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Mechanical loading, a potent stimulator of bone formation, is governed by osteocyte
regulation of osteoblasts. We developed a three-dimensional (3D) in vitro co-culture sys-
tem to investigate the effect of loading on osteocyte–osteoblast interactions. MLO-Y4
cells were embedded in type I collagen gels and MC3T3-E1(14) or MG63 cells layered
on top. Ethidium homodimer staining of 3D co-cultures showed 100% osteoblasts and
86% osteocytes were viable after 7 days. Microscopy revealed osteoblasts and osteocytes
maintain their respective ovoid/pyriform and dendritic morphologies in 3D co-cultures.
Reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) of messenger
ribonucleic acid (mRNA) extracted separately from osteoblasts and osteocytes, showed
that podoplanin (E11), osteocalcin, and runt-related transcription factor 2 mRNAs were
expressed in both cell types. Type I collagen (Col1a1) mRNA expression was higher in
osteoblasts (P < 0.001), whereas, alkaline phosphatase mRNA was higher in osteocytes
(P =0.001). Immunohistochemistry revealed osteoblasts and osteocytes express E11, type
I pro-collagen, and connexin 43 proteins. In preliminary experiments to assess osteogenic
responses, co-cultures were treated with human recombinant bone morphogenetic pro-
tein 2 (BMP-2) or mechanical loading using a custom built loading device. BMP-2 treatment
significantly increased osteoblast Col1a1 mRNA synthesis (P =0.031) in MLO-Y4/MG63
co-cultures after 5 days treatment. A 16-well silicone plate, loaded (5 min, 10 Hz, 2.5 N) to
induce 4000–4500 µε cyclic compression within gels increased prostaglandin E2 (PGE2)
release 0.5 h post-load in MLO-Y4 cells pre-cultured in 3D collagen gels for 48, 72 h,
or 7 days. Mechanical loading of 3D co-cultures increased type I pro-collagen release 1
and 5 days later. These methods reveal a new osteocyte–osteoblast co-culture model that
may be useful for investigating mechanically induced osteocyte control of osteoblast bone
formation.

Keywords: osteocyte, osteoblast, 3 dimensional, co-culture, model, loading

INTRODUCTION
Osteocytes are by far the most abundant bone cell type (90–
95% of all bone cells (1), forming a network of cells, connected
by long cell processes that extend along canaliculi within the
mineralized bone matrix. The adult human skeleton is contin-
ually being remodeled by bone forming osteoblasts and bone
resorbing osteoclasts, whose activities are balanced in healthy indi-
viduals. Osteocytes are thought to integrate hormonal, growth
factor, and mechanical stimuli to influence control of bone
remodeling.

In vivo, osteocytes increase transcriptional and metabolic activ-
ities in response to short loading periods (2, 3), increase their
dentin matrix protein 1 (DMP1) and matrix extracellular phos-
phoglycoprotein (MEPE) expression, controlling bone matrix
mineral quality (4, 5), increase insulin growth factor 1 (IGF-1), and
related proteins involved in mechanically induced bone formation

(6, 7), and stimulate nitric oxide (NO) production (8), an early
mediator of mechanically induced bone formation (9). Osteocyte
abundance, morphology, position within bone, and ability to form
an extensive network are ideally suited to this mechanorespon-
sive role (10–14). Osteocytic processes and primary cilia detect
mechanical stimuli (15–19) whereas, proteins involved in the con-
nection of osteocytes to surrounding cells and/or the extracellular
matrix (ECM), like focal adhesions, connexin 43 (CX43), and
integrins, are involved in osteocyte response to mechanical stim-
uli (20, 21). Mechanically loaded osteocytes regulate osteoblast
activity through various mechanisms including the downregu-
lation of sclerostin (SOST) expression (22, 23), release of NO,
which has an anabolic effect on osteoblast activity (9), and release
of prostaglandin E2 (PGE2), which regulates osteoblast prolifer-
ation and differentiation (24). Whilst the methodology devel-
oped here focuses on osteocyte control of osteoblasts, it is clear
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that osteocytes regulate other cells activities in response to load
(25–27).

A major problem with investigating osteocytes is the diffi-
culty in isolation and culture of these cells in vitro. Studies
using sequential digestion of bone to enrich for osteocytes have
proved difficult and, so far, limited to chick (28–30), rat (31), and
mouse (32). Mouse cell lines representing late osteoblast/early
osteocytes (MLO-A5) (33) and osteocyte-like (MLO-Y4) (33,
34) cells have been developed to facilitate in vitro investiga-
tion of osteocytes, but these are routinely cultured in monolayer
on type I collagen-coated plastic. More recently the IDG-SW3
mouse derived cells have been shown to replicate osteoblast-
to-late osteocyte differentiation under both two-dimensional
(2D) and three-dimensional (3D) collagen culture conditions
in vitro (35).

There have been very few publications on co-culture of
osteoblasts and osteocytes, despite the known physiological inter-
actions between these cell types. Taylor et al. (36) describe a
co-culture system in which the two cell types are grown in 2D,
either side of a semi permeable cell culture insert membrane.
Stimulation of the osteocyte layer by fluid shear enhanced alkaline
phosphatase (ALP) expression by the osteoblasts, an effect at least
partially dependent on cell–cell contact and gap junction commu-
nication (36). This system is useful but does not allow osteocytes
to form a 3D network. The three-dimensionality of osteocyte
environment is important; firstly embedding primary osteoblasts
within 3D matrices induces differentiation to osteocyte-like cells
in vitro (37), recapitulating the in vivo differentiation pathway, and
secondly it facilitates a more realistic model of a 3D lacunocanalic-
ular system (LCS) of cells that can be subjected to appropriate
mechanical cues.

