expression of serotonin transporter and altered thalamocortical projec-
tions in the barrelfield of hypothyroid rats. Eur J Neurosci (2001) 14:1968-80.
doi:10.1046/j.0953-816x.2001.01815.x

Blue ME, Erzurumlu RS, Jhaveri S. A comparison of pattern formation by
thalamocortical and serotonergic afferents in the rat barrel field cortex. Cereb
Cortex (1991) 1:380-9. doi:10.1093/cercor/1.5.380

Osterheld-Haas MC, Hornung JP. Laminar development of the mouse bar-
rel cortex: effects of neurotoxins against monoamines. Exp Brain Res (1996)
110:183-95. doi:10.1007/BF00228550

Bennett-Clarke CA, Leslie MJ, Lane RD, Rhoades RW. Effect of serotonin deple-
tion on vibrissa-related patterns of thalamic afferents in the rat’s somatosensory
cortex. J Neurosci (1994) 14:7594-607.

Sanchez-Toscano F, Escobar del Rey F, Morreale de Escobar G, Ruiz-Marcos A.
Measurement of the effects of hypothyroidism on the number and distribution
of spines along the apical shaft of pyramidal neurons of the rat cerebral cortex.
Brain Res (1977) 126:547-50. doi:10.1016/0006-8993(77)90606-0

Wei W, Wang Y, Wang Y, Dong J, Min H, Song B, et al. Developmental hypothy-
roxinaemia induced by maternal mild iodine deficiency delays hippocam-
pal axonal growth in the rat offspring. J Neuroendocrinol (2013) 25:852-62.
doi:10.1111/jne.12058

Berbel P, Innocenti GM. The development of the corpus callosum in cats:
a light- and electron-microscopic study. J Comp Neurol (1988) 276:132-56.
doi:10.1002/cne.902760109

Savage DD, Otero MA, Montano CY, Razani-Boroujerdi S, Paxton LL, Kasarskis
EJ. Perinatal hypothyroidism decreases hippocampal mossy fiber zinc density
in rats. Neuroendocrinology (1992) 55:20-7. doi:10.1159/000126092

Madeira MD, Paula-Barbosa MM. Reorganization of mossy fiber synapses in
male and female hypothyroid rats: a stereological study. ] Comp Neurol (1993)
337:334-52. doi:10.1002/cne.903370213

Melo CV, Mele M, Curcio M, Comprido D, Silva CG, Duarte CB. BDNF reg-
ulates the expression and distribution of vesicular glutamate transporters in
cultured hippocampal neurons. PLoS One (2013) 8(1):e53793. doi:10.1371/
journal.pone.0053793

Chakraborty G, Magagna-Poveda A, Parratt C, Umans JG, MacLusky NIJ.
Reduced hippocampal brain-derived neurotrophic factor (BDNF) in neonatal
rats after prenatal exposure to propylthiouracil (PTU). Endocrinology (2012)
153:1311-6. doi:10.1210/en.2011-1437

Wong CC, Leung MS. Effects of neonatal hypothyroidism on the expressions
of growth cone proteins and axon guidance molecules related genes in the
hippocampus. Mol Cell Endocrinol (2001) 184:143-50. doi:10.1016/S0303-
7207(01)00592-5

Koibuchi N, Chin WW. Thyroid hormone action and brain
development. Trends Endocrinol Metab (2000) 11:123-8. doi:10.1016/
$1043-2760(00)00238-1

Cortés C, Eugenin E, Aliaga E, Carreno LJ, Bueno SB, Gonzalez P, et al. Hypothy-
roidism in the adult rat causes an incremento of Bdnf in the brain, neuronal
and astrocytes apoptosis, gliosis and deterioration of the postsunaptic density.
Thyroid (2012) 22:951-63. doi:10.1089/thy.2010.0400

Sajdel-Sulkowska EM, Xu M, Koibuchi N. Increase in cerebellar neurotrophin-
3 and oxidative stress markers in autism. Cerebellum (2009) 8:366—72. doi:10.
1007/s12311-009-0105-9

Sénchez-Ponce D, DeFelipe J, Garrido JJ, Mufioz A. In vitro maturation of the
cisternal organelle in the hippocampal neuron’s axon initial segment. Mol Cell
Neurosci (2011) 48:104-16. doi:10.1016/j.mcn.2011.06.010

Bridi MS, Abel T. The NR4A orphan nuclear receptors mediate transcription-
dependent hippocampal synaptic plasticity. Neurobiol Learn Mem (2013)
105:151-8. doi:10.1016/j.nlm.2013.06.020

Modregger J, Ritter B, Witter B, Paulsson M, Plomann M. All three PACSIN
isoforms bind to endocytic proteins and inhibit endocytosis. J Cell Sci (2000)
113:4511-21.

Gilbert ME, Sui L. Dose-dependent reductions in spatial learning and synaptic
function in the dentate gyrus of adult rats following developmental thyroid
hormone insufficiency. Brain Res (2006) 1069:10—22. doi:10.1016/j.brainres.
2005.10.049

Alzoubi KH, Gerges NZ, Aleisa AM, Alkadhi KA. Levothyroxin restores
hypothyroidism-induced impairment of hippocampus-dependent learning

