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Changing loading regimens by natural means such as exercise, with or without interference
such as osteotomy, has provided useful information on the structure:function relationship
in bone tissue. However, the greatest precision in defining those aspects of the overall
strain environment that influence modeling and remodeling behavior has been achieved
by relating quantified changes in bone architecture to quantified changes in bones’ strain
environment produced by direct, controlled artificial bone loading. Jiri Hert introduced the
technique of artificial loading of bones in vivo with external devices in the 1960s using
an electromechanical device to load rabbit tibiae through transfixing stainless steel pins.
Quantifying natural bone strains during locomotion by attaching electrical resistance strain
gages to bone surfaces was introduced by Lanyon, also in the 1960s. These studies in
a variety of bones in a number of species demonstrated remarkable uniformity in the
peak strains and maximum strain rates experienced. Experiments combining strain gage
instrumentation with artificial loading in sheep, pigs, roosters, turkeys, rats, and mice has
yielded significant insight into the control of strain-related adaptive (re)modeling.This diver-
sity of approach has been largely superseded by non-invasive transcutaneous loading in
rats and mice, which is now the model of choice for many studies. Together such studies
have demonstrated that over the physiological strain range, bone’s mechanically adaptive
processes are responsive to dynamic but not static strains; the size and nature of the adap-
tive response controlling bone mass is linearly related to the peak loads encountered; the
strain-related response is preferentially sensitive to high strain rates and unresponsive to
static ones; is most responsive to unusual strain distributions; is maximized by remarkably
few strain cycles, and that these are most effective when interrupted by short periods of
rest between them.

Keywords: bone, mechanical loading, experimental models, mechanostat, mechanical strain

INTRODUCTION
The effect of mechanical loading on bone has been studied since
the nineteenth century. These studies have primarily utilized ani-
mal models of mechanical loading since bone adaptation is a
highly complex process that is difficult to fully appreciate in vitro or
in silico. The first aim of this review is to discuss the various models
that have aided our understanding of this adaptive process. The
second section will discuss the knowledge that has been gained
from such in vivo studies, which have determined how to modify
the mechanical strain stimulus to give a more osteogenic outcome.
Finally, we will explore the effect of physiological context on bone’s
adaptive response to loading using the example of estrogen’s role
in the adaptive process and its contribution to post-menopausal
osteoporosis.

WOLFF’S LAW AND THE MECHANOSTAT
In 1892, the anatomist and orthopedic surgeon Julius Wolff postu-
lated that bone adapted to its mechanical environment according
to strict mathematical laws. This principle, now commonly known
as Wolff ’s Law (1) was based on anatomical dissection studies

which demonstrated increased bone mass in areas predicted to
be subject to high mechanical stresses and low bone mass where
stresses were predicted to be low. Incorporating previous work
by the anatomist Meyer and the Swiss engineer Culmann, Wolff
further observed that trabeculae in the femoral head and neck
were orientated to reduce bending stresses when the material was
loaded. These observations allowed Wolff to state his “Law” as
“Every change in form or function of bone or of their function alone is
followed by certain definite changes in their internal architecture, and
equally definite alteration in their external conformation, in accor-
dance with mathematical laws” (2). Wolff ’s Law was expanded by
Wilhelm Roux who suggested bone adaptation was the result of a
“quantitative self-regulating mechanism” based in the tissue at the
level of the cell (3).

Architectural bone changes such as those observed by Wolff
were hypothesized to occur due to a dynamic adaptive process
in response to changes in the mechanical stimulus derived from
load-bearing. This theory was further developed by Harold Frost in
1960 whose thoughts form the basis of the current “mechanostat”
theory of bone adaptation (4). Frost recognized that the most likely
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loading-derived stimulus for bone cells would be the strains devel-
oped in the bone tissue as a result of loading. His mechanostat
theory suggests a negative feedback system in which the input
is local mechanical strain, engendered by functional mechani-
cal loading, and the output is a structurally appropriate bone
mass and architecture. Accordingly, in areas of bone experiencing
mechanical strains higher than the strain set point, bone forma-
tion would occur to make a stiffer bone construct thus reducing
strains and restoring set point strains. Conversely, if bones expe-
rienced strains lower than the set point, then bone resorption
would occur, bone mass would decrease and, for the same loads,
strains would again be restored to the level of the set point. This
theory was extensively described in the Utah Paradigm of Skele-
tal Physiology (4). It is an important component of this theory
that the mechanostat is a local phenomenon with local changes
in strain adjusting local bone mass through local bone forma-
tion or resorption. However, it is also important to remember that
the mechanostat operates within a wider physiological context
and that its ability to establish and maintain structural compe-
tence may be substantially modified, or overwhelmed, by systemic
circumstances (5, 6).

EXTRINSIC MODELS OF MECHANICAL LOADING
What neither Wolff nor Frost was able to state was the specific
components of bone cells’ strain environment that act as the con-
trolling stimulus for architectural modeling and remodeling. It
is this question that has been addressed principally by animal
experiments.

One of the simplest ways to increase the mechanical loads expe-
rienced by bones in the skeleton is to increase the level of exercise
undertaken. A large variety of techniques have been described to
achieve this in experimental animals, usually taking the form of
forced exercise such as treadmill running (7–9), swimming (10–
12), or jumping (13, 14). Other models have also been described
in which animals (usually rats) wear increasingly weighted back-
packs or have to press levers with increasing levels of resistance to
get food rewards (15).

