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After its discovery in 1994, leptin became the great hope as an anti-obesity treatment
based on its ability to reduce food intake and increase energy expenditure. However, treat-
ing obese people with exogenous leptin was unsuccessful in most cases since most of
them present already high circulating leptin levels to which they do not respond anymore
defining the so-called state of “leptin resistance.” Indeed, leptin therapy is unsuccessful
to lower body weight in commonly obese people but effective in people with rare single
gene mutations of the leptin gene. Consequently, treatment of obese people with leptin
was given less attention and the focus of obesity research shifted toward the prevention
and reversal of the state of leptin resistance. Many of these new promising approaches
aim to restore or sensitize the impaired function of the leptin receptor by pharmacological
means. The current review will focus on the different emerging therapeutic strategies in
obesity research that are related to leptin and its receptor.
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INTRODUCTION

Obesity being one of the major issues of public health nowadays,
with more than 500 million obese adults worldwide in 2011, a lot
of effort has been made to elaborate anti-obesity therapies. Obe-
sity is a chronic disease, which originates from a myriad of causes
leading to a steady imbalance between energy intake and energy
expenditure. The resulting excess of fat mass has been correlated
to higher risk of developing severe diseases such as type 2 diabetes,
cardiovascular disease, and cancers. There is currently no suc-
cessful long-term treatment against obesity with the exception of
bariatric surgery, which is costly with potential risks and complica-
tions. Obesity being a complex disease originating from multiple
environmental and genetic factors, an efficient pharmacological
cure against obesity is still not available. A pharmacological drug
against obesity must result in a significant reduction of food intake
and/or an increase in energy expenditure whatever the mechanis-
tic target of the drug (1). Given that dietary intervention result
often in no or very modest long-lasting weight loss and that pre-
vious marketed drugs showed poor efficacy with high risk of side
effects, innovative therapies with high efficacy, and maximal safety
are urgently needed. The discovery of leptin in 1994 raised the pos-
sibility of new therapeutic strategies to combat obesity epidemic
(2). Administration of recombinant leptin to obese rodents and
humans with congenital leptin deficiency significantly decreases
body weight and food intake (3—5). Moreover, leptin therapy for
patients with very low leptin or leptin deficiency has proven to be
relevant for diseases such as lipoatrophy, anorexia nervosa, hypo-
thalamic amenorrhea, and some neuroendocrine disturbances (6).
However, recombinant leptin monotherapy is totally inefficient
in decreasing body weight of diet-induced obese (DIO) mice as
well as obese humans who are not leptin-deficient but rather

hyperleptinemic, associated with a loss of responsiveness to lep-
tin (7). These observations led to the concept of so-called “leptin
resistance.” The prevention and reversal of leptin resistance rep-
resents a major challenge in obesity research. Understanding the
biological function of leptin and its receptor (OBR) is an impor-
tant step in order to conceive efficient and specific therapeutic
tools that would rescue the impaired function of the leptin system
observed in obesity. Persistent efforts have been pursued both at
the level of deciphering the biology of leptin and in designing ther-
apeutic solutions. This review summarizes recent findings on OBR
functions and possible directions for therapeutic perspectives.

FEW WORDS ON LEPTIN AND THE LEPTIN RECEPTOR

Leptin, a peptidic hormone mainly secreted by white adipose tis-
sue, is essential in the control of energy homeostasis (8). The
central regulation of food intake and energy expenditure is medi-
ated through the binding of leptin to its receptor OBR, a type I
cytokine receptor. Several isoforms of OBR have been described as
a result of alternative mRNA splicing leading to several short iso-
forms (OBRa, OBRc, OBRd, and OBR(), one long isoform OBRb
with a long cytosolic C-terminus tail and one soluble isoform
OBRe (9). Hence, OBR isoforms differ in the length of their intra-
cellular region but share identical extracellular domains. While
short isoforms are ubiquitously expressed, OBRb expression is
more restricted with high levels in hypothalamic nuclei such as the
arcuate nucleus (ARC). The hypothalamic ARC has an important
role in the development of leptin resistance. Accordingly, exposure
of rodents to a high-fat diet rapidly decreases the phosphorylation
of STAT3 in the ARC or the ventral tegmental area (VTA), while
leptin-sensitivity is simultaneously maintained in some other
hypothalamic nuclei (10, 11). While the biological function of the
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short isoforms is still elusive, it is well established that OBRb is the
main isoform responsible for the effect of leptin on body weight
control (12). The weight lowering properties of leptin via OBRb
has been suggested to be centrally mediated (13—15). Once acti-
vated after leptin binding, OBRD is able to trigger various signal
transduction pathways. Activation of the Janus tyrosine kinase 2
(JAK2)/signal transducer and activator of transcription 3 (STAT3)
pathway leads to an increase of anorexigenic signals and a decrease
of orexigenic signals (16). Leptin is also able to activate the insulin
receptor substrate (IRS)/phosphatidylinositide 3-kinase (PI3K)
pathway, essential for the regulation of glucose homeostasis (17).
Moreover, leptin inhibits in the brain the energy sensor, adenosine
monophosphate-activated protein kinase (AMPK), to decrease
eating (18, 19). The activation of extracellular signal-regulated
kinase (ERK) is another pathway mediating the anorectic action
of leptin in the hypothalamus (20).