In vitro, 3D bone models where bone cells are embedded in
type I collagen gels have not been used to investigate osteocyte
loading or osteocyte–osteoblast interactions (38–42). 3D cultures
made out of polybicarbonate membranes (37) and scaffolds (43–
46) do not embed cells within a 3D matrix, but instead attach
them to the scaffold surface and therefore do not accurately cap-
ture the environment of an osteocyte within bone. Whilst these
systems have proven the feasibility of reproducing the synthesis
of an organized matrix (44) and cell-mediated matrix degrada-
tion (47–49), there are no models that co-culture osteoblasts and
osteocytes in 3D under mechanical stimulation. This highlights a
major gap in the understanding of the interactions that lead to
mechanically induced bone formation.

Here, we describe the methodology for a new 3D co-culture
model, cultured within a custom built multi-well silicone loading
plate, to investigate how mechanical loading of osteocytes regu-
lates osteoblast function. MLO-Y4 cells were cultured within type
I collagen gels, with an osteoblast-like cell line [MC3T3-E1(14)
or MG63] layered on top of the gel (Figure 1). Both osteoblasts
and osteocytes maintain cell viability, morphology, and phenotype
when cultured in 3D co-cultures and express CX43, a compo-
nent of network formation. These co-cultures resulted in anabolic
responses when stimulated with bone morphogenetic protein 2
(BMP-2) or mechanically loaded. This model will be useful in elu-
cidating osteocyte-driven mechanical mechanisms that regulate
bone formation.

FIGURE 1 | Novel 3D osteocyte–osteoblast co-culture model. Diagram
of the 3D in vitro model indicating the surface and deep zone, and positions
of the surface osteoblasts and embedded osteocytes.

MATERIALS AND METHODS
CELLS
MLO-Y4 cells were a kind gift from Professor Lynda Bonewald,
University of Missouri-Kansas City, USA. MC3T3-E1(14) and
MG63 cells were obtained from the European Collection of Cell
Cultures, Salisbury, UK.

MLO-Y4 cells (34) were cultured on collagen-coated flasks
(rat tail tendon type I collagen, 0.15 mg/mL in 0.02 N glacial
acetic acid) in alpha minimum essential medium (αMEM, Invit-
rogen) supplemented with 2.5% Heat Inactivated Fetal Bovine
Serum (HIFBS, Invitrogen) and 2.5% Heat Inactivated Newborn
Calf Serum (HINCS, Invitrogen) (50). MC3T3-E1(14) cells were
cultured in αMEM supplemented with 10% FBS (Invitrogen)
(51). MG63 cells were cultured in Dulbecco’s Minimum Essen-
tial Medium (DMEM, Invitrogen) and supplemented with 5%
FBS (Invitrogen). All three cell lines were supplemented with
100 U/mL penicillin and 100 µg/mL streptomycin and grown at
37°C in 5% CO2. At 70–80% (MLO-Y4) or 80–90% [MC3T3-
E1(14) and MG63] confluency, cells were sub-cultured by treating
with trypsin/ethylenediaminetetraacetic acid (EDTA) (0.25% w/v
of each; Invitrogen).

3D CO-CULTURES
MLO-Y4 cells were incorporated within type I collagen gels and
either MC3T3-E1(14) or MG63 cells layered on top. Rat tail tendon
type I collagen (Sigma, in 7 mM glacial acetic acid) was mixed 4:1
with 5X MEM (Invitrogen) containing 11 g/L sodium bicarbonate
on ice and neutralized [1 M tris(hydroxymethyl)aminomethane
(Tris) base, pH 11.5] to give 2–2.6 mg/mL type I collagen gels.
MLO-Y4 cells (1.5× 106 cells/mL gel) diluted in αMEM (<10%
of total gel volume) were added to the collagen on ice and 500
or 250 µL distributed into 24 or 48-well plastic plates, respec-
tively for polymerization at 37°C for 1 h. MC3T3-E1(14) or MG63
cells (1.5× 105 cells/well) in DMEM with 5% FBS (MG63) or
5% dialyzed FBS (DFBS) [MC3T3-E1(14)] were applied onto
the surface of each gel after 1 h and incubated at 37°C for up
to 1 week (Figure 1). Medium was changed after 24 h and every
2 days thereafter. To test cell responses, co-cultures were treated
with human recombinant BMP-2 (250 ng/mL, Peprotech) for
5 days.
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CELL VIABILITY
Co-cultures grown in plastic plates were rinsed with phosphate
buffered saline, pH 7.3 (PBS), incubated with 1 µM ethidium
homodimer (Invitrogen) in serum free medium for 2 h at 4°C
and then for a further 2.5 h at 37°C before washing overnight
at 37°C in normal culture medium with gentle agitation. Pos-
itive controls co-cultures were freeze-thawed at −20°C three
times, before treatment. For cell death analysis of the surface
zone, confocal microscopy was performed directly on whole co-
cultures. Samples were scanned using appropriate excitation and
emission settings for simultaneous recording of 4′,6-diamidino-
2-phenylindole (DAPI) [358 nm Excitation (Ex(max)); 461 nm
Emission (Em(max))] and ethidium homodimer [590 nm Ex(max);
617 nm Em(max)]. Samples were optically sectioned, over five
defined arbitrary regions per gel quarter, using a x10 objective
lens with 2.32 zoom. 5 µm step size z-stack optical sections were
reconstructed using Leica Confocal Software. Maximum intensity
models were prepared showing detail of the surface zone. Counts
were made of DAPI (blue) labeled nuclei (to give total number
of cells) and ethidium homodimer and DAPI (purple) co-labeled
nuclei (to give number of dead cells).