www.frontiersin.org

September 2014 | Volume 5 | Article 146 | 25


http://dx.doi.org/10.1038/nn1132
http://dx.doi.org/10.1002/cne.902910109
http://dx.doi.org/10.1002/cne.902910109
http://dx.doi.org/10.1016/0165-3806(94)90315-8
http://dx.doi.org/10.1016/0165-3806(94)90315-8
http://dx.doi.org/10.1016/0166-4328(94)90114-7
http://dx.doi.org/10.1007/BF00965840
http://dx.doi.org/10.1210/mend-5-2-273
http://dx.doi.org/10.1016/0165-3806(95)00119-X
http://dx.doi.org/10.1016/0165-3806(95)00119-X
http://dx.doi.org/10.1038/nrn1790
http://dx.doi.org/10.1093/cercor/bhr197
http://dx.doi.org/10.1523/JNEUROSCI.1536-07.2007
http://dx.doi.org/10.1523/JNEUROSCI.1536-07.2007
http://dx.doi.org/10.1126/science.1084152
http://dx.doi.org/10.1016/j.neuron.2006.07.008
http://dx.doi.org/10.1113/jphysiol.2008.167767
http://dx.doi.org/10.1093/cercor/bht129
http://dx.doi.org/10.1542/peds.2009-1244
http://dx.doi.org/10.1176/appi.ajp.163.3.540
http://dx.doi.org/10.1176/appi.ajp.163.3.540
http://dx.doi.org/10.1111/j.1750-3639.2005.tb00528.x
http://dx.doi.org/10.3389/fpsyt.2012.00050
http://dx.doi.org/10.1073/pnas.1218510110
http://dx.doi.org/10.1073/pnas.1218510110
http://dx.doi.org/10.1046/j.0953-816x.2001.01815.x
http://dx.doi.org/10.1093/cercor/1.5.380
http://dx.doi.org/10.1007/BF00228550
http://dx.doi.org/10.1016/0006-8993(77)90606-0
http://dx.doi.org/10.1111/jne.12058
http://dx.doi.org/10.1002/cne.902760109
http://dx.doi.org/10.1159/000126092
http://dx.doi.org/10.1002/cne.903370213
http://dx.doi.org/10.1371/journal.pone.0053793
http://dx.doi.org/10.1371/journal.pone.0053793
http://dx.doi.org/10.1210/en.2011-1437
http://dx.doi.org/10.1016/S0303-7207(01)00592-5
http://dx.doi.org/10.1016/S0303-7207(01)00592-5
http://dx.doi.org/10.1016/S1043-2760(00)00238-1
http://dx.doi.org/10.1016/S1043-2760(00)00238-1
http://dx.doi.org/10.1089/thy.2010.0400
http://dx.doi.org/10.1007/s12311-009-0105-9
http://dx.doi.org/10.1007/s12311-009-0105-9
http://dx.doi.org/10.1016/j.mcn.2011.06.010
http://dx.doi.org/10.1016/j.nlm.2013.06.020
http://dx.doi.org/10.1016/j.brainres.2005.10.049
http://dx.doi.org/10.1016/j.brainres.2005.10.049
http://www.frontiersin.org
http://www.frontiersin.org/Thyroid_Endocrinology/archive

Berbel et al.

Thyroid hormones and cortical development: autism

266.

267.

268.

269.

270.

27

—_

272.

273.

274.

275.

276.

277.

278.

279.

280.

—

28

282.

283.

284.

285.

and memory: behavioral, electrophysiological, and molecular studies. Hip-
pocampus (2009) 19:66—78. doi:10.1002/hipo.20476

Opazo MC, Gianini A, Pancetti F, Azkcona G, Alarcén L, Lizana R, etal.
Maternal hypothyroxinemia impairs spatial learning and synaptic nature and
function in the offspring. Endocrinology (2008) 149:5097-106. doi:10.1210/en.
2008-0560

Sanchez-Alonso JL, Mufioz-Cuevas J, Vicente-Torres MA, Colino A. Role of
low-voltage-activated calcium current on the firing pattern alterations induced
by hypothyroidism in the rat hippocampus. Neuroscience (2010) 171:993-1005.
doi:10.1016/j.neuroscience.2010.10.003

Caminiti R, Ghaziri H, Galuske R, Hof PR, Innocenti GM. Evolution ampli-
fied processing with temporally dispersed slow neuronal connectivity in
primates. Proc Natl Acad Sci U S A (2009) 106:19551-6. doi:10.1073/pnas.
0907655106

Ng L, Pedraza PE, Faris JS, Vennstrom B, Curran T, Morreale de Esco-
bar G, etal. Audiogenic seizure susceptibility in thyroid hormone receptor
beta-deficient mice. Neuroreport (2001) 12:2359-62. doi:10.1097/00001756-
200108080-00015

Negishi T, Kawasaki K, Sekiguchi S, Ishii Y, Kyuwa S, Kuroda Y, et al. Attention-
deficit and hyperactive neurobehavioural characteristics induced by perinatal
hypothyroidism in rats. Behav Brain Res (2005) 159:323-31. doi:10.1016/j.bbr.
2004.11.012

. Gilbert ME, Lasley SM. Developmental thyroid hormone insufficiency and

brain development: a role for brain-derived neurotrophic factor (BDNF)? Neu-
roscience (2013) 239:253-70. doi:10.1016/j.neuroscience.2012.11.022

Suo Z, Cox AA, Bartelli N, Rasul I, Festoff BW, Premont RT, et al. GRK5 defi-
ciency leads to early Alzheimer-like pathology and working memory impair-
ment. Neurobiol Aging (2007) 28:1873-88. doi:10.1016/j.neurobiolaging.2006.
08.013

Rao JS, Rapoport SI, Kim HW. Decreased GRK3 but not GRK2 expression
in frontal cortex from bipolar disorder patients. Int ] Neuropsychopharmacol
(2009) 12:851-60. doi:10.1017/S146114570900025X

Wang L, Zhou C, Wang Z, Liu J, Jing Z, Zhang Z, et al. Dynamic variation of
genes profiles and pathways in the hippocampus of ischemic mice: a genomic
study. Brain Res (2011) 1372:13-21. doi:10.1016/j.brainres.2010.11.099
Klugmann M, Leichtlein CB, Symes CW, Klaussner BC, Brooks Al, Young D,
et al. A novel role of circadian transcription factor DBP in hippocampal plas-
ticity. Mol Cell Neurosci (2006) 31:303—14. doi:10.1016/j.mcn.2005.09.019
Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, et al. A clini-
copathological study of autism. Brain (1998) 121:889-905. doi:10.1093/brain/
121.5.889

Palmen SJ, van Engeland H, Hof PR, Schmitz C. Neuropathological findings in
autism. Brain (2004) 127:2572-83. doi:10.1093/brain/awh287

Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E, et al. The neu-
ropathology of autism: defects of neurogenesis and neuronal migration, and
dysplastic changes. Acta Neuropathol (2010) 119:755-70. doi:10.1007/s00401-
010-0655-4

Castermans D, Vermeesch JR, Fryns JP, Steyaert JG, Van de Ven WJ, Creemers
JW, et al. Identification and characterization of the TRIP8 and REEP3 genes on
chromosome 10q21.3 as novel candidate genes for autism. Eur ] Hum Genet
(2007) 15:422-31. doi:10.1038/sj.ejhg.5201785

Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP,
et al. Mapping early brain development in autism. Neuron (2007) 56:399-413.
doi:10.1016/j.neuron.2007.10.016

. Kern JK, Geier DA, Sykes LK, Geier MR. Evidence of neurodegeneration in

autism spectrum disorder. Transl Neurodegener (2013) 2:17. doi:10.1186/2047-
9158-2-17

Petropoulos H, Friedman SD, Shaw DWW, Artru AA, Dawson G, Dager SR.
Gray matter abnormalities in autism spectrum disorder revealed by T2 relax-
ation. Neurology (2006) 67:632—6. doi:10.1212/01.wnl.0000229923.08213.1e
Hardan AY, Girgis RR, Lacerda ALT, Yorbik O, Kilpatrick M, Keshavan MS.
Magnetic resonance imaging study of the orbitofrontal cortex in autism. J
Child Neurol (2006) 21:866—71. doi:10.1177/08830738060210100701
Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C,
Hallet MJ, et al. Neuron number and size in prefrontal cortex of children with
autism. JAMA (2011) 306:2001-10. doi:10.1001/jama.2011.1638

McAlonan GM, Cheung V, Cheung C, Suckling J, Lam GY, Tai KS, et al. Map-
ping the brain in autism. A voxel-based MRI study of volumetric differences

286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

298.

299.

300.

301.

302.

303.

304.

305.

and intercorrelations in autism. Brain (2005) 128:268-76. doi:10.1093/brain/
awh332

Theoharides TC, Asadi S, Patel AB. Focal brain inflammation and autism. J
Neuroinflammation (2013) 10:46. doi:10.1186/1742-2094-10-46

Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial
activation and neuroinflammation in the brain of patients with autism. Ann
Neurol (2005) 57:67-81. d0i:10.1002/ana.20315

Uppal N, Gianatiempo I, Wicinski B, Schmeidler J, Heinsen H, Schmitz C, et al.
Neuropathology of the posteroinferior occipitotemporal gyrus in children with
autism. Mol Autism (2014) 5(1):17. doi:10.1186/2040-2392-5-17
Jacot-Descombes S, Uppal N, Wicinski B, Santos M, Schmeidler J, Gian-
nakopoulos P, etal. Decreased pyramidal neuron size in Brodmann areas
44 and 45 in patients with autism. Acta Neuropathol (2012) 124:67-79.
doi:10.1007/s00401-012-0976-6

Bauman ML, Kemper TL. Neuroanatomic observations of the brain in
autism: a review and future directions. Int J Dev Neurosci (2005) 23:183-7.
doi:10.1016/j.ijdevneu.2004.09.006

Bauman ML, Kemper TL. Histoanatomic observations of the brain
in early infantile autism. Neurology (1985) 35:866—7. doi:10.1212/WNL.35.6.
866

Casanova MF, El-Baz A, Vanbogaert E, Narahari P, Switala A. A topographic
study of minicolumnar core width by lamina comparison between autistic
subjects and controls: possible minicolumnar disruption due to an anatom-
ical element in-common to multiple laminae. Brain Pathol (2010) 20:451-8.
doi:10.1111/j.1750-3639.2009.00319.x

Opris I, Casanova ME. Prefrontal cortical minicolumn: from executive con-
trol to disrupted cognitive processing. Brain (2014) 137:1863-75. doi:10.1093/
brain/awt359

Casanova MF, El-Baz AS, Kamat SS, Dombroski BA, Khalifa F, Elnakib A, et al.
Focal cortical dysplasias in autism spectrum disorders. Acta Neuropathol Com-
mun (2013) 1:67. doi:10.1186/2051-5960- 1-67

Alarcén M, Abraham BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM, et al.
Linkage, association, and gene expression analyses identify CNTNAP2 as an
autism-susceptibility gene. Am J Hum Genet (2008) 82:150-9. doi:10.1016/j.
2jhg.2007.09.005

Piggot J, Shirinyan D, Shemmassian S, Vazirian S, Alarcén M. Neural systems
approaches to the neurogenetics of autism spectrum disorders. Neuroscience
(2009) 164:247-56. doi:10.1016/j.neuroscience.2009.05.054

Kotagiri P, Chance SA, Szele FG, Esiri MM. Subventricular zone cytoarchi-
tecture changes in autism. Dev Neurobiol (2014) 74:25-41. doi:10.1002/dneu.
22127

Gozzi M, Nielson DM, Lenroot RK, Ostuni JL, Luckenbaugh DA, Thurm
AE, et al. A magnetization transfer imaging study of corpus callosum myeli-
nation in young children with autism. Biol Psychiatry (2012) 72:215-20.
doi:10.1016/j.biopsych.2012.01.026

Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, et al.
Consensus paper: pathological role of the cerebellum in autism. Cerebellum
(2012) 11:777-807. doi:10.1007/s12311-012-0355-9

Ritvo ER, Freeman BJ, Scheibel AB, Duong T, Robinson H, Guthrie D, et al.
Lower Purkinje cell counts in the cerebella of four autistic subjects: initial
findings of the UCLA-NSAC autopsy research report. Am J Psychiatry (1986)
143:862-6.

Gaffney GR, Tsai LY, Kuperman S, Minchin S. Cerebellar structure in autism.
Am ] Dis Child (1987) 141:1330-2.