Leptin binding to its receptor OBR is the first event trigger-
ing conformational change and eventual oligomerization of OBR,
both necessary for receptor activation and subsequent signal trans-
duction. Understanding the mechanism of OBR activation and
signaling is an essential step in order to better apprehend the causes
leading to an impairment of OBR function in human obesity. OBR
exists as a pre-formed dimer (or oligomer) that was suggested to
be disulfide-linked (21). OBR N-terminal region is composed of
one conserved cytokine receptor homologous domain (CRH1),
a conserved immunoglobulin (Ig) domain, followed by another
cytokine receptor homology domain (CRH2) and two fibronectin
type 3 (ENIII) domains, which are located proximal to the trans-
membrane fragment (Figure 1). The CRH2 and Ig domains are
involved in leptin binding and are required for receptor activation.
A combination of ligand binding studies, site directed mutagen-
esis and homology molecular modeling suggested the existence
of three different binding sites (I, II, and III) on the leptin mol-
ecule, similar to the interleukin 6-receptor family. Binding site II
is indispensable for high affinity interaction (in the nanomolar
range) between leptin and the OBR CRH2 domain (22, 23). Bind-
ingsite III is involved in the conformational changes and activation
of OBR by interacting with the Ig domain. The role of binding site
I is still poorly defined. Modified leptin with an intact site II but
with mutations in site I or site III still binds the CRH2 domain
with strong affinity but lost the capacity to activate OBR (24—
26). Hence, leptin mutations at site I (L39A/D40A/F41A) and III
(S120A/T121A) become antagonists (23—25). In accordance with
this, leptin mutants on binding site I increase body weight gain in
rodents as expected by competing with endogenous leptin (27).
According to the current model of OBR activation, binding of two
leptin molecules to OBR extracellular domains are believed to trig-
ger a conformational change and dimer clustering into tetramers
to form an hexameric complex with two leptin molecules for four
receptor protomers (Figure 1) (28, 29). Recently, the architecture
of the extracellular region of OBR, alone and in complex with
leptin, characterized by single-particle electron microscopy, chal-
lenged this view (30). Electron microscopy results showed that
leptin binding site III, as foreseen in the activation model, serves
to recruit the Ig domain of a second receptor chain. The data also
suggested that leptin and OBR interact in a tetrameric complex,
with a 2:2 stoichiometry, by engaging only leptin sites II and III,
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FIGURE 1 | The leptin receptor (OBR). (A) Schematic view of OBR
protomer. CRH, cytokine receptor homology domain; g, immunoglobulin
domain; TM, transmembrane region; FNIII, fibronectin IIl domain. (B)
Leptin:OBR hexameric complex based on biochemical and molecular
modeling data. In the hexameric complex, two molecules of leptin interact
with four OBR protomers, where each leptin molecule binds OBR through
the high affinity binding site Il (to CRH2) and via the two lower affinity
binding sites | (to CRH2) and IlI (to Ig domain).

excluding the existence of binding site I. The role of binding site
I in complex formation and the way it is involved in the acti-
vation mechanism still remain elusive. Lately, Small Angle X-ray
Scattering (SAXS) provided structural insight into the activated
architecture of OBR. The two well-known non-functional lep-
tin antagonists (L39A/D40A/F41A) or (S120A/T121A) interact
with OBR with a stoichiometry of 1:1 in contrast to wild type
leptin, confirming that those two sites are required for the for-
mation of a higher order clustering necessary for OBR activation
(4:4 stoichiometry) (31). In addition to the induction of recep-
tor clustering by leptin through binding to CHR2, leptin leads
to the rigidification of the flexible hinge of CHR2 and favors a
certain orientation of the FNIII domains that will be transmitted
to the transmembrane segments (30). The importance of ade-
quate positioning of FNIII domains is highlighted by the fact that
OBR activation can be inactivated by anti-OBR antibodies directed
against the FNIII domains (26). Knowing the structure of OBR is
an important prerequisite for a better understanding of the func-
tional modifications that may occur at the receptor level during
the process of leptin resistance impairing OBR function.

Single genes whose mutations lead to “monogenic” forms of
obesity are very rare. Among them, mutations in the leptin gene
(ob/ob mice) or in the leptin receptor gene (db/db mice, fa/fa
rats), leading to the deficiency of the related proteins, produce
extreme obesity in rodents (9, 32—-35) as well as in humans (36-39),
due to hyperphagia, decreased energy expenditure, and insulin-
resistance. Naturally occurring mutations (A409E and R612H)
on human OBR lead to severe obesity in patients possibly by
impairing binding site III and binding site II, respectively (40).
However, genetic alterations are rare and paradoxically most obese
humans have high levels of plasma leptin, proportional to the
excess of fat mass, and are less responsive to the action of lep-
tin, due to a decreased sensitivity to the hormone. Clearly dietary
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macronutrients participate in the development of leptin resis-
tance, especially fat and sugar are detrimental to leptin sensitivity
(41-44). The molecular basis for this leptin resistance is not yet
completely understood but considerable efforts have been made
in this direction. Several studies led to the hypotheses that leptin
resistance could arise from an alteration of multiple mechanisms,
such as a decreased transport of leptin into the brain (45-50),

