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Even though the dynamic modification of polypeptides by the monosaccharide, O-linked
N-acetylglucosamine (O-GlcNAcylation) was discovered over 30 years ago, its physiological
significance as a major nutrient sensor that regulates myriad cellular processes has only
recently been more widely appreciated. O-GIcNAcylation, either on its own or by its inter
play with other post-translational modifications, such as phosphorylation, ubiquitination,
and others, modulates the activities of signaling proteins, regulates most components
of the transcription machinery, affects cell cycle progression and regulates the target-
ing/turnover or functions of myriad other regulatory proteins, in response to nutrients.
Acute increases in O-GIcNAcylation protect cells from stress-induced injury, while chronic
deregulation of O-GIcNAc cycling contributes to the etiology of major human diseases of
aging, such as diabetes, cancer, and neurodegeneration. Recent advances in tools to study
O-GlIcNAcylation at the individual site level and specific inhibitors of O-GIcNAc cycling have
allowed more rapid progress toward elucidating the specific functions of O-GlcNAcylation
in essential cellular processes.
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EARLY HISTORY

O-GlcNAcylation was discovered in the early 1980s when bovine
milk galactosyltransferase was used as an enzymatic probe of
terminal N-acetylglucosamine moieties in cells of the murine
immune system (1). Later studies established O-GIcNAC’s surpris-
ing nucleocytoplasmic subcellular localization and distribution at
a time when dogma stated that protein glycosylation only occurs
within the secretory pathway or extracellular compartments (2).
O-GlcNAcylation was shown to be highly abundant within the
nucleus and particularly enriched at the nuclear envelope and
on nuclear pore proteins (3-5). However, O-GlcNAcylation was
also found to be abundant on cytoskeletal proteins of human
erythrocytes, which lack a nucleus (6). Viruses were also found
to contain O-GlcNAcylated proteins, which occur on proteins
surrounding their nucleic acid cores, rather than on their cap-
sids, where other forms of “classical” protein glycosylation are
found (7). O-GlcNAcylation was subsequently found to be highly
enriched on proteins associated with chromatin in Drosophila (8),
and O-GIcNAc was shown to not only be a major modifier of
transcription factors (9), but also a major modification of the C-
terminal domain (CTD) of RNA polymerase II itself (10). Early
studies in lymphocytes showed that cellular activation resulted in
rapid changes, suggesting that O-GIcNAc cycled like phosphoryla-
tion and could be a regulatory modification (11), which was later
confirmed by the sugar’s rapid cycling on small heat shock pro-
teins, shown by classical pulse-chase analyses (12). An assay for
O-GlcNAc transferase (OGT), based upon tritiated UDP-GIcNAc
as the donor and synthetic peptide acceptors, was developed and

OGT activity was identified and characterized (13). OGT was
subsequently purified to apparent homogeneity by brute-force
biochemical approaches combined with nucleotide affinity chro-
matography (14). O-GlcNAcase was originally purified from rat
spleen cytosol (15) and was found to be similar to hexosaminidase
C (16, 17), which was known but had not been purified to homo-
geneity. Based upon polypeptide sequencing, in conjunction with
PCR cloning, the OGT cDNA from rat (18), C. elegans and human
(19) were cloned. OGT was found to be a very highly conserved
protein with no homology to other known glycosyltransferases.
OGT was also found to have two distinct domains, a catalytic
domain and a protein—protein interaction domain consisting of
over 11 tetratricopeptide (TPR) repeats separated by a linker
region. Likewise, O-GlcNAcase was purified from bovine brain
and the protein was sequenced by mass spectrometry, and used to
clone the enzyme from a human library (20). The OGA gene was
found to be identical to MGEA5 a putative hyaluronidase asso-
ciated with meningioma (21). Early studies identified O-GlcNAc
on nuclear receptors, tau protein in the brain, intermediate fil-
ament proteins, nuclear oncogenes and tumor suppressors, and
many other proteins with a wide-range of functions [reviewed in
Ref. (22)].

MORE RECENT FINDINGS

As the tools for the detection and analysis of O-GlcNAcylation
improved, it became apparent that this post-translational modifi-
cation is much more abundant than previously expected [reviewed
in Ref. (23, 24)]. In addition, it was soon realized that not only was
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the donor for O-GlcNAcylation, UDP-GIcNAc, a major node of
metabolism, but also that O-GlcNAc has extensive interplay with
protein phosphorylation [reviewed in Ref. (23)]. Gene deletion
studies have shown that both OGT and O-GlcNAcase are essential
genes in mammals and plants (25-27).