Whitney ER, Kemper TL, Bauman ML, Rosene DL, Blatt GJ. Cerebellar Purkinje
cells are reduced in a subpopulation of autistic brains: a stereological experi-
ment using calbindin-D28k. Cerebellum (2008) 7:406—16. doi:10.1007/s12311-
008-0043-y

Scott JA, Schumann CM, Goodlin-Jones BL, Amaral DG. A comprehensive
volumetric analysis of the cerebellum in children and adolescents with autism
spectrum disorder. Autism Res (2009) 2:246-57. doi:10.1002/aur.97
Courchesne E, Saitoh O, Yeung-Courchesne R, Press GA, Lincoln AJ, Haas RH,
et al. Abnormality of cerebellar vermian lobules VI and VII in patients with
infantile autism: identification of hypoplastic and hyperplastic subgroups by
MR imaging. AJR Am ] Roentgenol (1994) 162:123-30. doi:10.2214/ajr.162.1.
8273650

Jeong JW, Tiwari VN, Behen ME, Chugani HT, Chugani DC. In vivo detec-
tion of reduced Purkinje cell fibers with diffusion MRI tractography in

Frontiers in Endocrinology | Thyroid Endocrinology

September 2014 | Volume 5 | Article 146 | 26


http://dx.doi.org/10.1002/hipo.20476
http://dx.doi.org/10.1210/en.2008-0560
http://dx.doi.org/10.1210/en.2008-0560
http://dx.doi.org/10.1016/j.neuroscience.2010.10.003
http://dx.doi.org/10.1073/pnas.0907655106
http://dx.doi.org/10.1073/pnas.0907655106
http://dx.doi.org/10.1097/00001756-200108080-00015
http://dx.doi.org/10.1097/00001756-200108080-00015
http://dx.doi.org/10.1016/j.bbr.2004.11.012
http://dx.doi.org/10.1016/j.bbr.2004.11.012
http://dx.doi.org/10.1016/j.neuroscience.2012.11.022
http://dx.doi.org/10.1016/j.neurobiolaging.2006.08.013
http://dx.doi.org/10.1016/j.neurobiolaging.2006.08.013
http://dx.doi.org/10.1017/S146114570900025X
http://dx.doi.org/10.1016/j.brainres.2010.11.099
http://dx.doi.org/10.1016/j.mcn.2005.09.019
http://dx.doi.org/10.1093/brain/121.5.889
http://dx.doi.org/10.1093/brain/121.5.889
http://dx.doi.org/10.1093/brain/awh287
http://dx.doi.org/10.1007/s00401-010-0655-4
http://dx.doi.org/10.1007/s00401-010-0655-4
http://dx.doi.org/10.1038/sj.ejhg.5201785
http://dx.doi.org/10.1016/j.neuron.2007.10.016
http://dx.doi.org/10.1186/2047-9158-2-17
http://dx.doi.org/10.1186/2047-9158-2-17
http://dx.doi.org/10.1212/01.wnl.0000229923.08213.1e
http://dx.doi.org/10.1177/08830738060210100701
http://dx.doi.org/10.1001/jama.2011.1638
http://dx.doi.org/10.1093/brain/awh332
http://dx.doi.org/10.1093/brain/awh332
http://dx.doi.org/10.1186/1742-2094-10-46
http://dx.doi.org/10.1002/ana.20315
http://dx.doi.org/10.1186/2040-2392-5-17
http://dx.doi.org/10.1007/s00401-012-0976-6
http://dx.doi.org/10.1016/j.ijdevneu.2004.09.006
http://dx.doi.org/10.1212/WNL.35.6.866
http://dx.doi.org/10.1212/WNL.35.6.866
http://dx.doi.org/10.1111/j.1750-3639.2009.00319.x
http://dx.doi.org/10.1093/brain/awt359
http://dx.doi.org/10.1093/brain/awt359
http://dx.doi.org/10.1186/2051-5960-1-67
http://dx.doi.org/10.1016/j.ajhg.2007.09.005
http://dx.doi.org/10.1016/j.ajhg.2007.09.005
http://dx.doi.org/10.1016/j.neuroscience.2009.05.054
http://dx.doi.org/10.1002/dneu.22127
http://dx.doi.org/10.1002/dneu.22127
http://dx.doi.org/10.1016/j.biopsych.2012.01.026
http://dx.doi.org/10.1007/s12311-012-0355-9
http://dx.doi.org/10.1007/s12311-008-0043-y
http://dx.doi.org/10.1007/s12311-008-0043-y
http://dx.doi.org/10.1002/aur.97
http://dx.doi.org/10.2214/ajr.162.1.8273650
http://dx.doi.org/10.2214/ajr.162.1.8273650
http://www.frontiersin.org/Thyroid_Endocrinology
http://www.frontiersin.org/Thyroid_Endocrinology/archive

Berbel et al.

Thyroid hormones and cortical development: autism

306.

308.

309.

312.

313.

314.

315.

316.

317.

318.

319.

320.

322.

323.

324.

325.

children with autistic spectrum disorders. Front Hum Neurosci (2014) 8:110.
doi:10.3389/fnhum.2014.00110

Perry EK, Lee ML, Martin-Ruiz CM, Court JA, Volsen SG, Merrit J. Cholinergic
activity in autism: abnormalities in the cerebral cortex and basal forebrain. Am
] Psychiatry (2001) 158:1058-66. doi:10.1176/appi.ajp.158.7.1058

. Lee M, Martin-Ruiz C, Graham A, Court J, Jaros E, Perry R. Nicotinic receptor

abnormalities in the cerebellar cortex in autism. Brain (2002) 125:1483-95.
doi:10.1093/brain/awf160

Blatt GJ, Fitzgerald CM, Guptill JT, Booker AB, Kemper TL, Bauman ML. Den-
sity and distribution of hippocampal neurotransmitter receptors in autism: an
autoradiographic study. J Autism Dev Disord (2001) 31:537—43. doi:10.1023/
A:1013238809666

Oblak AL, Gibbs TT, Blatt GJ. Decreased GABA(B) receptors in the cingu-
late cortex and fusiform gyrus in autism. J Neurochem (2010) 114:1414-23.
doi:10.1111/j.1471-4159.2010.06858.x

. Oblak AL, Gibbs TT, Blatt GJ. Reduced GABA(A) receptors and benzodiazepine

binding sites in the posterior cingulate cortex and fusiform gyrus in autism.
Brain Res (2011) 1380:218-28. doi:10.1016/j.brainres.2010.09.021

. Fatemi SH, Reutiman TJ, Folsom TD, Thuras PD. GABAA receptor down-

regulation in brains of subjects with autism. J Autism Dev Disord (2009)
39:223-30. doi:10.1007/s10803-008-0646-7

Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR. Glutamic
acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal
and cerebellar cortices. Biol Psychiatry (2002) 52:805-10. doi:10.1016/S0006-
3223(02)01430-0