In these exercise models, the whole body is loaded through
coordinated muscular contraction and ground reaction forces in

a manner that is an exaggeration or extension of that to which
they are habituated. Such studies are useful since they require little
in the way of specialized equipment and they mimic the natural
challenge to skeletal strength that the mechanostat presumably
evolved to address. However, while exercise may be the easiest
therapy to prescribe in an attempt to regulate bone mass or adjust
bone architecture, it involves a mixed stimulus of change in load-
ing and physiological context that makes the results difficult to
interpret.

As well as (presumably) altering local mechanical strain, exer-
cise engenders a great many other physiological responses such
as increasing tissue blood flow and oxygenation (16, 17), chang-
ing the endocrine environment (18), muscular contraction, and
local release of potentially osteogenic factors from muscle (19),
which could complicate interpretation of the intrinsic loading-
related response of the bone alone. A further disadvantage with
exercise models is that exercise is a whole body phenomenon,
therefore comparison has to be made with controls whose total
exercise experience (both during the exercise periods and the
rest of the day) has to mimic the experimental subjects in every
respect, except the modified exercise under study. Lastly, but by
no means least, the changes in the strain environment of bone
cells brought about by change in exercise can usually only be esti-
mated mathematically with no means of experimental verification.
Such verification had to await the introduction of the chronically
implanted electrical resistance strain gage (20).

QUANTIFYING THE MECHANICAL STRAIN STIMULUS
Although Gaynor Evans had attached electrical resistance strain
gages to bone surfaces in vivo in the 1940s (21), these were only
used for the assessment of bone strains in response to impact load-
ing in anesthetized animals in short term experiments. Lanyon and
co-workers were the first to chronically implant electrical resis-
tance strain gages attached to the surfaces of bones of a variety
of living animals, including humans (Figure 1), and analyze the
various components of the strain stimulus during a variety of
activities (20, 22–30). In the majority of weight bearing long bones,
the peak mechanical strains were remarkably similar across dif-
ferent species and activities measuring approximately 2–3000 µε

FIGURE 1 | Quantifying the mechanical strain stimulus. Rosette (A) or
linear (C) electrical resistance strain gages are bonded to the surface of
bones to measure the strain stimulus being engendered during a variety

of activities and also to match experimental groups with different bone
stiffness. (B) A strain gage bonded to a human tibia and (D) to a mouse
tibia.
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(2–3 × 10−3). Peak compressive strains have subsequently been
recorded from the horse third metacarpal bone during galloping
where the recorded maximum strain magnitude reached 5,000 µε

(5 × 10−3) (26).
This similarity in peak strains recorded from different bones

from different species supported Frost’s mechanostat theory of
bone adaptation and suggested that the set point for peak func-
tional strain was similar across species. Nevertheless, it is impor-
tant to remember that this similarity in peak strains across different
load-bearing bones in different animals does not imply a single
target strain at every skeletal location. Since the highest physio-
logically induced strains are due to bending, the peak longitudinal
strains around the bone’s circumference will change from com-
pression to tension and pass through the neutral axis. However,
the cortical thickness is reasonably similar around the circum-
ference of the bone. Additionally, significantly lower strains have
also been recorded at other sites in load-bearing bones and on
the surfaces of bones whose primary role may not be sustaining
high loads. For example, low functional strains have been recorded
on the skull during activities such as chewing, smiling, and even
heading a ball (80–200 µε). This suggests that different bones, and
different sites on the same bone, have different local settings for
the target strains that their mechanostat attempts to achieve (31).

Most of the early studies using bone-bonded strain gages were
undertaken using rosette gages which respond to strain in three
different directions and therefore allow the direction of the prin-
cipal tensile, compressive, and shear strains to be calculated. These
calculations confirmed the essence of Wolff ’s hypothesis in his
trajectorial theory that bone trabecule tend to be aligned in the
directions of principal tension and compression strains (22). In
addition to measurement of strain magnitude and direction, elec-
trical resistance gages allow recording of the rate of change of
strain (the strain rate) experienced by the bone during loading
and unloading. The highest strain rate so far recorded during
natural activity was from the sunfish operculum (the bone cover-
ing the gills) during striking at prey. At −615 × 108 µε this peak
strain rate is over 10 times higher than anything so far recorded in
terrestrial animals during locomotion (32). Despite the obvious
advantage of using rosette strain gages they substantially compli-
cate the experimental procedure due to their size and the extra
number of channels that need to be monitored. Thus, particu-
larly in studies on small animals such as rodents, it has been more
usual to use single element gages (33, 34). These can only respond
to strains in the direction in which they are aligned so cannot
distinguish between changes in strain magnitude and changes in
strain direction. When using single element gages it is important
to ensure that the gage is aligned in the direction of interest and
to realize that a reduction in strain reading may mean a change in
direction as well as a reduction in strain magnitude.

Although used most widely, particularly in vivo, strain gages
are not the only devices employed to measure mechanical strains
on bone surfaces, particularly ex vivo. Other techniques include
the use of digital image correction. This method requires a speckle
pattern to be applied to the surface of the bone of interest. Sequen-
tial images are then taken during loading to trace the movement
of the speckle pattern. This allows the resulting strain to be calcu-
lated across different areas of the bone surface (35). Finite element

analysis is widely employed to calculate stresses (and thus strains)
but this requires substantial assumptions to be made as to the load
path within the bones and the material properties of the bone
tissue, which are not homogeneous along the bone’s length (36,
37). Despite these limitations, finite element analysis allows esti-
mation of the strain pattern throughout a whole bone, something
that is impossible with strain gages, which can only sample the
strain from the surfaces to which they are attached. Thus finite
element analysis can extend knowledge of the strain situation to
the depths of the bone and to the bone trabecule where strain mea-
surements using strain gages would be impossible (38–40). Using
finite element analysis combined with in vivo µCT scanning, accu-
rate prediction of sites of bone formation and resorption following
the application of mechanical loading has been possible (39).