an impairment of neuronal plasticity (51-53), an over-activation
of inhibitory signals of leptin signaling (54-58), hyperleptine-
mia (59), a defect in OBR trafficking (60-62), and endoplas-
mic reticulum (ER) stress (63—66) (Figure 2). A better under-
standing of those mechanisms prompted researchers to elaborate
new therapeutic strategies to reverse or prevent leptin resistance.
Design of potential therapeutic solutions is discussed below.
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FIGURE 2 | Potential therapeutic targets for the prevention or
reversal of leptin resistance. Potential therapeutic strategies to
prevent or reverse leptin resistance: (1) increase of leptin signaling with
new OBR agonists, (2) decrease of the inhibitory function of OBR
negative regulators (SOCS3, PTP1B), (3) increase of leptin transport
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across the blood-brain barrier or median eminence, (4) increase of
OBR cell surface expression by enhancing OBR anterograde traffic and
recycling or by decreasing OBR constitutive internalization and
lysosomal degradation (endospanin 1-dependent pathways), and (5)
decrease of ER stress.
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LEPTIN SENSITIZING MOLECULES

Because of its crucial role in controlling satiety and body weight,
leptin triggered a frenetic enthusiasm, after its discovery in 1994,
with the perspective of using leptin therapy to treat obesity.
Few years later, Farooqi and colleagues found that daily subcu-
taneous injections of recombinant human leptin led to decreased
hyperphagia and weight loss in severely obese children carrying
mutations in the leptin gene (67, 68). Leptin administration has
also been proven effective in animals and patients with lipody-
strophy, a disease characterized by almost absence of fat mass
and therefore low secretion of leptin resulting in excessive calo-
ries intake, which are stored as fat in liver and muscle leading
to type II diabetes and high blood lipid levels (69, 70), or for
the treatment of anorexia nervosa (71, 72). However, hope was
rapidly lost in the late 1990s after the failure of leptin to induce
significant weight loss in most overweight and obese people,
who are typically leptin-resistant (73). Recently, leptin replace-
ment showed promising results when associated with reduced
caloric intake. Indeed, appearance of metabolic responses seen
as a metabolic adaptation, defending against changes of energy
status during diet intervention, leads to a resistance to weight
loss (74, 75). The drop of plasma leptin occurring with pro-
longed energy deficit during weight loss is part of this metabolic
adaptation (76—78). Hence, leptin replacement during weight
loss associated with a decrease in plasma leptin is able to fur-
ther reduce and maintain weight loss in rodents (79, 80) and
humans (75, 81). However, those effects are only minimal and
it appears that leptin replacement is not sufficient by itself. Sev-
eral studies turned toward combinatorial therapies in which the
targeting of more than one hormonal pathway should show bet-
ter efficacy. Indeed, the simultaneous targeting of several systems
with multi-therapy can (i) target several mechanisms of action
at the same time and (ii) minimize the establishment of poten-
tial compensatory mechanisms. Hence, a combination of leptin
with molecules capable of improving or restoring central leptin-
sensitivity, constitutes an extremely promising pharmacological
treatment for body weight loss. Peptide hormones that are not
toxic and have known physiological roles in the regulation body
weight are of particular interest.

Several studies analyzed the effects of a combination of leptin
with amylin, a 37-amino acid anorexigenic hormone, co-secreted
with insulin from B-pancreatic cells in response to food consump-
tion. Amylin receptors are widespread in the brain and regulate
energy balance and glucose homeostasis (82). Amylin receptors
consist of heterodimerized complexes of the calcitonin recep-
tor (CTR), a seven transmembrane-domain G protein-coupled
receptor, which interacts with receptor activity-modifying pro-
teins (RAMPs) (83, 84). Studies from Amylin Pharmaceuticals,
have shown that in leptin-resistant, high-fat DIO rats, a combi-
nation of amylin and leptin therapy results in greater inhibition
of food intake and body weight loss, compared to monotherapy
conditions, suggesting that amylin agonism restores leptin respon-
siveness in leptin resistance models (85-87). In the long-term,
amylin and leptin-co-treated animals exhibited an improved meta-
bolic profile with decreased plasma insulin and plasma lipids, and
favorable glucose metabolism (88). Pramlintide acetate, a synthetic
analog of amylin and metreleptin, a recombinant methionyl form

of human leptin, are analogs of amylin and leptin used in humans.
Initial studies suggested that the combined treatment of pramlin-
tide and metreleptin in humans led to a more significant weight
loss than treatment with pramlintide or metreleptin alone (89,
90). However, in 2011, Amylin, Inc. and Takeda Pharmaceutical
announced in a press release that the development of a pram-
lintide/metreleptin combination therapy has been stopped due to
potential safety concern (see http://www.takeda.com/news/2011/
20110805_3889.html).