Fatemi SH, Folsom TD. Dysregulation of fragile x mental retardation pro-
tein and metabotropic glutamate receptor 5 in superior frontal cortex of
individuals with autism: a postmortem brain study. Mol Autism (2011) 2:6.
doi:10.1186/2040-2392-2-6

Fatemi SH, Folsom TD, Kneeland RE, Liesch SB. Metabotropic glutamate recep-
tor 5 up-regulation in children with autism is associated with underexpression
of both fragile X mental retardation protein and GABAA receptor beta 3 in
adults with autism. Anat Rec (2011) 294:1635-45. d0i:10.1002/ar.21299
Rustan OG, Folsom TD, Yousefi MK, Fatemi SH. Phosphorylated fragile X
mental retardation protein at serine 499, is reduced in cerebellar vermis and
superior frontal cortex of subjects with autism: implications for fragile X mental
retardation protein-metabotropic glutamate receptor 5 signaling. Mol Autism
(2013) 14(1):41. doi:10.1186/2040-2392-4-41

Oblak A, Gibbs TT, Blatt GJ. Reduced serotonin receptor subtypes in a
limbic and a neocortical region in autism. Autism Res (2013) 6:571-83.
doi:10.1002/aur.1317

Kang JQ, Barnes G. A common susceptibility factor of both autism and
epilepsy: functional deficiency of GABA A receptors. J Autism Dev Disord
(2013) 43:68-79. doi:10.1007/s10803-012-1543-7

Betancur C, Buxbaum JD. SHANK3 haploinsufficiency: a “common” but
underdiagnosed highly penetrant monogenic cause of autism spectrum dis-
orders. Mol Autism (2013) 4:17. doi:10.1186/2040-2392-4-17

Abdallah MW, Mortensen EL, Greaves-Lord K, Larsen N. Neonatal levels of
neurotrophic factors and risk of autism spectrum disorders. Acta Psychiatr
Scand (2013) 128:61-9. doi:10.1111/acps.12020

Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, et al. Contri-
bution of SHANK3 mutations to autism spectrum disorder. Am | Hum Genet
(2007) 81:1289-97. doi:10.1086/522590

. Betancur C. Etiological heterogeneity in autism spectrum disorders: more

than 100 genetic and genomic disorders and still counting. Brain Res (2011)
1380:42-77. doi:10.1016/j.brainres.2010.11.078

Chatonnet F, Flamant F, Morte B. A temporary compendium of thyroid
hormone target genes in brain. Biochim Biophys Acta (2014). doi:10.1016/j.
bbagrm.2014.05.023

Pescucci C, Meloni I, Bruttini M, Ariani F, Longo I, Mari F, et al. Chromosome
2 deletion encompassing the MAP2 gene in a patient with autism and Rett-like
features. Clin Genet (2003) 64:497-501. doi:10.1046/j.1399-0004.2003.00176.x
Kalkman HO. Potential opposite roles of the extracellular signal-regulated
kinase (ERK) pathway in autism spectrum and bipolar disorders. Neurosci
Biobehav Rev (2012) 36:2206—13. doi:10.1016/j.neubiorev.2012.07.008

Waltes R, Duketis E, Knapp M, Anney RJ, Huguet G, Schlitt S, et al. Com-
mon variants in genes of the postsynaptic FMRP signalling pathway are
risk factors for autism spectrum disorders. Hum Genet (2014) 133:781-92.
doi:10.1007/s00439-013-1416-y

326.

327.

328.

329.

330.

332.

333.

334.

335.

336.

337.

338.

339.

340.

341.

342.

343.

344.

345.

346.

Cao E Yin A, Wen G, Sheikh AM, Tauqeer Z, Malik M, et al. Alteration of astro-
cytes and Wnt/B-catenin signaling in the frontal cortex of autistic subjects. J
Neuroinflammation (2012) 9(1):223. doi:10.1186/1742-2094-9-223

Chen YZ, Matsushita M, Girirajan S, Lisowski M, Sun E, Sul Y, et al. Evidence
for involvement of GNBIL in autism. Am | Med Genet B Neuropsychiatr Genet
(2012) 159B:61-71. doi:10.1002/ajmg.b.32002

Emanuele E, Orsi P, Barale F, di Nemi SU, Bertona M, Politi P. Serum lev-
els of vascular endothelial growth factor and its receptors in patients with
severe autism. Clin Biochem (2010) 43:317-9. doi:10.1016/j.clinbiochem.2009.
10.005

Kim SJ, Gonen D, Hanna GL, Leventhal BL, Cook EH Jr. Deletion polymor-
phism in the coding region of the human NESP55 alternative transcript of
GNAS1. Mol Cell Probes (2000) 14:191—4. doi:10.1006/mcpr.2000.0300
Corbett BA, Kantor AB, Schulman H, Walker WL, Lit L, Ashwood P, etal.
A proteomic study of serum from children with autism showing differential
expression of apolipoproteins and complement proteins. Mol Psychiatry (2007)
12:292-306. doi:10.1038/sj.mp.4001943

. Garbett K, Ebert PJ, Mitchell A, Lintas C, Manzi B, Mirnics K, et al. Immune

transcriptome alterations in the temporal cortex of subjects with autism. Neu-
robiol Dis (2008) 30:303—11. doi:10.1016/j.nbd.2008.01.012

Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR, Roy S, et al. Patches of
disorganization in the neocortex of children with autism. N Engl ] Med (2014)
370:1209-19. doi:10.1056/NEJMoal307491

Pickett J, London E. The neuropathology of autism: a review. | Neuropathol
Exp Neurol (2005) 64:925-35. d0i:10.1097/01.jnen.0000186921.42592.6¢

LiJ, Liu J, Zhao L, Ma Y, Jia M, Lu T, et al. Association study between genes in
reelin signaling pathway and autism identifies DAB1 as a susceptibility gene in
a Chinese Han population. Prog Neuropsychopharmacol Biol Psychiatry (2013)
44:226-32. doi:10.1016/j.pnpbp.2013.01.004

DuX,AnY,YuL, Liu R, QinY, Guo X, et al. A genomic copy number variant
analysis implicates the MBD5 and HNRNPU genes in Chinese children with
infantile spasms and expands the clinical spectrum of 2q23.1 deletion. BMC
Med Genet (2014) 15:62. doi:10.1186/1471-2350-15-62