Whichever technique is used to measure loading-engendered
mechanical strains, it is vital that strains and strain rates are nor-
malized between experimental groups. The same loads applied to
bones of different size, shape, or material properties will inevitably
result in different strains. Therefore the loads, and load rates, must
be adjusted so that the strain stimulus is the same in all bones in
the same study. It is only by doing this that their adaptive responses
can be directly compared.

INVASIVE MODELS OF MECHANICAL LOADING
While the availability of chronically implanted bone-bonded strain
gages provided the means to sample the strain environment expe-
rienced by bone cells, it was still necessary to find a suitable means
to alter this environment in a controlled manner and assess the
adaptive response. One means used to achieve this was to surgi-
cally remove a bone, or piece of bone, where paired bones exist,
to alter the functional strains on the remaining bone. An example
of this technique is the ulna ostectomy experiments performed
by Goodship et al. (41). In this experiment, a portion of the pig
ulna was removed, which increased the strains during ambula-
tion in the remaining radius. This had the effect of causing an
increase in radial bone formation. After 3 months, the strains in
the radius had normalized back to those measured in the contralat-
eral radius in the intact limb. An advantage of this model over the
whole body exercise models is that there is a control limb with
which to compare bone’s adaptive response. However, osteotomy
involves invasive surgery near to the site being investigated and
thus it is only possible to monitor rather than control the various
components of the strain stimulus.

The first successful attempts to control bones’ mechanical load-
ing in order to study their adaptive responses was established in
the 1960s by Jiri Hert who applied different loading regimens from
an external electromagnetically operated device to the tibia of rab-
bits through transfixing pins (Figure 2). By using this approach
and assessing the adaptive response of the bone Hert and his co-
workers were able to establish, amongst other findings, that adap-
tive bone (re)modeling occurred without the need for any central
nervous connection (42–44). Hert’s experiments, while ground
breaking, lacked knowledge of what the actual strains were that his
device engendered. This capability was established by Lanyon and
co-workers by combining the techniques of loading a bone in vivo
through transfixing pins with that of chronically implanted strain
gages. Although the first animal they used for this approach was the

www.frontiersin.org October 2014 | Volume 5 | Article 154 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Bone_Research/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Meakin et al. Experimental evaluation of loading-related adaptation

FIGURE 2 |The invasive rabbit loading model. Jiri Hert was the first to
describe an artificial mechanical loading model in 1969. Loading was applied
through surgically implanted pins in the lapine tibia. Using this approach and
assessing the adaptive response of the bone Hert and his co-workers were
able to establish, amongst other findings, that adaptive bone (re)modeling
occurred without the need for any central nervous connection (42–44).

FIGURE 3 |The invasive sheep loading model. Lance Lanyon adapted
Hert’s original loading model to the sheep radius and combined the loading
with strain measurements using implanted strain gages (45).

sheep (Figure 3) (45) their most productive large animal model
was the avian (rooster and later turkey) ulna (Figure 4) (46–48).
This was chosen since the ulna was large enough to receive trans-
fixing pins at its ends and three rosette strain gages around the
circumference of its midshaft. Furthermore, as domestic turkeys
and roosters are flightless, functional isolation of the bone’s natural
loading did not greatly inconvenience their lifestyle.

The preparation used in the functionally isolated externally
loadable avian ulna model involved performing a proximal and
distal ulna osteotomy, placing metal caps over each end of the cut
section of bone and securing them in place with metal pins placed
through predrilled holes in the caps. This model has an advantage
over the previous limb long bone models in that the section of
bone being loaded is functionally isolated from the rest of the wing
preventing any confounding strain stimulus derived from habit-
ual activity. Using these models, several important observations
were made documenting the effects of the different components
of the strain stimulus on bone mass and architecture. These will
be discussed in a later section of this review.

One of the disadvantages of the invasive loading models is
that placing pins through the bone to be loaded invokes a local
periosteal woven bone response (46, 48). This prevents the whole

bone from being analyzed. Furthermore, since the majority of tra-
becular bone resides at either end of the long bones, this cannot
be analyzed since it is not loaded. To overcome these problems,
Chambers et al. developed the rat tail vertebra loading model
(49). This involves placing pins through tail vertebrae in the rat
(later adapted for the mouse) adjacent to the vertebra of inter-
est that will undergo mechanical loading. This means that any
periosteal woven bone reaction is limited to bones on either side
of the one being loaded thereby permitting full analysis of the
bone of interest. Furthermore, the tail vertebrae contain abun-
dant trabecular bone enabling study of trabecular bone’s adaptive
response to loading. For these reasons, the tail vertebra loading
model is still in use today (50–52). However, there remains a con-
cern that surgical placement of pins invokes not only the woven
bone reaction in the region immediately surrounding the pin, but
also a local inflammatory reaction, which could affect adjacent
bones. Another concern is the relevance of bone adaptation in a
bone that is not normally subject to such loads since it is likely that
rodent tail vertebrae normally experience low strains during loco-
motion and other activities. A further disadvantage is that there
must be a period, once the pins have been placed, to allow their
integration into the bone prior to starting any loading studies.

NON-INVASIVE MODELS OF MECHANICAL LOADING
The first of the non-invasive artificial loading models was
described by Charles Turner et al. in 1991 (53) where he reported
applying four-point bending to the rat tibia and observing the
subsequent adaptive response. The loading arrangement consists
of two contact points on the underside (the lateral aspect) of the
limb and two on the upper medial side of the limb, which are
inside those on the underside. A force is applied by downwards
pressure from the upper contact points, which generates a bending
of the tibia and causes a subsequent remodeling response. A sham
loading arrangement where pressure is applied but no bending
force generated can be created by placing the upper contact points
directly opposite the lower ones. Although this model has advan-
tages over the invasive models previously described, the contact
points through which the loading is applied are quite close together
and they apply their loads through the periosteum. Periosteal dis-
turbance such as this is sufficient by itself to induce periosteal
woven bone formation (54). This limited the region of analysis to
the endosteal surface, which may behave inherently differently in
response to strain from the periosteum.