For deep zone viability, cultures were fixed with 1%
paraformaldehyde (Sigma) in 0.05 M PBS for 30 min at 4°C and
then washed in PBS. Some were labeled whole for filamentous
actin and type I pro-collagen (see below). Cultures were infil-
trated with 50% OCT compound (Tissue Tek) in PBS overnight
at 4°C and then frozen in fresh OCT compound onto cryostat
stubs using dry ice. Cryosections were cut at 20 µm using a Bright
OTF5000 cryostat and collected on Polysine slides (VWR). Five
random slides of each co-culture containing 4–6 sections each
were mounted in Vectashield mounting medium with DAPI as
a nuclear counterstain. One random section from each slide was
observed under epi-fluorescence as above, and 10 random fields of
view using the x20 objective photographed for each section under
both DAPI and ethidium homodimer illumination. Counts were
made as above.

MICROSCOPY AND IMAGING OF CELLS AND CELL MARKERS
Osteocyte and osteoblast morphology was assessed in live cultures
grown in plastic plates with a Leica DMRB inverted microscope
equipped with a Moticam 2000 digital camera. For labeling pro-
cedures, 3D cultures were treated, fixed, frozen, and cryosectioned
as previously outlined.

Filamentous actin was labeled by incubating fixed intact
cultures or sections with 5 µM Atto488 conjugated phalloidin
(Sigma) in PBS containing 0.1% tween 20 (PBST; Sigma) for
40 min at 4°C. Specimens were then washed thoroughly in PBST
and mounted in Vectashield containing DAPI to label nuclei
(Vector Laboratories). Labels for type I pro-collagen, gap junc-
tion protein CX43 and dendritic cell marker podoplanin (E11)
were performed by indirect immunohistochemical procedures. In
all cases, the primary antibody was replaced in control sections
with PBST alone or with non-immune immunoglobulins (IgG),
to reveal any non-specific binding. In all cases both PBST and
IgG controls were negative. Type I pro-collagen was labeled using
monoclonal antibody M38 recognizing the C-terminus of pro-
collagen I in a wide range of species except mouse [5 µg/mL;

(52); Developmental Studies Hybridoma Bank], CX43 using mon-
oclonal antibody CXN-6 (8 µg/mL; Sigma) and E11 with goat
anti-mouse podoplanin (E11) primary antibody (2.5 µg/mL; R&D
Systems). Sections were blocked with 5% goat serum (those stained
with antibodies M38 and CXN-6; Dako) or 5% rabbit serum (E11;
Dako) for 30 min and then incubated with primary antibodies
overnight at 4°C (E11) or 1 h at room temperature (M38, CXN-
6). After extensive washing with PBST, M38 and CXN-6 sections
were incubated with AlexaFlour594 or AlexaFluor488 goat anti-
mouse conjugates, for 30 min at room temperature. All sections
were thoroughly washed and mounted in Vectashield/DAPI. E11
sections were incubated with a horseradish peroxidase rabbit anti-
goat conjugate (Vector Laboratories; 1:800 dilution) for 30 min,
washed in PBST and label visualized using a nickel-enhanced
diaminobenzidine peroxidase substrate kit (Vector Laboratories).
Fluorescence specimens were examined with an Olympus BX61
epi-fluorescence microscope equipped with an F-view camera and
AnalySISimage capture and analysis software, or using a Leica TCS
SP2 AOBS confocal scanning laser microscope and using the Leica
Confocal Software, and peroxidase labels with a Leica DMRB
microscope with a Moticam 2000 camera. Confocal microscopy
was carried out on samples using appropriate excitation and emis-
sion settings for simultaneous recording of DAPI and ethidium
homodimer as previously outlined, Phalloidin-Atto488 [495 nm
Ex(max), 519 nm Em(max)], and Alexa 594 [590 nm Ex(max), 617 nm
Em(max)]. Specimens were optically sectioned using a x63 objec-
tive with an arbitrary zoom (surface and deep zone actin filament
stain, and CX43 immunofluorescence). 5 µm (surface zone) or
0.5 µm (deep zone) step size z-stack optical sections through the
specimen were reconstructed using Leica Confocal Software. Max-
imum intensity models were prepared showing detail of the surface
zone or deep zone.

MOLECULAR ANALYSIS OF OSTEOCYTE AND OSTEOBLAST PHENOTYPE
Osteocyte and osteoblast phenotype was determined at the mol-
ecular level using reverse-transcriptase quantitative polymerase
chain reaction (RT-qPCR). Ribonucleic acid (RNA) was extracted
separately from surface and embedded cells of co-cultures grown
in plastic plates by dispensing 1 mL Trizol (Invitrogen) onto the
surface for 10 s to extract osteoblast RNA, and subsequently dis-
solving the underlying gel within a separate 1 mL Trizol aliquot
to extract RNA from gel embedded cells. After RNA extrac-
tion according to manufacturer’s protocol and DNAse treatment
(DNA-free, Ambion) RNA was re-precipitated with 3 M sodium
acetate (pH 5.5,Ambion) and dissolved in molecular biology grade
water (25 µL for surface cells, 50 µL for deep cells). RNA with
A260/A280 and A260/A230 ratios of ≥1.8 was deemed good qual-
ity. RNA (1.7–253.3 ng for the surface zone; 108.8–1864.9 ng for
the deep zone) was primed with random hexadeoxynucleotides
(Promega, Southampton, UK) and reverse transcribed according
to manufacturer’s instructions (Superscript III, Invitrogen). Gene
expression of E11, osteocalcin (OCN), runt-related transcrip-
tion factor 2 (Runx2), type I collagen (Col1a1), ALP, and simian
vacuolating virus 40 (SV40) large T-antigen were analyzed by RT-
qPCR [SYBR Green I master mix (Sigma), 2.5 mM MgCl2, 200 nM
each primer, Stratagene MX3000P]. All targets except OCN used
intron-spanning primers (Table 1) and no template controls were
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Table 1 | Primer details.