Fatemi SH. Reelin glycoprotein: structure, biology and roles in health and dis-
ease. Mol Psychiatry (2005) 10:251-7. doi:10.1038/sj.mp.4001613

Persico AM, D’Agruma L, Maiorano N, Totaro A, Militerni R, Bravaccio C,
et al. Collaborative linkage study of autism. Reelin gene alleles and haplotypes
as a factor predisposing to autistic disorder. Mol Psychiatry (2001) 6:150-9.
doi:10.1038/sj.mp.4000850

Zhang H, Liu X, Zhang C, Mundo E, Macciardi F, Grayson DR. Reelin gene
alleles and susceptibility for autism spectrum disorders. Mol Psychiatry (2002)
7:1012-7. doi:10.1038/sj.mp.4001124

Skaar DA, Shao Y, Haines JL, Stenger JE, Jaworski J, Martin ER, et al. Analysis
of the RELN gene as a genetic risk factor for autism. Mol Psychiatry (2005)
10:563-71. doi:10.1038/sj.mp.4001614

Serajee FJ, Zhong H, Mahbubul Huq AH. Association of reelin gene polymor-
phisms with autism. Genomics (2006) 87:75-83. doi:10.1016/j.ygeno.2005.09.
008

Krebs MO, Betancur C, Leroy S, Bourdel MC, Gillberg C, Leboyer M, et al.
Absence of association between a polymorphic GGC repeat in the 50 untrans-
lated region of the reelin gene and autism. Mol Psychiatry (2002) 7:801—4.
doi:10.1038/sj.mp.4001071

Bonora E, Beyer KS, Lamb JA, Parr JR, Klauck SM, Benner A, et al. Interna-
tional molecular genetic study of autism (IMGSAC). Analysis of reelin as a
candidate gene for autism. Mol Psychiatry (2003) 10:885-92. doi:10.1038/sj.
mp.4001310

Devlin B, Bennett P, Dawson G, Figlewicz DA, Grigorenko EL, McMahon
W, etal. Alleles of a reelin CGG repeat do not convey liability to autism
in a sample from the CPEA network. Am | Med Genet (2004) 126B:46-50.
doi:10.1002/ajmg.b.20125

LiJ, Nguyen L, Gleason C, Lotspeich L, Spiker D, Risch N. Lack of evidence for
an association between WNT2 and RELN polymorphisms and autism. Am |
Med Genet (2004) 126B:51-7. doi:10.1002/ajmg.b.20122

Wang Z, Hong Y, Zou L, Zhong R, Zhu B, Shen N, et al. Reelin gene variants
and risk of autism spectrum disorders: an integrated meta-analysis. Am ] Med
Genet B Neuropsychiatr Genet (2014) 165:192—200. doi:10.1002/ajmg.b.32222
Bi C, Wu J, Jiang T, Liu Q, Cai W, Yu P, et al. Mutations of ANK3 identified
by exome sequencing are associated with autism susceptibility. Hum Mutat
(2012) 33:1635-8. doi:10.1002/humu.22174

www.frontiersin.org

September 2014 | Volume 5 | Article 146 | 27


http://dx.doi.org/10.3389/fnhum.2014.00110
http://dx.doi.org/10.1176/appi.ajp.158.7.1058
http://dx.doi.org/10.1093/brain/awf160
http://dx.doi.org/10.1023/A:1013238809666
http://dx.doi.org/10.1023/A:1013238809666
http://dx.doi.org/10.1111/j.1471-4159.2010.06858.x
http://dx.doi.org/10.1016/j.brainres.2010.09.021
http://dx.doi.org/10.1007/s10803-008-0646-7
http://dx.doi.org/10.1016/S0006-3223(02)01430-0
http://dx.doi.org/10.1016/S0006-3223(02)01430-0
http://dx.doi.org/10.1186/2040-2392-2-6
http://dx.doi.org/10.1002/ar.21299
http://dx.doi.org/10.1186/2040-2392-4-41
http://dx.doi.org/10.1002/aur.1317
http://dx.doi.org/10.1007/s10803-012-1543-7
http://dx.doi.org/10.1186/2040-2392-4-17
http://dx.doi.org/10.1111/acps.12020
http://dx.doi.org/10.1086/522590
http://dx.doi.org/10.1016/j.brainres.2010.11.078
http://dx.doi.org/10.1016/j.bbagrm.2014.05.023
http://dx.doi.org/10.1016/j.bbagrm.2014.05.023
http://dx.doi.org/10.1046/j.1399-0004.2003.00176.x
http://dx.doi.org/10.1016/j.neubiorev.2012.07.008
http://dx.doi.org/10.1007/s00439-013-1416-y
http://dx.doi.org/10.1186/1742-2094-9-223
http://dx.doi.org/10.1002/ajmg.b.32002
http://dx.doi.org/10.1016/j.clinbiochem.2009.10.005
http://dx.doi.org/10.1016/j.clinbiochem.2009.10.005
http://dx.doi.org/10.1006/mcpr.2000.0300
http://dx.doi.org/10.1038/sj.mp.4001943
http://dx.doi.org/10.1016/j.nbd.2008.01.012
http://dx.doi.org/10.1056/NEJMoa1307491
http://dx.doi.org/10.1097/01.jnen.0000186921.42592.6c
http://dx.doi.org/10.1016/j.pnpbp.2013.01.004
http://dx.doi.org/10.1186/1471-2350-15-62
http://dx.doi.org/10.1038/sj.mp.4001613
http://dx.doi.org/10.1038/sj.mp.4000850
http://dx.doi.org/10.1038/sj.mp.4001124
http://dx.doi.org/10.1038/sj.mp.4001614
http://dx.doi.org/10.1016/j.ygeno.2005.09.008
http://dx.doi.org/10.1016/j.ygeno.2005.09.008
http://dx.doi.org/10.1038/sj.mp.4001071
http://dx.doi.org/10.1038/sj.mp.4001310
http://dx.doi.org/10.1038/sj.mp.4001310
http://dx.doi.org/10.1002/ajmg.b.20125
http://dx.doi.org/10.1002/ajmg.b.20122
http://dx.doi.org/10.1002/ajmg.b.32222
http://dx.doi.org/10.1002/humu.22174
http://www.frontiersin.org
http://www.frontiersin.org/Thyroid_Endocrinology/archive

Berbel et al.