To address some of the issues of the four-point bending model,
Ted Gross’ group developed a cantilever bending model in which
the knee and the ankle of the mouse hindlimb were placed in spe-
cially designed cups and the ankle moved laterally in relation to the
knee to generate a bending moment in the tibia/fibula (55). This
eliminated the periosteal woven bone observed with the previous
bending model allowing analysis of both periosteal and endosteal
bone compartments. However, there was still the concern that this
bending moment does not accurately recreate the axial loading
generated during ambulation in people and animals. Furthermore,
only the central diaphyseal region of the bone displays a response
to loading meaning the metaphyseal region containing the major-
ity of the trabecular bone is not loaded and therefore does not
display an adaptive process.
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FIGURE 4 |The functionally isolated invasive turkey loading model. Lanyon and Rubin further applied the invasive loading model to the functionally isolated
avian ulna, which had the advantage that the loaded bone is isolated from the confounding influence of background strain stimuli (46–48).

FIGURE 5 |The non-invasive axial murine tibial loading model.
(A) De Souza et al. adapted the non-invasive rat (56) and ulna (33) axial
loading models to the tibia enabling study of trabecular and cortical

compartments in a single loaded bone (34). (B) Representative µCT
scans demonstrating trabecular and cortical bone formation within a
single loaded bone (58).

A significant advance was made when Torrance et al. (56) estab-
lished that physiologically relevant strains could be engendered in
the ulna of rats when their forearm was loaded axially through
the skin over the olecranon and flexed carpus. They used the ulna
rather than the tibia because the loads necessary to engender suf-
ficiently high strains in the tibia caused necrosis of the skin over
the knee and ankle. This disadvantage did not occur when the
tibia was loaded in mice and these have more recently become the
species of choice for such experiments (5, 33, 34, 57).

The advantage of the non-invasive mouse tibial loading model
is that precisely controlled loading regimens can be established
in long bones in mice over a sufficient period of time to allow
the adaptive response to be completed. Also no surgical inva-
sion is required and the loading-related response throughout the
whole bone can be studied. These substantial advantages were
further increased when extended to the mouse fibula (57). The
design of the mouse tibia/fibula loading model is relatively sim-
ple with custom-designed cups placed over the knee and tarsus
(Figure 5). The uppermost cup is attached to the actuator arm of

a hydraulic or electromagnetic materials testing machine and the
lower cup attached to a load cell so that the load applied to the
bone can be accurately controlled. Axial compression causes strain
due to compression and bending of the bone increasing the strain
stimulus and inciting an adaptive response.

Due to the placement of the cups in the tibia/fibula axial load-
ing model, the whole bone is loaded including the metaphyseal
region so the adaptive response can be observed in both cor-
tical and trabecular bone compartments (5). Additionally, the
loaded tibia and fibula have no direct contact with the loading
machine cups since the load is applied through the distal femur
and the flexed tarsus. Since this arrangement allows the simulta-
neous loading of both the tibia and fibula, the adaptive response in
both bones can then be differentially processed for different ana-
lytical techniques reducing the number of experimental animals
required. Finally, there are regions of the tibia (37% site measured
from the proximal end) where the loading response is maximal
while other regions (75%) where no loading response is observed
(5). Interestingly, maximal strains are estimated to be similar at
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both regions however, down-regulation of osteocytic sclerostin, a
necessary step in bone’s response to mechanical loading (59), is
more closely related to sites of bone formation than to maximum
strain (36).

Because the axial loading models can be used in both the
rat and mouse, it is possible to use genetically modified animals
enabling the role of specific genes (and pathways) in bone’s adap-
tive response to be determined (60–62). One of the disadvantages
with the axial loading models is that the bone is stiffer when loaded
in this direction, compared to being loaded in a non-physiological
direction, so the loads required to engender an adaptive response
are higher in the axial models than the bending models. A conse-
quence of this may be premature closure of the growth plates when
skeletally immature animals undergo axial loading of the ulna or
tibia and fibula (63, 64).

MODELS OF MECHANICAL UNLOADING
In addition to studying the effect of artificially increasing mechani-
cal strain and observing how bone adapts to this change in strain, it
is also important to determine how bone adapts to a decrease in the
mechanical strain stimulus. As well as increasing our knowledge
of both extremes of the mechanostat theory of bone (re)modeling,
these models can also be used to simulate clinical conditions asso-
ciated with low bone mass such as disuse osteoporosis and bone
loss following space flight.

The ideal model would allow bone strains to be reduced to
zero. However, even in animals experiencing weightlessness dur-
ing space flight, muscle contractions will still generate strains on
the bone surface. Nevertheless, multiple animal studies have been
performed during space flight and the resultant bone resorption
has been studied (65–68). However, for most experiments this is
not a feasible option.

More practical alternative experimental models of mechanical
unloading have been described in the literature, which include
applying a cast to a limb, performing an Achilles tenotomy to
unload the calcaneus, performing a tenotomy of the knee ten-
dons to unload the tibia, and bandaging a limb to the abdomen
(69–75).