Gene Primers (5′–3′) Amplicon

size (bp)

GAPDH (human)

NM_002046.5

Fwd – GGT ATC GTG GAA GGA CTC ATG A 68

Rev – GGC CAT CCA CAG TCT TCT G

HPRT1 (human)

NM_000194.2

Fwd – GCA GAC TTT GCT TTC CTT GG 80

Rev – GTG GGG TCC TTT TCA CCA G

18S rRNA

NR_003278.3

Fwd – GCA ATT ATT CCC CAT GAA CG 125

Rev – GGC CTC ACT AAA CCA TCC AA

E11 (human)

NM_006474.4

Fwd – ACG GAG AAA GTG GAT GGA GA 186

Rev – ACG ATG ATT GCA CCA ATG AA

RUNX2 (human)

NM_

001024630.3

Fwd – GTG GAC GAG GCA AGA GTT TC 107

Rev – TTC CCG AGG TCC ATC TAC TG

COL1A1 (human)

NM_000088.3

Fwd – CAG CCG CTT CAC CTA CAG C 83

Rev – TTT TGT ATT CAA TCA CTG TCT TGC C

OCN (human)

NM_199173.4

Fwd – GGC AGC GAG GTA GTG AAG AG 73

Rev – GAT CCG GGT AGG GGA CTG

Gapdh (mouse)

NM_

001289726.1

Fwd – GAC GGC CGC ATC TTC TTG TGC A 114

Rev – TGC AAA TGG CAG CCC TGG TGA C

Hprt (mouse)

NM_013556.2

Fwd – CGTGATTAGCGATGATGAACCAGGT 149

Rev – CCATCTCCTTCATGACATCTCGAGC

E11 (mouse)

NM_010329.3

Fwd – AAG ATG GCT TGC CAG TAG TCA 118

Rev – GGC GAG AAC CTT CCA GAA AT

Runx2 (mouse)

NM_

001146038.2

Fwd – GAC GAG GCA AGA GTT TCA CC 120

Rev – GTC TGT GCC TTC TTG GTT CC

Col1a1 (mouse)

NM_007742.3

Fwd – ACT GCC CTC CTG ACG CAT GG 140

Rev – TCG CAC ACA GCC GTG CCA TT

OCN (mouse)

NM_007541.3

Fwd – CCGCCTACAAACGCATCTAT 153

Rev – TTTTGGAGCTGCTGTGACAT

ALP (mouse)

NM_

001287172.1

Fwd – GCTGGCCCTTGACCCCTCCA 132

Rev – ATCCGGAGGGCCACCTCCAC

SV40

YP_003708382.1

Fwd – AGGGGGAGGTGTGGGAGGTTTT 100

Rev – TCAGGCCCCTCAGTCCTCAC

included for all reactions. Thermocycling included 1 cycle of 95°C
for 3 min, 40 cycles of 95°C for 20 s, 60°C for 40 s, 72°C for 20 s, and
1 cycle of 72°C for 10 min. Specificity of RT-qPCR was confirmed
by melting curve analysis (Stratagene MX3000P) with comple-
mentary deoxyribonucleic acid (cDNA) standard curves of 90–
110% efficiency and with an R2 value of ≥0.99 accepted as valid.

Relative quantification of messenger ribonucleic acid (mRNA)
expression by RT-qPCR was calculated using the 2−∆∆CT method
(53). In all cases, RT-qPCR was carried out using three reference

genes (RG), 18S rRNA, glyceraldehyde 3-phosphate dehydro-
genase (GAPDH ), and hypoxanthine–guanine phosphoribosyl-
transferase (HPRT1). The most stable RG was determined via
NormFinder. Expression data for each gene in an experiment were
transformed from log10 to linear scale using a standard curve and
then loaded into the NormFinder Microsoft Excel Add-In1 (54).
The most stable gene or combination of two genes, combined by
calculating the geometric mean, was used for normalization and
is clearly stated in the relevant figures. Target gene expression lev-
els were expressed as relative expression units (REU), using the
highest expressor within all samples as the calibrator sample.

MECHANICAL LOADING
A 16-well loading plate (Figure 2A) was manufactured from solid
silicone (Technovent TechSil 25)2 so that the wells of the plate
were of the same dimensions (10 mm diameter) as a standard
Greiner (Stonehouse, UK) 48-well tissue culture plate but with
a 150 µm thick base. The spaces between the wells were filled
with silicone and a series of holes were made on each side of the
plate to accommodate hooks for attachment to a BOSE loading
instrument. A Dantec Dynamics Digital Image Correlation (DIC)
system was used to measure strain in the loading plate in order
to calibrate the system. DIC compares two digital images of two
different mechanical states of a particular object: a reference state
and a deformed state. A previously applied speckle pattern (here
applied using black face paint)3 follows the strain of the object,
and so the displacement that occurs between both reference and
deformed state can be measured by matching the speckle pattern in
small regions of the image (55, 56). By using two cameras (Limess
Messtechnik)4 and matching speckle patterns in each image, the
position and displacement in 3D can be obtained, after calibrating
the system using a grid of known dimensions to determine the
position of the cameras. DIC validated strains of 4000–4500 µε in
the majority of the wells of the loading plate when a force of 2.5 N
was applied.