Thyroid hormones and cortical development: autism

347.

348.

349.

353.

355.

356.

357.

358.

359.

360.

Turner G, Partington M, Kerr B, Mangelsdorf M, Gecz J. Variable expression of
mental retardation, autism, seizures, and dystonic hand movements in two fam-
ilies with an identical ARX gene mutation. Am ] Med Genet (2002) 112:405-11.
doi:10.1002/ajmg.10714

Egger G, Roetzer KM, Noor A, Lionel AC, Mahmood H, Schwarzbraun T, et al.
Identification of risk genes for autism spectrum disorder through copy num-
ber variation analysis in Austrian families. Neurogenetics (2014) 15:117-27.
doi:10.1007/5s10048-014-0394-0

Nishimura K, Nakamura K, Anitha A, Yamada K, Tsujii M, Iwayama Y, et al.
Genetic analyses of the brain-derived neurotrophic factor (BDNF) gene in
autism. Biochem Biophys Res Commun (2007) 356:200—6. doi:10.1016/j.bbrc.
2007.02.135

. Zuko A, Kleijer KT, Oguro-Ando A, Kas MJ, van Daalen E, van der Zwaag

B, etal. Contactins in the neurobiology of autism. Eur J Pharmacol (2013)
719:63-74. doi:10.1016/j.ejphar.2013.07.016

. Kim HW, Cho SC, Kim JW, Cho IH, Kim SA, Park M, et al. Family-based

association study between NOS-I and -IIA polymorphisms and autism spec-
trum disorders in Korean trios. Am | Med Genet B Neuropsychiatr Genet (2009)
150B:300—6. doi:10.1002/ajmg.b.30798

. Yang W, Liu J, Zheng F, Jia M, Zhao L, Lu T, et al. The evidence for association

of ATP2B2 polymorphisms with autism in Chinese Han population. PLoS One
(2013) 8(4):e61021. doi:10.1371/journal.pone.0061021

Morte B, Martinez de Arrieta C, Manzano J, Coloma A, Bernal J. Identification
of a cis-acting element that interferes with thyroid hormone induction of the
neurogranin (NRGN) gene. FEBS Lett (1999) 464:179-83. doi:10.1016/S0014-
5793(99)01706-8

. Kelleher RJ III, Geigenmiiller U, Hovhannisyan H, Trautman E, Pinard R, Rath-

mell B, et al. High-throughput sequencing of mGluR signaling pathway genes
reveals enrichment of rare variants in autism. PLoS One (2012) 7(4):e35003.
doi:10.1371/journal.pone.0035003

Sicca F, Imbrici P, D’Adamo MC, Moro F, Bonatti E Brovedani P, et al. Autism
with seizures and intellectual disability: possible causative role of gain-of-
function of the inwardly-rectifying K+ channel Kir4.1. Neurobiol Dis (2011)
43:239-47. doi:10.1016/j.nbd.2011.03.016

Lassig JP, Vachirasomtoon K, Hartzell K, Leventhal M, Courchesne E, Courch-
esne R, etal. Physical mapping of the serotonin 5-HT(7) receptor gene
(HTR7) to chromosome 10 and pseudogene (HTR7P) to chromosome 12,
and testing of linkage disequilibrium between HTR7 and autistic disorder.
Am ] Med Genet (1999) 88:472-5. doi:10.1002/(SICI)1096-8628(19991015)
88:5<472::AID-AJMG7>3.0.CO;2-G

Gadad BS, Hewitson L, Young KA, German DC. Neuropathology and animal
models of autism: genetic and environmental factors. Autism Res Treat (2013)
2013:731935. doi:10.1155/2013/731935

Provenzano G, Zunino G, Genovesi S, Sgad6 P, Bozzi Y. Mutant mouse mod-
els of autism spectrum disorders. Dis Markers (2012) 33:225-39. doi:10.3233/
DMA-2012-0917

Sadamatsu M, Kanai H, Xu X, Liu Y, Kato N. Review of animal models for
autism: implication of thyroid hormone. Congenit Anom (Kyoto) (2006) 46:1-9.
doi:10.1111/j.1741-4520.2006.00094.x

Moy SS, Riddick NV, Nikolova VD, Teng BL, Agster KL, Nonneman RJ,
etal. Repetitive behavior profile and supersensitivity to amphetamine in
the C58/] mouse model of autism. Behav Brain Res (2014) 259:200-14.
doi:10.1016/j.bbr.2013.10.052

. Sgadd P, Genovesi S, Kalinovsky A, Zunino G, Macchi E Allegra M,

etal. Loss of GABAergic neurons in the hippocampus and cerebral
cortex of engrailed-2 null mutant mice: implications for autism spectrum
disorders. Exp Neurol (2013) 247:496-505. doi:10.1016/j.expneurol.2013.01.
021

362. Sgadod P, Provenzano G, Dassi E, Adami V, Zunino G, Genovesi S, et al. Tran-
scriptome profiling in engrailed-2 mutant mice reveals common molecular
pathways associated with autism spectrum disorders. Mol Autism (2013) 4(1):5.
doi:10.1186/2040-2392-4-51

Burket JA, Benson AD, Tang AH, Deutsch SI. Rapamycin improves sociability
in the BTBR T(+)Itpr3(tf)/] mouse model of autism spectrum disorders. Brain
Res Bull (2014) 100:70-5. doi:10.1016/j.brainresbull.2013.11.005

Ellegood J, Babineau BA, Henkelman RM, Lerch JP, Crawley JN. Neuroanatom-
ical analysis of the BTBR mouse model of autism using magnetic reso-
nance imaging and diffusion tensor imaging. Neuroimage (2012) 70:288-300.
doi:10.1016/j.neuroimage.2012.12.029

Uchino S, Waga C. SHANK3 as an autism spectrum disorder-associated gene.
Brain Dev (2013) 35:106-10. doi:10.1016/j.braindev.2012.05.013

Waga C, Asano H, Sanagi T, Suzuki E, Nakamura Y, Tsuchiya A, et al. Identifi-
cation of two novel Shank3 transcripts in the developing mouse neocortex. J
Neurochem (2014) 128:280-93. doi:10.1111/jnc.12505