A surrogate to recapitulate the conditions of weightlessness is
the tail suspension model (76). Using this model, mice or rats
have their hindlimbs suspended by their tail while they are free to
move around“normally”on their forelimbs. This model eliminates
ground reaction forces on the hindlimbs although again, muscu-
lar contractions will still produce some mechanical strain on the
bones involved. Using this model, researchers have demonstrated
marked reductions in bone mass and deterioration in bone archi-
tecture (77–79). An adaptation of the tail suspension model has
been developed, which allows graded levels of mechanical unload-
ing (80). To try and further recapitulate the effects of space flight,
one group simultaneously irradiated the tibia of mice and then
performed hindlimb suspension (81). Interestingly, the effect of
mechanical unloading on bone mass combined with radiation
was far more extensive than that of radiation alone. Although
hindlimb suspension causes measureable bone loss in the tibia,
several disadvantages are associated with this model. Firstly, special
cages are required, which have pulley systems to allow the animals
to move around the cages. Secondly, there is a redistribution of

blood to the cranial end of the animal with some systemic stress
responses observed (82). Thirdly, this model causes bilateral bone
loss losing the ability to compare one limb with its contralateral
control and thus at least doubling the number of experimental ani-
mals required. Finally, in some countries, e.g., the UK, this model
has been prohibited based on concerns for animal welfare since
animals are unable to move freely.

A further two methods have been reported, which induce neu-
rogenic paralysis of the hindlimb and therefore bone loss. This is
achieved either by sciatic or tibial denervation or by the injection
of botulinum toxin (83–86). These neurogenic paralysis methods
have the advantage of reducing bone surface strains to around
300 µε (one tenth of the normal peak strains) and the tibia can
be subsequently reloaded using the axial tibial loading model to
prevent bone loss (85, 86). Both approaches have their advantages
and disadvantages. Sciatic neurectomy causes a permanent paral-
ysis whereas botulinum toxin only lasts 1–2 weeks before some
ambulation is regained. Sciatic neurectomy causes a more com-
plete paralysis since botulinum toxin injection-induced paralysis,
which affects the neuromuscular junction, relies on separate injec-
tions into each muscle group. Finally, botulinum toxin is more
difficult to obtain due to its status as a prescription only medicine.
In contrast, sciatic neurectomy requires minimal surgical instru-
ments and the surgery is simple taking approximately 3–4 min per
mouse in experienced hands.

A recent paper has reported the combined effects of hindlimb
suspension and injection of botulism toxin (87). This showed
that bone and muscle loss following hindlimb suspension and
botulinum toxin injection were similar but when combined had
additive effects. Interestingly, they also report bone and muscle loss
in the contralateral (non-injected) hindlimb following botulinum
toxin injections alone, suggesting systemic effects even though the
injection primarily targets local muscle. An additional considera-
tion is that inducing unilateral paralysis may increase load-bearing
in the contralateral limb, although this does not appear to hold true
for the botulinum toxin model.

KNOWLEDGE GAINED FROM IN VIVO ANIMAL LOADING
MODELS
BONE RESPONDS TO DYNAMIC BUT NOT STATIC LOADS
Hert was the first to publish data suggesting that bone
(re)modeling was not affected by static strains but rather by
dynamic strain change (42). This inference was confirmed by one
of the first studies published using the isolated avian ulna loading
model. This study compared the effect of a continuous static load
with that of the same magnitude of load applied dynamically for
a single 100-s period per day in a trapezoidal waveform for an
8-week period (48). When the load was applied in a static manner,
there was a 13% loss of bone due to endosteal expansion and an
increase in cortical porosity. This level of bone loss was no dif-
ferent to that exhibited by the control group, which underwent
osteotomy but no loading. However, the group in which the load
was applied in a dynamic manner exhibited a 24% increase in bone
mass due to periosteal bone formation. For this reason, the major-
ity of studies using exogenously applied load apply a dynamic
waveform of either triangular, sinusoidal, or trapezoidal shape (5,
34, 38, 88–90). However, to our knowledge, no studies have directly
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FIGURE 6 |The “lazy zone” is an artifact associated with background mechanical strain stimuli. Increasing mechanical strain is associated with a linear
increase in bone mass in studies when background strains are eliminated in the isolated avian ulna [(A), (91)] and combined sciatic neurectomy and tibial
loading models [(B), (86)]. This indicates there is no “lazy zone” in bone’s adaptation to loading [(C), (86)]. MES, minimum effective strain stimulus.

compared the relative effects of these different waveforms on bone
formation.

LOADING-RELATED BONE FORMATION CORRELATES WITH PEAK
STRAIN MAGNITUDE
The single most important component of the strain stimulus to
engender an osteogenic response to mechanical loading is the peak
strain magnitude. Multiple studies by our laboratory and others
have demonstrated that by varying the peak strain magnitude, but
keeping all other parameters the same, there is a dose:response
relationship between the peak strains engendered and the amount
of new bone formed (53, 61, 86, 88, 91). Several previous studies
made the assumption that there was an adapted window or lazy
zone in which bone mass and architecture would not change over
a set range of strain stimuli. However, in the isolated turkey ulna
where disuse and artificial loading are combined, there was no
evidence of this window (91). A more recent study, stimulated by
editors’ refusal to accept the veracity of this earlier finding, con-
firmed the absence of this lazy zone using the combined sciatic
neurectomy and axial tibial loading model (Figure 6) (86). This
is also supported by the graded mechanical unloading model of
Ellman et al., which confirmed a linear relationship between per-
centage weight bearing and bone loss (80). It is important to realize
that these experiments refer only to a single loading modality. In
the natural situation where the osteoregulatory effects of all the
normal loading modalities are added together this may constitute
a spectrum of strain magnitudes that averaged within a particular
window do indeed result in little or no adaptive response.