Other combinations of hormones were recently analyzed to
investigate their effect on sensitizing the body to leptin. A recent
study proposes a potential role of the gut hormone cholecystokinin
(CCK) for the pharmacotherapy of obesity. CCK was shown to
synergize amylin-induced suppression of food intake in lean mice
(91). The subcutaneous tri-infusion of amylin, leptin, and CCK led
to significantly greater weight loss, inhibition of food intake, and
reduction in adiposity, compared to the combined treatment with
amylin and leptin in DIO rats (92). Apart from amylin and CCK,
several studies highlighted the synergistic effect between leptin
and the Glucagon like peptide 1 (GLP-1) system in the regulation
of energy balance and glucose homeostasis (93-95). In particu-
lar, a co-administration of leptin and exendin-4, a natural agonist
of GLP-1 receptor, restored leptin responsiveness in DIO mice
switched to normal diet, and led to greater body weight loss com-
pared to monotherapy (95). In this study, Muller et al. showed that
caloric restriction (even by 30%) does not improve leptin resis-
tance in DIO mice suggesting that weight loss itself is insufficient
in restoring leptin-sensitivity and that a combined administra-
tion of hormones is needed. Few years later, the same group also
reported that coagonism with the GLP-1 and glucagon receptors
can restore leptin responsiveness in DIO mice maintained on a
HEFD (96). Very recently, co-administration of clusterin, a ligand
for LDL receptor-related protein-2 (LRP2) potentiated the anorex-
igenic effect of leptin and boosted leptin-induced hypothalamic
STAT3 activation (97). The effects of the co-treatment of leptin
with other hormones on energy balance are supposed to arise from
the activation of intrinsic synergistic neuronal signaling pathways
(86, 98).

Co-administration of leptin along with a hormonal cocktail
shows promising results in ameliorating leptin sensitivity. Revers-
ing leptin resistance in DIO conditions with multiple therapies
seems now a possible perspective. The latter needs further inves-
tigation in order to determine the underlying molecular mecha-
nisms involved in synergistic effects of hormones, as well as the
potential beneficial effects in obese humans.

NEW AGONISTS FOR THE LEPTIN RECEPTOR

The natural hormone leptin is not stable in vivo and has a short
half-life. Stabilized leptin derivatives or small synthetic OBR ago-
nists would be of great interest in efficiently activating OBR, when
the natural ligand becomes inefficient. New OBR agonists could
activate the receptor in a similar manner than the natural hor-
mone or even use a different mechanism. Several studies identified
numerous leptin-related peptide analogs and mimetics capable of
binding and activating OBRb. A synthesized fragment of leptin of
35 amino acids, named OBGRP 22-56 reduced food intake when
administrated into the lateral cerebroventricle of rats (99). A series
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of conjugated molecules built with a peptide vector capable of
improving the transport across the blood-brain barrier (BBB),
and attached by a linker to a leptin fragment, were patented as
new leptin agonists with an improved permeability through BBB.
Several generations of such conjugated compounds were synthe-
sized with different linker properties (amino acid sequence or
N-substituted succinimide moiety) and different types of leptin
sequences (22-56; 57-92; 93-105; 116—-130) in order to ameliorate
the anti-obesity properties of the molecules (100, 101). Krainov
et al. produced other leptin agonists by combining covalently
leptin fragments with hydrophilic polymers such as polyethylene
glycol (PEG), which increases water solubility and half-life of lep-
tin. Those conjugated peptides have been shown to decrease body
weight in mice (102) but alone pegylated leptin is insufficient in
improving leptin resistance (95).

Another generation of synthetic leptin peptides referred to
as “OB-3” and analogs contains the C-terminal amino acids
residues 116-122 (103). Intriguingly, intraperitoneal administra-
tion of OB-3 and analogs reduces body weight and food intake
in db/db mice deficient in OBRb. The authors concluded that the
peptides were not acting directly through OBRb and therefore
suggested that OB-3 and analogs may have therapeutic applica-
tions in clinical situations where administration of recombinant
leptin would be inefficient such as in a context of OBR gene muta-
tion. OB-3 and analogs are able to efficiently cross the BBB with an
increased bioavailability in the central nervous system (CNS) com-
pared to natural leptin. These synthetic peptides regulate energy
balance, but also normalize glycemia and insulin sensitivity in
rodent models of obesity (104). The formulation for nasal or
oral administration of [D-Leu-4]-OB-3 improves the pharma-
cokinetical profile compared to intraperitoneal administration,
and leads to slight improvement of energy balance and glucose
homeostasis (105, 106).

We also put some effort in designing assays searching for small
chemical or peptide molecules that would modulate OBR activa-
tion. Since no high-resolution crystal structure of the leptin:OBR
complex is available to guide the design of such molecules, a
screen for positive hits without prior knowledge of the com-
pound/peptide structure is an alternative solution. Two differ-
ent types of molecules might be identified with such an assay,
those potentiating/sensitizing the effect of leptin and those acti-
vating OBR by itself in the absence of leptin. In this context,
we established a high-throughput screening assay to search for
small molecular compounds or peptides and designed a leptin
binding assay based on the homogenous time-resolved fluores-
cence (HTRF) technology (107). HTRF binding assay is based on
the energy transfer between a fully functional SNAP-tagged OBR
fusion protein (the SNAP protein can be covalently labeled with
terbium cryptate, the energy donor) and the biologically active
fluorescent leptin-d2 (energy acceptor). The assay is easily minia-
turized, robust, sensitive, and non-radioactive. Positive allosteric
molecules able to modify or increase leptin binding could hold
high potential for helping leptin to activate OBR and reverse leptin
resistance. New agonists that would easily cross the BBB in condi-
tions where leptin transport is itself impaired and limited would
substitute leptin and efficiently activate neuronal OBR. Recently,
Simpson et al. designed pyridine and piperazine derivatives, which

showed efficacy in reducing mouse body weight, and proposed
that their compounds modulate OBR signaling pathway. How-
ever, no robust proof has been provided on the specific target of
the compounds (108, 109).