Almeida LE, Roby CD, Krueger BK. Increased BDNF expression in fetal brain
in the valproic acid model of autism. Mol Cell Neurosci (2014) 59C:57-62.
doi:10.1016/j.mcn.2014.01.007

Martin HG, Manzoni OJ. Late onset deficits in synaptic plasticity in the val-
proic acid rat model of autism. Front Cell Neurosci (2014) 8:23. doi:10.3389/
fncel.2014.00023

Chomiak T, Hung J, Cihal A, Dhaliwal J, Baghdadwala M, Dzwonek A,
et al. Auditory-cued sensorimotor task reveals disengagement deficits in rats
exposed to the autism-associated teratogen valproic acid. Neuroscience (2014)
268:212-20. doi:10.1016/j.neuroscience.2014.02.049

Chomiak T, Hu B. Alterations of neocortical development and maturation in
autism: insight from valproic acid exposure and animal models of autism.
Neurotoxicol Teratol (2013) 36:57—66. doi:10.1016/j.ntt.2012.08.005

Engineer CT, Centanni TM, Im KW, Borland MS, Moreno NA, Carraway
RS, et al. Degraded auditory processing in a rat model of autism limits the
speech representation in non-primary auditory cortex. Dev Neurobiol (2014).
doi:10.1002/dneu.22175

Sahu JK, Gulati S, Kabra M, Arya R, Sharma R, Gupta N, etal. Evalua-
tion of subclinical hypothyroidism in ambulatory children with controlled
epilepsy on valproate monotherapy. J Child Neurol (2012) 27:594-7. doi:10.
1177/0883073811421985

Armon C, Brown E, Carwile S, Miller P, Shin C. Sensorineural hearing loss:
a reversible effect of valproic acid. Neurology (1990) 40:1896-8. doi:10.1212/
WNL.40.12.1896

363.

364.

365.

366.

367.

368.

369.

370.

371.

372.

373.

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 12 April 2014; accepted: 25 August 2014; published online: 09 September
2014.

Citation: Berbel P, Navarro D and Romdn GC (2014) An evo-devo approach to thyroid
hormones in cerebral and cerebellar cortical development: etiological implications for
autism. Front. Endocrinol. 5:146. doi: 10.3389/fendo.2014.00146

This article was submitted to Thyroid Endocrinology, a section of the journal Frontiers
in Endocrinology.

Copyright © 2014 Berbel, Navarro and Romdn. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journalis cited,
in accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Endocrinology | Thyroid Endocrinology

September 2014 | Volume 5 | Article 146 | 28


http://dx.doi.org/10.1002/ajmg.10714
http://dx.doi.org/10.1007/s10048-014-0394-0
http://dx.doi.org/10.1016/j.bbrc.2007.02.135
http://dx.doi.org/10.1016/j.bbrc.2007.02.135
http://dx.doi.org/10.1016/j.ejphar.2013.07.016
http://dx.doi.org/10.1002/ajmg.b.30798
http://dx.doi.org/10.1371/journal.pone.0061021
http://dx.doi.org/10.1016/S0014-5793(99)01706-8
http://dx.doi.org/10.1016/S0014-5793(99)01706-8
http://dx.doi.org/10.1371/journal.pone.0035003
http://dx.doi.org/10.1016/j.nbd.2011.03.016
http://dx.doi.org/10.1002/(SICI)1096-8628(19991015)88:5<472::AID-AJMG7>3.0.CO;2-G
http://dx.doi.org/10.1002/(SICI)1096-8628(19991015)88:5<472::AID-AJMG7>3.0.CO;2-G
http://dx.doi.org/10.1155/2013/731935
http://dx.doi.org/10.3233/DMA-2012-0917
http://dx.doi.org/10.3233/DMA-2012-0917
http://dx.doi.org/10.1111/j.1741-4520.2006.00094.x
http://dx.doi.org/10.1016/j.bbr.2013.10.052
http://dx.doi.org/10.1016/j.expneurol.2013.01.021
http://dx.doi.org/10.1016/j.expneurol.2013.01.021
http://dx.doi.org/10.1186/2040-2392-4-51
http://dx.doi.org/10.1016/j.brainresbull.2013.11.005
http://dx.doi.org/10.1016/j.neuroimage.2012.12.029
http://dx.doi.org/10.1016/j.braindev.2012.05.013
http://dx.doi.org/10.1111/jnc.12505
http://dx.doi.org/10.1016/j.mcn.2014.01.007
http://dx.doi.org/10.3389/fncel.2014.00023
http://dx.doi.org/10.3389/fncel.2014.00023
http://dx.doi.org/10.1016/j.neuroscience.2014.02.049
http://dx.doi.org/10.1016/j.ntt.2012.08.005
http://dx.doi.org/10.1002/dneu.22175
http://dx.doi.org/10.1177/0883073811421985
http://dx.doi.org/10.1177/0883073811421985
http://dx.doi.org/10.1212/WNL.40.12.1896
http://dx.doi.org/10.1212/WNL.40.12.1896
http://dx.doi.org/10.3389/fendo.2014.00146
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Thyroid_Endocrinology
http://www.frontiersin.org/Thyroid_Endocrinology/archive

	An evo-devo approach to thyroid hormones in cerebral and cerebellar cortical development: etiological implications for autism
	Introduction
	Thyroid function during brain development
	Thyroid hormone cell membrane transport
	Thyroid hormone metabolism (activation/degradation)
	Thyroid hormone nuclear receptors

	Nutritional and environmental factors affecting thyroid function
	Thyroid function-disrupting chemicals from environmental contaminants
	Iodine deficiency disorders and neurodevelopmental damage
	Critical issues of cerebral cortex development
	Experimental models to study cortical alterations caused by thyroid hormone deficiency
	Alterations in cortical development caused by thyroid hormone deficiencies
	Genes regulated by thyroid hormones involved in brain development
	Altered neurogenesis and migration during corticogenesis
	Abnormal cortical cytoarchitecture and connectivity
	Delayed cortical maturation

	ASD and thyroid hormones during brain development
	Brain alterations
	Neurotransmitters in ASD
	Thyroid-related genes involved in ASD
	Animal models of ASD

	Conclusion
	Acknowledgments
	References