As previously discussed, the mechanostat is a local phenome-
non (5, 6, 92). As such, mechanical loading will engender a range
of peak strain magnitudes in different regions of the same bone
(34, 36). Studies have repeatedly shown periosteal bone forma-
tion following mechanical loading to occur primarily in regions
where strains are high and lower levels of bone formation, or even
resorption, to occur where peak strains are lower (37, 51, 93, 94).

STRAIN-RELATED STIMULUS IS DETERMINED BY THE NOVELTY OF
LOADING
In the avian ulna studies, substantial increases in bone mass
occurred with artificially applied loads, despite these loads

engendering lower peak maximum strains and strain rates than
those measured during normal wing flapping (46). Thus it is
impossible to say that peak strain per se engendered the strain-
related stimulus. It is instead likely that this substantial stimulus
arises from the strains being engendered in a novel configuration.
Similarly, in the tibial bending studies (53, 55), relatively low loads
were required to induce adaptive new bone formation. Conversely
in the axial loading models where the load is being applied more
closely to the normal direction in which the bone is loaded, higher
loads appear to be necessary to generate new bone formation,
although since the bone is more resistant to load in this direction
the strains may be similar in magnitude.

Nevertheless, a recent study used different enclosure designs
to force growing female C57Bl/6J mice to use non-linear, diverse-
orientation locomotor loading showed that, when compared to
mice using primarily linear locomotion, those with diverse non-
linear locomotion had increased humeral trabecular bone volume
fraction and indices of cortical bone volume (95). This is despite
no difference in overall activity levels between mice in the two dif-
ferent types of enclosure. These findings support a previous study
that used transarticular external fixators in sheep to prevent cal-
caneal load-bearing, which resulted in bone loss (96). When disuse
was interrupted by periods of steady walking on a treadmill, when
the tarsus was mobilized, the strain stimulus from walking was
unable to prevent bone loss suggesting either that the duration of
the stimulus was insufficient [unlikely in view of the turkey ulna
data (47)] or that the variety or novelty of the strain-related stim-
ulus was not being provided. Another study demonstrated that
fighting between male mice housed in groups was associated with
an increase in measures of cortical and trabecular bone mass and
architecture, which “masked” the effect of mechanical loading in
these animals (97). When males were individually housed, and
thus not involved in vigorous diverse activity, their response to
mechanical loading was no different from that observed in group
or individually housed female mice, which did not fight.

INCREASING STRAIN RATE DURING LOADING AND UNLOADING
STIMULATES BONE FORMATION
The rate of change of strain magnitude, both when load is
applied and released, is an important determinant of a strain
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regimen’s osteogenic potential. This was first suggested in an early
study using an invasive loading model in sheep where (in the
rather uncontrolled loading situation achievable with a pneu-
matic loading device) change in strain rate accounted for more
of the variation in the amount of new bone formed in response
to loading than peak strain magnitude (45). Interestingly, this
effect of maximum strain rate was unaffected by whether this
occurred during loading (compression) or unloading (tension).
A later study using the much better controlled rat ulnar axial load-
ing model demonstrated, using various strain rates but the same
peak magnitude, number of loading cycles, etc. that increasing the
strain rate by approximately fivefold (from −0.018 to −0.100 s−1)
increased the osteogenic bone formation response both in amount
and extent (98). A further study by Turner et al. found similar
results concluding that the amount of new bone formation was
directly proportional to the rate of change in strain in bone tissue
(99). However, one of the difficulties with interpretation of both of
these studies is that to increase strain rates but keep all other para-
meters the same, a period of rest has to be inserted between each
of the loading cycles. Although not appreciated at the time there
is now evidence that such a rest period can itself enhance bone’s
adaptive response to artificial loading. Despite this reservation, the
consensus from a number of studies is that the rate of change of
strain is an important determinant of the stimulus for a bone for-
mation response. This finding is consistent with the results from
human studies; exercise regimens involving high levels of impact
loading (squash, tennis, and triple jump) being far more effective
than those that do not (swimming and cycling) in stimulating new
bone and thus increasing bone mass (100–103). In an additional
study by LaMothe et al. using the cantilever bending model, they
increased the dwell time (the length of time the load was applied
for) when the strain rate was increased ensuring the duration of
each loading cycle and frequency of cycles was consistent between
groups (104). Again they showed a significant increase in the bone
formation response when strain rate was increased.

In the first study describing the non-invasive axial tibial load-
ing model, there was actually a loss of trabecular bone volume
fraction reported, which we now believe is due to their use of a
relatively low strain rate of 1,500–2,000 µεs−1 during loading and
unloading (34). Another more recent paper using a much higher
number of cycles but with the same low strain rate reported in the
first study also documented a loss of trabecular bone in the prox-
imal tibia with loading (38). However, studies using an identical
experimental protocol, but with a strain rate 10 times higher than
that used in the first study, have consistently reported a robust
increase in trabecular bone volume fraction, thickness, and even
number (58, 61, 62, 86, 97, 105). To the authors’ knowledge, no
studies have directly compared the influence of strain rate on the
relative responses of cortical and trabecular bone.

NUMBER OF LOADING CYCLES REQUIRED TO MAXIMALLY STIMULATE
BONE FORMATION IS SMALL
Two important studies have compared the number of cycles of
loading required to stimulate an osteogenic response and have
shown it to be surprisingly small. Rubin and Lanyon first demon-
strated in the isolated avian ulna that increasing the number of
loading cycles in a given episode of mechanical loading from 36 to

as many as 1,800 did not generate any additional adaptive response
(46). Perhaps as interesting, was their finding that only four load-
ing cycles a day were sufficient to prevent the bone loss associated
with disuse (zero cycles). Another study in rats trained to jump
a 40 cm height showed little additional effect on increasing the
number of jumps from 5 up to 40 per day (14).