For mechanical loading the silicone plate was attached to a
BOSE ElectroForce® 3200 (Kent, UK) loading instrument by a
custom-made device (Figure 2B) in order to stretch the plate from
one end causing cyclic compression in all wells. A 250 N load cell
was used to apply a loading regime of 5 min, 10 Hz, 2.5 N to 3D
osteocyte mono-cultures. Loading was controlled using WinTest®
Software 4.1 with TuneIQ control optimization (BOSE).

For loading, 3D osteocyte mono-cultures were prepared and
cultured in the silicone plate in 800 µl of DMEM GlutaMAX™
supplemented with 100 U/ml penicillin, 100 µg/ml streptomycin,
and 5% DFBS incubated at 37°C in 5% CO2/95% air atmosphere
for 24, 48, or 72 h without changing culture medium prior to load,
or 7 days where culture medium was changed every 2–3 days and
prior to loading. 3D co-cultures were prepared and cultured in the
silicone plate as described previously for plastic plates and cultured
for 7 days prior to load, changing culture medium every 2–3 days
and immediately prior to loading.

1http://www.mdl.dk/publicationsnormfinder.htm
2http://www.technovent.com
3http://www.snazaroo.co.uk
4http://www.limess.com
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FIGURE 2 | A novel mechanical loading device. (A) A 16-well rubber
loading plate of the same dimensions (10 mm diameter) as a standard
48-well tissue culture plate but with a 150 µm thick base and with holes for
its attachment to a BOSE loading instrument. (B) Schematic showing the
operation of the loading device. The collagen gels are contained in the wells
of the silicone plate, and the entire plate is stretched to apply a strain to the
gels.

Prostaglandin E2 release was measured at 0, 0.5, 1, 3, 6, 12, and
24 h post-load using an Enzo Life Sciences PGE2 kit (Exeter, UK)
and following manufacturer’s instructions. Experimental samples
were diluted 1:64 (gels set up 24 h before loading), 1:16 (gels set
up 48 and 72 h before loading), or 1:40 (gels set up 7 days before
loading) in order to fit within the standard curve of the assay.
All samples were within the standard curve range. The sensitivity
of the assay is 8.26 µg as stated by the manufacturer. Absorbance
was recorded using a BMG Labtech FLUOstar Optima plate reader
(Bucks, UK) and using the Optima Software for FLUOstar V2.00
R3 (BMG Labtech). PGE2 concentration of the experimental sam-
ples was determined according to the standard curve. Data was
normalized to total cell number by lysing cultures and perform-
ing LDH assay (CytoTox 96® Non-Radioactive Cytotoxicity Assay,
Promega, Southampton, UK).

PINP (type I pro-collagen) synthesis was measured at day 1 and
5 post-load using a Rat/Mouse PINP Enzyme Immunoassay (EIA)
kit (Immunodiagnostic systems, Tyne & Wear, UK) following the
manufacturer’s instructions. All samples were within the standard
curve range. The sensitivity of the assay was 0.7 ng/ml as stated
by the manufacturer. Data were normalized to total DNA content

(extracted using TRIzol® reagent and quantified after precipita-
tion using a Quant-iT™ dsDNA High-Sensitivity Assay Kit, both
following the manufacturer’s instructions). The sensitivity of the
DNA assay was 0.5 ng/µl.

STATISTICS
Data are expressed as the mean± Standard Error of the Mean
(SEM). Residuals were tested for normality (Anderson–Darling)
and equal variance (Bartlett’s and Levene’s tests) and transformed
if necessary, before applying analysis of variance (ANOVA) and
post hoc Fisher’s or Tukey’s tests or General Linear Model (GLM)
for crossed factors with pairwise comparisons where P < 0.05
were recorded. Data were deemed to be significantly different
when P < 0.05. 3D cultures prepared in individual wells within
a plate, cultured for 1–12 days and loaded/treated were considered
independent replicates. Group of independent replicates (3D cul-
tures) prepared, cultured, and loaded/treated in separate plates on
separate occasions were considered independent experiments.

RESULTS
OSTEOCYTE AND OSTEOBLAST VIABILITY IN 3D CO-CULTURES
Confocal images of the surface zone across five arbitrary fields of
view were taken for all replicates of both MLO-Y4/MC3T3-E1(14)
(three independent experiments of n= 3) or MLO-Y4/MG63 (two
independent experiments of n= 3) 3D co-cultures grown in plas-
tic plates. At both day 1 and day 7, the viability of MC3T3-E1(14)
(Figures 3A,B, respectively) or MG63 (Figures 3C,D, respectively)
osteoblast-like cells was 100%. Freeze-thaw controls showed 100%
death of the surface zone of the model (Figure 3I).

Ten arbitrary fields of view from five random transverse
cryosections from all replicates were used for quantification of
MLO-Y4 cell death as a proportion of total MLO-Y4 number in
both MLO-Y4/MC3T3-E1(14) (three independent experiments
of n= 3) or MLO-Y4/MG63 (one independent experiment of
n= 3 for day 1; two independent experiments of n= 3 for day 7)
3D co-cultures. At day 1 and day 7, a mixture of live and dead
MLO-Y4 cells was observed for both MLO-Y4/MC3T3-E1(14)
(Figures 3E,F, respectively) and MLO-Y4/MG63 (Figures 3G,H,
respectively) co-cultures. Live osteocytes had a blue nucleus and
dendritic morphology, whereas, a purple nucleus and rounded
morphology was observed for dead osteocytes. Some live MLO-
Y4 cells had red staining in their cytoplasm but not their nucleus
(arrow 1, Figure 3F). Freeze-thaw controls showed 100% osteocyte
death (Figure 3J).