Derivatives of leptin fragments and small molecular com-
pounds targeting OBR could constitute promising tools to
improve the activation of OBR, when leptin itself is not active
anymore. Such molecules could either better penetrate into the
brain than leptin or allosterically activate OBR. Long-term studies
would assess whether those molecules can become valuable drugs
against leptin resistance and obesity.

ALLEVIATING THE INHIBITION OF THE LEPTIN RECEPTOR
SIGNALING

Several reports show that negative regulators of leptin signaling,
such as the suppressor of cytokine signaling 3 (SOCS3) and the
phospho-tyrosine protein phosphatase PTP1B, can be involved in
leptin resistance. SOCS3, whose expression is induced by the acti-
vation of the JAK2/STAT3 pathway, constitutes a negative retro
control mechanism of leptin signaling. SOCS3 binds the tyro-
sine 985 of OBRb and inhibits leptin-induced phosphorylation
of the receptor, an obligatory step of downstream signaling (110,
111). Furthermore, SOCS3 also binds to JAK2 and inhibits its
phosphorylation and subsequent activation (54). Thus, a deregu-
lation of SOCS3 expression and activity can disrupt the negative
feedback loop in the leptin signaling and be associated with lep-
tin resistance. Indeed, transgenic mice overexpressing SOCS3 in
proopiomelanocortin (POMC) neurons showed an impairment
of STAT3 signaling in the hypothalamus, associated with increased
body weight, fat mass, and food intake (57). In contrast, transgenic
mice with OBRb Y985S mutation, which lost SOCS3 binding site,
showed decreased food intake, increased leptin sensitivity and are
protected from high-fat diet-induced obesity (56).

Concerning PTP1B, this tyrosine phosphatase binds (112) and
dephosphorylates JAK2 thus inhibiting downstream leptin signal-
ing both in vitro and in vivo (55, 113). Ubiquitous, neuron-specific
or POMC neuron-specific deletion of PTP1B leads to decreased
body weight and fat mass, increased energy expenditure, increased
leptin sensitivity, improved glucose homeostasis, and resistance
to high-fat diet-induced obesity (114-118). An enhanced PTP1B
expression, as seen in the case of ER stress, is associated with leptin
and insulin-resistance (58).

Given the involvement of negative regulators of leptin signal-
ing in leptin resistance, decreasing the activity of SOCS3 and
PTP1B appears to be a promising way to restore leptin respon-
siveness in obese people (54, 57, 113-118). Various pharma-
ceutical companies attempted to develop and optimize PTP1B
inhibitors, based on pTyr mimetics (which bind to the active
site of PTP1B without being hydrolyzed) or to screen for small
molecule inhibitors. Among the small molecular compounds iden-
tified, thiazolidinedione derivatives suppressed weight gain and
improved lipid-related blood parameters in HFD mice (119).
Lantz et al. showed that a treatment with trodusquemine, a selec-
tive and allosteric inhibitor of PTP1B, reduced food intake, fat
mass, and body weight of DIO mice. This compound crosses the
BBB and increases insulin-induced phosphorylation of the insulin
receptor and STAT3. Trodusquemine (Genaera Corporation) and
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PTP1B antisense oligonucleotides (ISIS Pharmaceuticals) are cur-
rently in phase II clinical trials as a potential treatment for obe-
sity and diabetes (58, 120). To our knowledge, specific SOCS3
inhibitors do not exist. As a future perspective, we propose a
strategy based on the prevention/disruption of the interaction
between OBR and SOCS3. Preventing the interaction between
SOCS3/OBRbD is supposed to alleviate the inhibition of JAK2
and OBRb phosphorylation, and thus prolong and increase the
activation of the leptin signaling cascade. Targeting the inter-
action between OBR and SOCS3 should be a more specific
means to achieve SOCS3 inhibition at the level of the OBR
pathway. The discovery of such inhibiting molecules (chemi-
cal compounds or peptides) can be achieved via screening of
compounds that would interfere with the interaction between
OBRb and SOCS3. Bioluminescence resonance energy transfer
(BRET) has been widely used to study protein—protein inter-
action (121-123) and to screen for drugs that would increase
or decrease protein interactions (124, 125). BRET-based assay
for high-throughput screening could be foreseen as a promising
strategy to look for peptide or compounds that would interfere
with OBR and SOCS3 interaction, and by extension with OBR
and PTP1B.

INCREASING THE POOL OF SURFACE RECEPTORS
ACCESSIBLE TO LEPTIN

Several reports suggested that OBR is mainly found in the
cytoplasm rather than at the cell surface of hypothalamic neu-
rons (126—128). Studies in transfected cells have confirmed that
OBR localization is predominantly intracellular (129, 130). Sur-
face localized OBR is constitutively internalized in a ligand-
independent manner and clathrin-mediated endocytosis (131,
132). The constitutive internalization of OBR involves several sig-
nals located in the cytoplasmic tail of OBR, in particular two lysine
residues in OBRa have been identified that are subject of ubiqui-
tination and required for constitutive receptor endocytosis. The
study of Belouzard et al. described more precisely the intracellu-
lar distribution and trafficking of OBRa and OBRb, which follow
similar intracellular routes. After internalization, OBR is found
in a peripheral compartment corresponding to EEA1 and Rab5-
positive early endosomes, before being targeted toward lysosomal
degradation (131). Some neosynthesized receptors are retained
in the Trans-Golgi network (TGN), through signals contained in
the transmembrane-domain of the receptor, before being targeted
toward lysosomes. The constitutive internalization, the intracellu-
lar retention in the biosynthetic pathway and the low recycling rate
of OBR result in low levels of receptor expression at the cell sur-
face, which is critical for leptin-sensitivity. Indeed, only 5-25%
of OBR are expressed at the plasma membrane (129). In this
regards, defects in leptin receptor trafficking could alter proper
leptin receptor signaling (40, 133, 134).