Although relatively few cycles of loading are required to max-
imize the amount of new bone formed, there are a number of
publications using in vivo mechanical loading where several thou-
sand loading cycles are performed. For some this is a deliberate
design to induce fatigue loading of bone and examine subsequent
damage repair (106). However, for many studies, although a robust
way of ensuring osteogenesis, this high number of cycles is likely
to be unnecessary and may indeed have detrimental effects. These
include an increase in the length of anesthesia time required for
each episode of loading and also an increased likelihood of bone
and soft tissue damage.

INSERTING REST BETWEEN LOADING CYCLES INCREASES BONE
FORMATION
A study by Robling et al. demonstrated that partitioning 360 load-
ing cycles into 4 bouts of 90 cycles or 6 bouts of 60 cycles per
day enhanced the osteogenic response to loading (107). Robling
went on to demonstrate that inserting a 14-s rest period between
loading cycles optimized the bone formation response to load-
ing (108). This was confirmed by LaMothe and Zernicke using
the cantilever bending model which showed that when a 10 s rest
period was inserted every 11 s in a 30 Hz 100 s loading protocol,
the bone formation response increased by 72% despite a 100-
fold decrease in the number of loading cycles (104). Additional
studies by Gross’ group, also using the cantilever bending model,
observed that inserting a 10 or 15 s rest period between each load-
ing cycle enhanced the osteogenic stimulus in both young and
aged mice (109–111). Finally, a study by Charles Turner’s group
demonstrated that as the length of the loading study is increased,
the percentage new bone formation response per week decreases
suggesting the stimulus may become less potent over time. How-
ever, introducing a rest period of several weeks between bouts of
mechanical loading can partially restored this decreased response
to loading (112).

MAXIMIZING THE STRAIN STIMULUS
It is important when designing a loading protocol that all of the
evidence reported in the previous section is taken into account.
The method for applying mechanical load using the tibial load-
ing model has already been extensively described (34, 113). The
protocol in current use in our laboratory is as follows:

The tibia is held in place by a 0.5 N continuous static pre-load.
Forty cycles of dynamic load are superimposed using a trape-
zoidal waveform with 10 s rest intervals between each cycle. The
protocol for one cycle consists of loading to the target peak load,
hold for 0.05 s at the peak load, and unloading back to the 0.5 N
pre-load. Strain gaging data from our current materials testing
machine (Bose ElectroForce 3100) indicate that a load of 15N is
equivalent to 2500 µε on the medial surface of the tibia at 37%
of the length from the proximal end in a young adult 17-week
old female C57Bl/6J mouse. The load rate we use in young adult
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female mice is 500Ns−1, which equates to an average strain rate
of 30,000 µεs−1. These values are within the normal physiologi-
cal range recorded for this species (34). Using this protocol, we
observe approximately a 20–30% increase in cortical bone area at
the 37% site and approximately a 50–75% increase in trabecular
BV/TV in the secondary spongiosa. While we do not believe that
the same loading protocol should be recapitulated in all laborato-
ries using the non-invasive axial tibial loading model, designing a
protocol should be based on previous studies so that interpretation
of novel or unexpected results is made more reliable.

INFLUENCE OF PHYSIOLOGICAL CONTEXT ON THE
MECHANOSTAT
As discussed earlier in this review, the mechanostat is primarily
a local phenomenon in which bone responds to local changes in
mechanical strain and adapts its local bone mass and architecture
accordingly to adjust strains to restore the set point. However, it is
well accepted that the functioning of the mechanostat can be influ-
enced by systemic changes. For example, during the menopause
in women there is a loss of bone mass sufficient to increase the
incidence of fragility fractures (114, 115). The rapidity of this loss
is unlikely to be accounted for by any sudden change in mechani-
cal loading of the bone through decreased exercise, etc. Therefore,
there must be some mechanism, which influences the mechano-
stat and impairs its function (116). The most likely candidate is
decline in the levels of available estrogen and we have attributed at
least part of this failure to altered function of its receptors; estrogen
receptor (ER) α and β (62, 90). Aspects of the changes that are likely
to occur with the menopause have been recapitulated in animal
models where loading can be artificially increased and therefore
allowing interrogation of the link between the mechanostat and
estrogen receptor signaling in more detail. The interventions used
to investigate this mechanism will now be discussed.

SURGICAL MODELING OF PATHOLOGY
A simple way to recreate the menopause and deplete endoge-
nous estrogen in animals is by removal of the gonads i.e., an
ovariectomy. The earliest study which investigated the effect of
ovariectomy on the loading response was using the four-point
bending model in rats (117). They concluded that the cortical
response to loading was not affected by ovariectomy, although
a concurrent loss of trabecular bone due to estrogen depletion
was observed. As discussed earlier in this review, there are issues,
which surround the use of bending models of loading, particu-
larly in these circumstances where analysis of trabecular bone is
key. However, more recently the lack of the effect of ovariectomy
on the adaptive response has been confirmed using the axial tib-
ial loading model (60). Chambers’ group have also investigated
the effect of combining ovariectomy with invasive mechanical
loading of the rat tail vertebra, which contains predominantly
trabecular bone (118). Unexpectedly, they found that the tra-
becular bone formation rate following loading was increased in
ovariectomized compared to control animals. Interestingly, the
enhancing effect of ovariectomy on the response to loading was
not inhibited by the addition of pamidronate, a bisphosphonate,
which inhibits bone resorption by inducing osteoclast apopto-
sis. This suggests that estrogen may have an inhibitory effect on

osteoblastic bone formation such that once removed by ovariec-
tomy, loading-induced bone formation is increased. More recently,
these findings have been confirmed using the non-invasive axial
tibial loading model where it was also demonstrated that ovariec-
tomy increases the loading-related gain in trabecular but not
cortical bone (119).