In MLO-Y4/MC3T3-E1(14) co-cultures, an average of
16.13± 3.16% osteocyte cell death was observed at day 1 and
13.85± 2.35% at day 7 (Figure 4A). Mean MLO-Y4 cell death
within 3D co-cultures did not differ between day 1 and day 7,
however, MLO-Y4 cell death varied significantly between inde-
pendent experiments (GLM, P = 0.002) with a significant interac-
tion between day and experiment (GLM, P = 0.018). MLO-Y4
cell death at day 1 was significantly reduced in experiment 3
(10.04± 1.14%) compared with experiment 1 (20.62± 2.28%,
P = 0.007) and experiment 2 (17.32± 1.43%, P = 0.004) whereas,
MLO-Y4 cell death at day 7 differed significantly between
experiment 1 (18.08± 1.86%) and experiment 2 (9.35± 1.39%)
(P = 0.041).
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Vazquez et al. Osteocyte–osteoblast co-culture model

FIGURE 3 |Viability of the surface and deep zone cells in 3D co-cultures
(red: ethidium homodimer; blue: DAPI, purple: combination of both
dyes). Confocal microscope images of an arbitrary field of view showing
only live (blue nuclei) surface cells at day 1 (A,C) and at day 7 (B,D) of both
MLO-Y4/MC3T3-E1(14) (A,B) and MLO-Y4/MG63 (C,D) co-cultures,
respectively. Some live osteoblasts show red staining in their cytoplasm
but not their nucleus at both time-points. Fluorescence microscope images
of an arbitrary field of view showing a mixture of live and dead embedded
cells at day 1 (E,G) and at day 7 (F,H) in both MLO-Y4/MC3T3-E1(14) (E,F)
and MLO-Y4/MG63 (G,H) co-cultures, respectively. Some live osteocytes
also show red staining [arrow 1 in (F)] in the cytoplasm but not their
nucleus, whereas, dead cells are red throughout [arrow 2, (F)]. Confocal
microscope image of an arbitrary field of view from a freeze-thaw control
where all surface cells are dead (I). Fluorescence microscope image of an
arbitrary field of view from a freeze-thaw control where all surface and
embedded cells are dead (J) (SZ: surface zone, DZ: deep zone). For the
osteoblasts, images were taken at the level of the surface zone and are
representative of three independent experiments, n=3 per experiment,
five arbitrary fields of view per replicate. Scale bars: 50 µm (A–D, I). For the
osteocytes, images were taken from 3D co-culture transverse cryosections
and are representative of two or three independent experiments, n=3 per
experiment, 5 sections per replicate, 10 arbitrary fields of view per section
[scale bars: 100 µm (E–H, J)].

FIGURE 4 | Quantification of cell number and cell death in the deep
zone of 3D co-cultures.

(Continued)
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FIGURE 4 | Continued
Boxplots of percentage cell death as a proportion of total number of cells at
day 1 and day 7 in MLO-Y4/MC3T3-E1(14) (A) and MLO-Y4/MG63 (C) co-
cultures. Boxplots showing total cell number counted for each replicate
experiment at day 1 and day 7 in each independent experiment for
MLO-Y4/MC3T3-E1(14) (B) and MLO-Y4/MG63 (D). For total cell number,
significant differences obtained by GLM of log10 data between day 1 and
day 7 denoted by **P < 0.01. Significant differences from pairwise
comparisons, within each day, between independent experiments are
shown by “a,” with respect to experiment 2; and “b,” with respect to
experiment 3.

Total cell number increased between day 1 and day 7 (GLM,
P = 0.003 of log10 data), and varied between replicate experi-
ments (GLM, P < 0.001 of log10 data) in MLO-Y4/MC3T3-E1(14)
co-cultures. At day 1, total cell number was 2-fold higher in exper-
iment 3 when compared to experiment 1 (GLM, P = 0.009 of log10

data), and 1.5-fold higher when compared to experiment 2 (GLM,
P = 0.019 of log10 data). At day 7, total cell number was 1.7-fold
higher in experiment 3 when compared to experiment 1 (GLM,
P = 0.049 of log10 data) (Figure 4B).

After 7 days of co-culture, the mean percentage of dead MLO-
Y4 cells in MLO-Y4/MG63 co-cultures was 9.98± 3.66% across
both independent experiments. However, there was a signif-
icant difference observed between mean percentage death of
experiments 1 (17.88± 2.16%) and 2 (2.08± 0.22%) (One-way
ANOVA, P = 0.002) (Figure 4C). There was no significant dif-
ference observed in total MLO-Y4 cell number at day 7 between
experiments 1 and 2 in MLO-Y4/MG63 co-cultures (Figure 4D).

OSTEOCYTES AND OSTEOBLASTS ASSUME APPROPRIATE
MORPHOLOGY IN CO-CULTURES
MLO-Y4 osteocyte-like cells embedded within a 3D type I colla-
gen gel overlaid with either MC3T3-E1(14) or MG63 osteoblasts
grown in plastic plates revealed a single osteoblast surface cell layer
and dendritic MLO-Y4 cells embedded throughout the depth of
the type I collagen gel (Figure 5).