The interaction of OBR with trafficking proteins regulates its
intracellular trafficking, and consequently its cell surface expres-
sion and ability to bind leptin. This constitutes an important issue
since the pool of OBR at the cell surface determines the sensitivity
of the cell to leptin. OBRDb, but not the short OBR isoforms, was
previously shown to interact with the sorting molecules, nexinl,
nexin4, and nexin6 (135, 136); however, the importance of those

interactions has not yet been assessed. A recent study identified
that by interacting with OBR and the deubiquitinase USP8 (nec-
essary for stabilizing the ESCRT-0 complex components), the
ubiquitin ligase RNF41 controls OBR trafficking among other
cytokine receptors. RNF41 leads to an increase of OBR recycling
to the plasma membrane versus lysosomal targeting (137). Con-
versely, in cultured neurons, clusterin, and LRP2 enhance OBR
and leptin endocytosis, necessary for hypothalamic STAT3 activa-
tion (97). We also previously identified endospanin 1, a protein
encoded by the db gene by alternative splicing. Endospanin 1,
by directly interacting with OBR specifically, regulates OBR cell
surface expression by retaining a significant amount of OBR in
intracellular compartments (133, 138). Even a twofold increase
in OBR surface expression with endospanin 1 knock-down was
sufficient to significantly increase leptin-induced STAT3 phospho-
rylation in vitro and in vivo in the ARC of the hypothalamus,
and was efficient in preventing or reversing the development of
obesity in mice fed with a high-fat diet (133, 139). This obser-
vation suggests that mobilizing OBRs from intracellular pools
can modulate leptin-sensitivity in neurons. This proof of concept
leads to a new therapeutic strategy to restore leptin-sensitivity in
obese patients. Given the efficacy of increasing OBR cell surface
expression in the ARC neurons, we performed a high-throughput
phenotypic imaging-based screening by confocal microscopy and
identified small molecular compounds capable of increasing OBR
cell surface expression (140). The precise action mechanism of
these hits remains to be determined but includes most likely cel-
lular processes that modify OBR redistribution, like endospanin
1 or RNF41 or others, without affecting OBR neosynthesis or
degradation since treatment with these compounds did not mod-
ify the net expression of total OBR. The positive hits might play
a role in decreasing OBR internalization, increasing OBR recy-
cling, and enhancing OBR transport to the cell surface. Impor-
tantly, the compounds identified increase the signaling capacity
of leptin by enhancing leptin-induced activation of the STAT3
pathway. The therapeutic potential of these compounds has now
to be determined in the context of leptin resistance and obesity
treatment.

INCREASE LEPTIN TRANSPORT THROUGH THE
BLOOD-BRAIN BARRIER

The BBB, formed at the level of brain microvessel endothelium
with tight junctions, is the major site of exchange between the
periphery and the CNS, while the barrier between the blood and
cerebrospinal fluid (CSF) lies at the choroid plexuses in the lateral,
third, and fourth ventricles of the brain. To reach OBRs in the
brain, leptin must be transported across the brain barrier most
likely via a specific, saturable, and unidirectional transport system
(141). This system is supposed to be located at the endothelium of
cerebral microvessels and/or the epithelium of the choroid plexus
(142, 143). The choroid plexus, responsible for the production
of the CSF is also involved in the transport of many peptide
hormones such as insulin (144). Leptin release from the choroid
plexus into the CSF was supposed to be mediated by transcytosis
of a transporter. A myriad of evidence suggests that the highly
expressed OBRa and OBRc isoforms are involved in the transport
of leptin across the BBB or choroid plexus (12, 142, 145-147).
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A recent study identified the potential leptin transporter at the
choroid plexus epithelium, as being LRP2 (also known as mega-
lin), which captures circulating leptin and transports the hormone
into the brain (148).