PHARMACOLOGIC INTERVENTIONS
In addition to investigating the effect of loss of estrogen following
ovariectomy on the function of the mechanostat, studies have also
been performed to examine the effect of estrogen supplementation
by injecting rats daily with biologically active 17β-estradiol (118).
In agreement with the previously mentioned enhanced response
to loading following ovariectomy, in trabecular bone, estrogen
supplementation inhibited the response to loading. This was also
unexpected since estradiol is well accepted to prevent the deleteri-
ous effects of ovariectomy on trabecular bone (120). Interestingly,
estrogen also appears to have an inhibitory effect on cortical bone’s
response to mechanical loading (121), which is surprising given
the lack of effect of ovariectomy on cortical bone’s response to
mechanical loading (60, 119). One of the complexities encoun-
tered when interpreting these studies are the relative effects of
ERα and β activation. Newer drugs have been developed, which
act as selective ER modulators (SERMs). One of these SERMs,
tamoxifen, is used clinically as a breast cancer treatment and has
been shown to be more potent than estradiol at preventing the
ovariectomy-induced loss of trabecular bone (120). Perhaps more
beneficially, it has been demonstrated that tamoxifen causes a syn-
ergistic increase in trabecular bone formation when combined
with mechanical loading (119).

GENETIC MANIPULATION
To further decipher the relative involvement of ERα and β in bone’s
response to mechanical loading, an alternative to the administra-
tion of selective pharmacologic agents is to create animals, usually
mice, with genetic modifications and apply mechanical loading.
As discussed previously, one vital undertaking prior to mechani-
cal loading of genetically modified animals is to determine whether
the intrinsic load:strain relationship in these animals has also
been modified such that similar strain stimuli can be applied to
mice with potentially different bone phenotypes. The first study to
investigate the effect of ER deletion on bone’s response to mechan-
ical loading was by Lee et al. (90). Using the axial ulna loading
model (33), they demonstrated that global deletion of ERα in
mice significantly impaired cortical bone’s adaptive response to
mechanical loading. Later studies confirmed these findings using
the axial tibial loading model (60, 62, 122). One of these stud-
ies subsequently investigated the effect of genetic modifications
of the specific activation function regions of the ERα found that
deletion of AF1, but not AF2, was responsible for the effect of
ERα knockout on the cortical response to mechanical loading
(60). This is interesting because estrogen’s effect on bone mass
is via AF2 and not AF1 (123) suggesting that in cortical bone,
the effect of mechanical loading is via the ERα but independent
of estrogen itself, potentially explaining why ERα deletion, but
not depletion of estrogen, decreases bone’s adaptive response to
mechanical loading.
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Other studies have investigated the role of ERβ using the non-
invasive ulna and tibia loading models and found that global
deletion of ERβ in mice enhances cortical bone’s response to
mechanical loading (62, 124). Taken together, these data suggest
that ERα and β have opposing roles in bone’s adaptation to load-
ing. However, the story is more complex since global deletion of
one ER can result in up regulation of circulating estrogen and other
hormones confounding interpretation of these experiments (125–
127). With the more recent advent of cell-type specific knockout
mice being available (128–130), the cell-type specific role of ERs in
the mechanostat is currently being further investigated. For exam-
ple, deletion of ERα specifically from osteocytes has no effect on
cortical bone’s adaptation to loading (128).

Another level of complexity is added when the role of the ERs
in trabecular bone’s adaptation to loading is considered. In female
mice, deletion of ERα does not affect the response to loading while
in male mice ERα deletion increases the response to loading (62).
In contrast deletion of ERβ enhances loading-related trabecular
bone gain (62). However, interpretation of the effect of ER deletion
on loading-related changes in trabecular bone is problematic since
strain-matching between groups is not possible due to the limited
means to measure loading-engendered strains in these compart-
ments and because deletion of ERα, and ERβ in female but not
male mice, increases trabecular bone mass (131).

Inevitably, it is to be expected that elucidation of the role of
estrogen and the ERs is likely to be complex and to complete our
understanding it is likely that a combined in vivo and in vitro
approach will be required. However, the purpose of its discus-
sion here was to illustrate the type of interventions that can
be combined with mechanical loading studies to determine the
mechanisms involved in the mechanostat in more detail.

CONCLUSION
In this review, we have discussed the animal models of mechan-
ical loading, which are available to dissect the mechanisms of
the mechanostat and how they have been used to determine the
components of the strain stimulus involved in bone’s adaptive
response to mechanical loading. The complex process of bone
modeling and remodeling can only be fully observed in animals
and humans. Nearly all the understanding we have of the bones’
adaptive response to mechanical loading has been derived from
experiments using animal models.

In summary, over the physiological strain range bones’mechan-
ically adaptive processes are responsive to dynamic but not static
strains; the size and nature of the adaptive response is linearly
related to the peak strains engendered; it is preferentially sen-
sitive to high strain rates and unresponsive to static ones; it is
most responsive to unusual strain distributions; it is maximized
by remarkably few strain cycles, and that these are most effective
when interrupted by short periods of rest between them.

No studies have so far demonstrated any unique mechanically
responsive pathway in bone cells, rather the mechanisms of the
mechanostat appear to be those used by a wide variety of cells
to also respond to endocrine, paracrine, and autocrine influences.
How these complex influences combine to so precisely regulate
bone architecture that in the vast majority of situations it is appro-
priate to each individual’s changing loading history remains to be
determined. When it is, much of the essential data contributing to

the solution will have been generated by animal experimentation
of the type described here.
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