In MLO-Y4/MC3T3-E1(14) co-cultures, MC3T3-E1(14) cells
had a similar ovoid or pyriform morphology to those in mono-
layer cultures (Figure 5A). The MC3T3-E1(14) osteoblasts formed
a thin pavement-like single cell layer on top of the 3D co-cultures,
which were difficult to image under the inverse light micro-
scope (Figure 5B). However, actin filament labeling (Figure 5C)
revealed MC3T3-E1(14) osteoblast morphology more clearly, with
stress-fibers throughout their cell bodies. With similar mor-
phology to MG63 monolayer cultures (Figure 5D), MG63 cells
formed a pavement-like single cell layer in MLO-Y4/MG63 co-
cultures under both light microscopy (Figure 5E) and immuno-
fluorescence, when filamentous actin was labeled (Figure 5F).
MLO-Y4 dendritic morphology observed in monolayer cultures
(Figure 5G) was similar in co-cultures (Figure 5H), although
projections extended in three dimensions. Contacts between
neighboring osteocytes were revealed by actin filament staining
(Figure 5I).

OSTEOCYTES AND OSTEOBLASTS DISPLAY APPROPRIATE PHENOTYPE
IN 3D CO-CULTURES
mRNA expression was assessed in both surface and deep zones of
day 7 MLO-Y4/MC3T3-E1(14) 3D collagen co-cultures grown in

FIGURE 5 | Morphology of surface and deep zone cells in 3D
co-cultures. Inverse light microscope images of MC3T3-E1(14) (A), MG63
(D), and MLO-Y4 (G) cells in monolayer. MC3T3-E1(14) and MG63
osteoblast-like cells present typical osteoblastic morphologies, mainly ovoid
or pyriform, and MLO-Y4 osteocyte-like cells have a typical dendritic
morphology. Inverse light microscope images taken from the surface zone
(B,E) of the 3D model where a confluent monolayer of surface cells is
observed, and halfway through the depth of a 3D co-culture (H) showing
embedded cells with a similar dendritic morphology to that seen in MLO-Y4
monolayer cultures. Confocal microscope focusing directly onto the surface
zone of a 3D co-culture at day 7 (C,F), where surface cells were stained to
reveal actin filaments (Phalloidin-Atto488) and cell nuclei (DAPI). The image
shows a pavement-like monolayer, with individual cells containing
well-developed stress-fibers, and maintaining an osteoblastic morphology.
Confocal microscope image stack of a 3D co-culture transverse cryosection
at day 7 (I) where embedded cells were stained to reveal actin filaments
(Phalloidin-Atto488) and cell nuclei (DAPI), showing a dendritic morphology
and connections between neighboring cells. Images are arbitrary fields of
view representative of three independent experiments, n=3 per
experiment.

plastic plates by relative RT-qPCR using primers against osteoblast
and osteocyte phenotypic markers. Data were expressed in REU
and normalized to Gapdh, which was ranked as the most sta-
ble reference gene (NormFinder stability value= 0.398, inter-
group variation= 0.376, and intragroup variation= 0.012). Data
were analyzed from three independent experiments, each with
three replicates for the surface zone, and four replicates for
the deep zone, for all genes except Col1a1 (two independent
experiments).

In MLO-Y4/MC3T3-E1(14) co-cultures, no significant differ-
ence in expression was detected between zones of the model for
E11 (surface zone, 0.264± 0.072 REU; deep zone, 0.361± 0.087
REU) (Figure 6A), OCN (surface zone, 0.212± 0.076 REU;
deep zone, 0.269± 0.080 REU) (Figure 6B), and Runx2 (surface
zone, 0.275± 0.083 REU; deep zone, 0.157± 0.025) (Figure 6C).
However, the surface zone of the model showed 6-fold increases in
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Vazquez et al. Osteocyte–osteoblast co-culture model

FIGURE 6 | Gene expression of cellular markers in surface and deep zone
cells in MLO-Y4/MC3T3-E1(14) 3D co-cultures. Quantification of gene
expression in the 3D co-culture after 7 days by relative RT-qPCR, boxplots of
E11 (A), OCN (B), RUNX2 (C), Col1a1 (D), and ALP (E) expressed as REU and
normalized to Gapdh expression. Significant differences obtained by GLM of
log10 data (E11, Col1a1, and OCN) or ranked data (ALP and Runx2) between

surface and deep zones denoted by **P < 0.01, ***P < 0.0001. Significant
differences from pairwise comparisons, within each zone, between
independent experiments denoted by “a,” with respect to experiment 2; and
“b,” with respect to experiment 3. Values derived from two (Col1a1) or three
(all others) independent experiments, n= 3 for surface and four for deep
zones.

expression of Col1a1 compared to the deep zone (0.168± 0.085 vs.
0.028± 0.007 REU, GLM, P < 0.001 of log10 data) (Figure 6D).
In contrast, the deep zone of the 3D co-culture showed

2-fold increases in ALP expression over the surface zone
(0.366± 0.075 vs. 0.185± 0.047 REU, GLM, P = 0.001 of ranked
data) (Figure 6E). Whilst REU of all genes varied significantly
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Vazquez et al. Osteocyte–osteoblast co-culture model

between replicate experiments (GLM, E11, OCN, and Col1a1,
P < 0.001 of log10 data; Runx2 P = 0.013 of ranked data; ALP
P < 0.001 of ranked data; P < 0.05 for all pairwise comparisons)
the trend in terms of surface compared with deep REUs within
each experiment was consistent. Consistent with this, RT-PCR
of MLO-Y4/MG63 co-cultures, revealed surface osteoblasts and
embedded osteocytes expressed E11, OCN, Runx2, and COL1A1
mRNA (data not shown, three independent experiments of n= 3
for both surface and deep zones). Quantification of mRNA
expression could not be compared between surface MG63 and
embedded MLO-Y4 cells as the respective human and mouse
cDNA sequences are not sufficiently homologous to use the same
primers.