Since a long time, several reports have suggested that leptin
resistance was associated with a defect in the transport of leptin
through the BBB. DIO mice have the ability to respond to cen-
trally administrated leptin, by reducing food intake, but they do
not respond to a peripheral administration of exogenous hormone
(47). Banks et al. showed that the transport rate of leptin through
the BBB is diminished by about 2/3 in obese CD-1 mice (48).
Reduction of leptin uptake by the brain of New Zealand Obese
mice, a strain that responds to central but not peripheral leptin,
suggested that their obesity is at least partly due to deficient lep-
tin transport into the brain (142). These studies strongly suggest
that a defective transport of leptin across the BBB is correlated
with leptin resistance and obesity. The defect in leptin transport
was also observed in obese patients, in which the CSF/serum lep-
tin ratio is decreased by fourfold compared to lean patients (45,
46). Several hypotheses were proposed for the mechanism(s) of
this defective transport of leptin. In 2005, Oh et al. suggested that
polyunsaturated fatty acids induce peripheral leptin resistance via
an increase in the expression of hypothalamic occludin, one of
the main proteins of the tight junctions, reducing paracellular
transport of leptin into the brain (149). An impaired expression
of the transporters OBRa and OBRc at the BBB and the choroid
plexus was also suggested but this aspect is quite controversial.
Some studies revealed that high-fat diet or leptin challenge had no
effect on OBR mRNA levels in the choroid plexus (150) neither in
cerebral microvessels of mice (142). On the contrary, Boado et al.
observed a strong increase (11-fold) of the mRNA levels of OBRa
(not OBRDb) in brain capillaries of HFD rats, an observation that
was confirmed at the protein levels by immunohistochemistry.
However, in this study, the serum leptin levels of HFD rats were
similar to those in the control group (151). Finally, several studies
suggested that the defect of leptin transport in obese mice is due to
a decreased capacity of the transporter to bind and transport lep-
tin into the brain, and not only a saturation of the transporter by
hyperleptinemia (48, 150, 152). More precisely, this hypothesis is
nicely illustrated by the study of Banks and colleagues where they
observed that, by replacing the hyperleptinemic blood of obese
mice with a buffer containing low concentrations of radiolabeled
leptin, obese mice had still lower transport rate of leptin through
the BBB than lean mice (48).

Recently, a new path for leptin transport into the hypothalamus
was discovered. It is believed that circumventricular organs, such
as the median eminence (ME), which lack a typical BBB, allow free
diffusion of molecules and peptides through their fenestrated cap-
illaries. In particular, the OBR-expressing neurons of the ARC are
in very close proximity to these fenestrated capillaries at the basis
of the hypothalamus (153). Tanycytes are specialized hypothala-
mic glial cellslocated in the ME and extending from the ependymal
surface of the third ventricle to fenestrated vessels at the pial sur-
face of the brain. Remarkably, at the level of the ME, plasma leptin
is first uptaken by the feet of tanycytes, traffics to the apical end,
before being released in the CSE, and targeting neurons of the
mesobasal hypothalamus (154). Interestingly, leptin release in the

CSF is dependent on the activation of ERK signaling, a pathway
impaired in DIO mice. Restoring ERK signaling and leptin release
in the CSF, is able to recover leptin-induced hypothalamic STAT3
activation and accelerate weight loss in leptin-resistant DIO mice
switched to chow diet (154).

Valuable tools to increase leptin entry into the brain would
be strategies that would selectively improve the leptin transport
across the BBB without disturbing the overall intactness of the
barrier. Strategies favoring leptin passage into the brain include
the design of leptin analogs or new OBR agonists with improved
BBB permeability (155). Several strategies have been used to
improve circulating half-life, potency, solubility, and permeabil-
ity of leptin. Modified leptin with PEG, even with an increased
half-life, is unable to cross the BBB (156) and has no effect
on body weight of obese human (157). However, other modi-
fications of leptin were shown relevant as therapeutic strategies
for obesity: indeed, leptin carrying a carbohydrate moiety (158)
and leptin modified with trans-activating transcriptional acti-
vator (TAT) (159) or with Pluronic® (155, 160) have increased
transport into the brain and weight loss in DIO mice. Some
effort still needs to be provided in this sense. In the light of the
ERK-dependent leptin release into the third ventricle by the ME
tanycytes, any pharmacological treatment that would reactivate
ERK signaling in impaired tanycytes would hold promising thera-
peutic potential against leptin resistance sustained by a diminished
central leptin transport. Collectively, until recently, the mech-
anisms by which the brain takes up leptin remained unclear.
Recent studies brought new light on the molecular and cellular
nature of the transporting system, underlying the importance of
LRP2 and tanycytes. Such discoveries warrant further investigation
in humans.

DECREASING ER STRESS WITH CHEMICAL CHAPERONES
The ER is an important organelle regulating the synthesis, fold-
ing, maturation, quality control, and traffic of proteins. Alteration
of proper ER function triggers a state of “ER stress” and leads to
activation of the “unfolded protein response (UPR)”; in order to
adapt the secretory apparatus and cellular physiology in response
to stress (161). The UPR signaling has a protective role by (i)
augmenting the expression of proteins involved in the folding
machinery, (ii) increasing the rate of protein folding, and (iii)
diminishing the overall translation of proteins for attenuation of
ER load. Misfolded proteins are then targeted for degradation by
the proteasome. However, persistent and prolonged UPR signaling
would trigger cell death. UPR signaling is mediated by three main
ER transmembrane proteins, IRE1 (inositol-requiring protein-1),
PERK (protein kinase RNA-like ER kinase), and ATF6 (activating
transcription factor-6).