Like phosphorylation and ubquitination, O-GlcNAcylation
regulates many different cellular processes. O-GlcNAcylation is
essential in the process of lymphocyte activation in both B- and
T-lymphocytes (28). There are several examples where the glycan
regulates protein:protein interactions [e.g., Ref. (29, 30)]. Nutri-
ents fine-tune circadian clocks via O-GlcNAcylation (31-34). O-
GlcNAc modulates the activity of the proteasome (35-39), and
also has interplay with ubquitination (40, 41). Recent studies indi-
cate that O-GlcNAcylation is very important to neuronal and brain
functions, including synaptic plasticity, synaptic vesicle trafficking,
and axonal branching (42-46). O-GlcNAcylation also regulates
growth hormone signaling in plants (27), protects cells from acute
stresses (47), and modulates transition through the cell cycle (48).
Even though O-GlcNAcylation has not yet been documented to
occur in yeast, such as Saccharomyces cerevisiae or Schizosaccha-
romyces pombe, O-GlcNAc does occur in some of oldest known
eukaryotes (49), including in some important human parasites
(50-52). In certain bacteria, O-GlcNAcylation regulates flagellar
motility (53), and in Streptococcus pneumonia, O-GlcNAcylation
of an adhesion plays a role in infection and pathogenesis (54).
However, the bacterial OGT involved in each case is quite different
from the eukaryotic enzyme.

As a key nutrient sensor, O-GlcNAcylation is fundamentally
important to the regulation of transcription at nearly all levels,
including regulation of the functions of RNA polymerase II itself
(55, 56), modulating the activities of nearly all transcription fac-
tors (30), regulating both histone and DNA methylation (57-61),
crosstalking with other epigenetic modifications (62), and serv-
ing as an integral part of the histone code (63). Not only does
O-GlcNAcylation have extensive crosstalk with protein phospho-
rylation at the protein site level but also the sugar modifies many
kinases and regulates their activities or specificity (64—69).

Given the myriad functions associated with O-GlcNAcylation,
it is not surprising that this nutrient sensor plays a fundamen-
tal role in the etiology of diabetes and glucose toxicity (70-72).
O-GlcNAcylation is elevated in all cancers studied to date and
appears to play a role in tumor cell progression (24, 73, 74), and in
patient prognosis (75). Given O-GlcNAcylation’s abundance and
presence on hundreds of proteins in the brain, it is also a major
mechanism contributing to neurodegeneration (76-78). After 30-
years of research on O-GlcNAcylation, it is now not only more
apparent than ever that this post-translation modification plays a
central role in the nutrient regulation of cellular physiology but
also it is clear that we have a long way to go to fully understand
the importance of O-GlcNAcylation in most cellular and disease
processes.

FUTURE DIRECTIONS

Many important questions remain with respect to O-
GlcNAcylation. (1) How does O-GlcNAc cycling achieve sub-
strate specificity with only two known genes in mammals, OGT
and OGA (MGEA5)? Clearly, several different mechanisms are

involved. In vitro, OGT has remarkable specificity for peptide sub-
trates, which appears to change with UDP-GIcNAc concentrations
(79). Most importantly, both enzymes function as part of transient
holoenzyme complexes, which number in the hundreds, are cell
type specific and serve to target the enzymes to their specific sub-
strates. A key question is how is the formation of these holoenzyme
complexes regulated by nutrients and other signals? (2) How are
kinases regulated by O-GlcNAcylation? Many kinases are dynami-
cally O-GlcNAcylated, and thus far, those studied are regulated by
the glycan. How does this observation alter our view of signaling
and system biological studies of cellular physiology? (3) How does
O-GlcNAcylation play a role in neuronal functions and in learn-
ing and memory? O-GlcNAcylation is incredibly abundant in the
mammalian brain, and in neurons, particularly at the synapse and
in dendritic spines (42, 45, 80). Elucidation of O-GIcNAC’s roles
in normal neuronal functions and in brain biology will become
a huge area of future research. (4) What are the specific roles of
O-GlcNAcylation in nutrient regulation of transcription? While
it is now clear that O-GlcNAcylation is fundamentally important
in nearly every aspect of transcription, we currently know almost
nothing with respect to its protein-specific or site-specific roles on
individual transcription regulatory proteins. This area will remain
an enormous challenge for some time to come.

Finally, while the tools to study O-GlcNAcylation have
advanced substantially in the last three decades, there remains
an acute need to develop better methods and approaches that can
be applied by biologists. These include: (1) The development of
many site-specific O-GlcNAc antibodies; (2) A molecular biol-
ogy approach to either mimic O-GlcNAcylation or to generate
site-specific O-GlcNAcylation on proteins; (3) Methods are need
that can raise or lower O-GlcNAcylation on individual proteins
or at individual sites to evaluate functions. Unfortunately, current
methods either based upon inhibitors or genetic approaches to
alter O-GlcNAcylation, all act globally. (5) There continues to be
a need for better methods to both detect and site-map O-GlcNAc
on proteins. The challenges in this field are large but so is the
pay off for our understanding of cellular physiology and chronic
disease.
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