Persistent ER stress and UPR signaling have been implicated in
various diseases including metabolic disorders such as obesity and
type 2 diabetes (162). Cholesterol and free fatty acids were shown
to induce ER stress (163—165). ATF6 seems to be involve in the reg-
ulation of glucose metabolism in the liver and pancreas (166, 167).
PERK pathway has an important role in pancreatic f cell func-
tion since PERK-null mice or mice with pancreas-specific deletion
of PERK develop hyperglycemia with the loss of pancreatic islets
(168—170). Recent studies demonstrated that ER stress is involved
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in the development of leptin resistance by abrogating leptin signal-
ing (64,65). Pharmacologically induced ER stress suppresses leptin
signaling in the hypothalamus and increases food intake and body
weight in mice (65). Neuronal deletion of XBP1, a IRE1-regulated
transcription factor, triggers hypothalamic ER stress, and leptin
resistance associated with weight gain upon high-fat diet (65). ER
stress in the brain also contributes to central insulin-resistance
along with leptin resistance (66).

Chemical chaperones constitute a promising therapeutic treat-
ment against leptin resistance in order to re-sensitize the cells
to leptin. They are small molecular compounds that stabilize
the folding of proteins and help to decrease abnormal protein
aggregation and reduce ER stress. 4-phenylbutyrate (4-PBA) and
tauroursodeoxycholic acid (TUDCA) are the best-known chemi-
cal chaperones with FDA approval. 4-PBA and TUDCA treatment
successfully alleviate hypothalamic ER stress and restore leptin
responsiveness in high-fat diet-fed mice by reducing food con-
sumption along with body weight (65). Hosoi et al. has reported
that fluvoxamine, a selective serotonin reuptake inhibitor pre-
scribed for the treatment of depression, which binds the ER recep-
tor Sigmal, is able to alleviate ER stress and reverse leptin resistance
in cells, and to decrease food intake in mice (171). Recently, flur-
biprofen, a non-steroidal anti-inflammatory drug (NSAID), was
shown to reduce ER stress, to attenuate leptin resistance and to
reduce the body weight of HFD obese mice (172, 173). The authors
suggested that flurbiprofen reduces the aggregation of aldehyde
dehydrogenase, leading to the reduction of ER stress and of leptin
resistance (172).

Promisingly, chemical chaperones gave encouraging results
when administrated for the treatment of human obesity and dia-
betes. 4-PBA and TUDCA were demonstrated to improve insulin
signaling and glucose homeostasis in human obese subjects char-
acterized by insulin-resistance, and improved insulin sensitivity
in obese subjects (174, 175). Those observations in humans sug-
gest that alleviating ER stress constitutes a potential therapeutic
strategy for metabolic diseases like obesity and type 2 diabetes.

FOR OTHER TYPE OF DISORDERS

Leptin exerts also direct effects on peripheral organs and regulates
a wide range of functions including immunity (176, 177), neu-
roendocrine functions (178), bone formation (179), reproduction
(180), and angiogenesis (181, 182). Given the involvement of lep-
tin in such diverse biological effects, leptin resistance and obesity
are frequently associated with other diseases such as autoimmu-
nity, some cancers, cardiovascular, and neurodegenerative diseases.
Indeed, several evidence suggest a neuroprotective role of leptin,
which can prevent neuronal death in various neurodegenera-
tive situations, such as models of Parkinson’s disease (183, 184),
Alzheimer’s disease (AD) (185), and models related to epilepsy
(186). Leptin can also modulate synaptic plasticity involved in
memory formation: mouse models of AD treated with exogenous
leptin show improved memory (187). A recent study emphasizes
an active role of leptin signaling in astrocytes for the regulation
of synaptic plasticity and feeding (188). Furthermore, glial cells
play a central role in protection from neuro-inflammation, process
involved in neurodegenerative situations (189). In this context,
new agonists for OBR or OBR sensitizing molecules would be

promising therapeutic tools for neurodegenerative diseases. On
the other hand, because leptin promotes autoimmunity (190, 191),
cancer cell growth and migration, the identification of new OBR
antagonists would be of interest in the field of autoimmune disease
and cancer therapy (192—-194).

In this review, we attempted a summary of recent pharmaco-
logical tools developed for OBR. These efforts will continue at the
speed at which novel facets of OBR function will be discovered.
For instance, new discoveries keep underlying the importance
of interacting proteins or lipids for OBR signaling. For exam-
ple, increased association of gangliosides with OBR upon leptin
stimulation participates in receptor activation (195). Furthermore,
the low-density lipoprotein receptor-related protein-1 (LRP1) was
demonstrated to bind to the leptin:OBR complex and suggested
to be necessary for OBR phosphorylation and STAT3 activation
(196). Similarly, clusterin and LRP2 are critical for leptin endo-
cytosis and leptin-induced STAT?3 activation in the hypothalamus
(97). Endospanin 1 and RNF41 regulators control OBR traffick-
ingand signaling. Almost all those interacting molecules have been
shown to be implicated in the leptin regulation of body weight.
They could be included in the effort of finding leptin sensitiz-
ing mechanisms/molecules. Important efforts have been made to
identify the origin of leptin resistance and mechanisms that sustain
it, such as hyperleptinemia, failure of central transport of leptin, or
ER stress. Therapeutic tools or concepts have also been developed,
either with low or strong efficacy, in order to ameliorate leptin-
sensitivity and reverse its loss. In the long-term, discovery of new
drugs against leptin resistance, acting at multiple levels, should be
included in a therapeutic setting where combinatorial treatment
in association with other hormonal therapies should help decreas-
ing food intake and increasing energy expenditure and therefore
leading to steady reversal of obesity with limited risks.
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