Osteoblasts and osteocytes in MLO-Y4/MC3T3-E1(14) co-
cultures showed strong, uniform immunolabelling for the den-
dricity marker E11 (Figures 7A,B). Intense E11 immunola-
belling was also observed in embedded MLO-Y4 cells within
the MLO-Y4/MG63 co-cultures, but not in surface MG63 cells
(Figures 7C,D). In both 3D co-culture systems abundant CX43
immunostaining was observed in the cell membrane and cyto-
plasm of osteoblasts and in osteocytes along their processes, as well
as within the cytoplasm, around the nucleus (Figures 7E–G) and
in contacts between cells (Figures 7F inset; 7H). Immunohisto-
chemistry images are representative of day 7, 3D co-cultures from
three independent experiments where n= 3 [MLO-Y4/MC3T3-
E1(14)], or two independent experiments where n= 3 (MLO-
Y4/MG63). Four to six cryosections from all replicates were
observed. PBST and IgG controls were negative.

CELL MIGRATION IN CO-CULTURES
To detect whether MLO-Y4 cells moved to the surface zone, expres-
sion of the SV40 large T-antigen (only expressed by MLO-Y4 cells)
was determined in MLO-Y4/MC3T3-E1(14) co-cultures grown in
plastic plates (Figure 8). Whilst low levels of SV40 large T-antigen
mRNA expression were detected in the surface zone (Figure 8A),
SV40 large T-antigen immunolabelling was completely absent
from the surface zone of the model (Figure 8B).

Osteoblast migration from surface to deep zone could be
tracked in MLO-Y4/MG63 co-cultures, using a type I pro-collagen
antibody that only detects human (i.e., MG63-derived) pro-
collagen and not that expressed by mouse. Immunolocalization
revealed that MG63 cells synthesizing human type I pro-collagen,
whilst abundant in the upper layer of cells were also occasion-
ally observed in cells up to 100 µm beneath the surface zone
(Figure 8C).

BMP-2 TREATMENT REGULATES MG63 EXPRESSION OF TYPE I
COLLAGEN IN CO-CULTURES
In order to determine whether osteoblasts in co-cultures could
respond to an osteogenic signal, we stimulated the MLO-Y4/MG63
co-cultures grown in plastic plates with BMP-2 (Figure 9). We used
the mouse/human model so that we could discriminate between
MLO-Y4-derived and MG63-derived type I collagen expression.
BMP-2 treatment significantly increased MG63 COL1A1 mRNA
expression at day 5 compared to day 1 (Figure 9A) (GLM of log10

data, P = 0.03, two independent experiments of n= 3). However,
BMP-2 treatment had no effect on MLO-Y4 Col1a1 (Figure 9B),

FIGURE 7 | Protein expression of cellular markers in surface (SZ) and
deep (DZ) zone cells of the 3D co-culture systems. Brightfield
photomicrographs showing immunostaining for the dendricity marker E11
in both surface and embedded cells (A) and showing E11 immunostaining
in the osteocytes highlighting their morphology (B), in MLO-Y4/MC3T3-
E1(14) 3D co-cultures. Light microscope images revealing immunostaining
for the dendricity marker E11 in embedded cells (C,D) but not in surface
cells (C), in MLO-Y4/MG63 co-cultures. Confocal microscope images
showing CX43 (Dylight594) immunolabelling and cell nuclei stain (DAPI) in
surface and deep zone cells (E) of MLO-Y4/MC3T3-E1(14) co-cultures.
Image reveals abundant quantities of CX43 present in the cytoplasm and
cell membranes of both cell types, around the nucleus of the embedded
cells (F), and connections between neighboring cells [(F), inset] (inset scale
bar: 10 µm). Fluorescent photomicrographs of surface (G) and deep (H)
zone cells of MLO-Y4/MG63 co-cultures labeled for CX43 (green) and
counterstained with DAPI (blue) reveals that the surface cell layer, in this
case several cells thick, intensely labels for CX43 along cell–cell interfaces
(G). High magnification of embedded cells within the same co-culture gel
reveals extensive punctate labeling within the cytoplasm and at the cell
surface, including at interfaces between cell processes (arrow) (H). Images
are arbitrary fields of view taken from 3D co-culture transverse
cryosections representative of two or three independent experiments,
n=3 per experiment. In all cases, controls performed by omitting or
substituting the primary antibody, showed no labeling.

MG63 or MLO-Y4 OCN (Figures 9C,D), and E11 (Figures 9E,F)
mRNA expression.

Immunolabelling with monoclonal antibody M38 that recog-
nizes the C-terminus of human type I pro-collagen (an epitope
not present in the collagen used to make the gel) revealed that
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Vazquez et al. Osteocyte–osteoblast co-culture model

FIGURE 8 | Co-cultures retain zone separation for up to 7 days (SZ:
surface zone; DZ: deep zone).

(Continued)

FIGURE 8 | Continued
Boxplot showing quantification of SV40 large T-antigen gene expression in
the MLO-Y4/MC3T3-E1(14) co-culture after 7 days by relative RT-qPCR
(A) expressed as REU and normalized to Gapdh expression. Significant
differences obtained by GLM of log10 data between surface and deep zones
denoted by **P < 0.01. Significant differences from pairwise comparisons,
within each zone, between independent experiments denoted by “a” with
respect to experiment 1 (three independent experiments, n=3 for surface
and 4 for deep zones). Fluorescent photomicrograph of transverse
cryosection from day 7 MLO-Y4/MC3T3-E1(14) co-culture shows
immunolabelling for SV40 large T-antigen (red) and cell nuclei stain (blue) in
osteocytes only, represented by the purple color (red and blue
co-localization) (B). However, no SV40 large T-antigen immunostaining in the
osteoblasts was present (three independent experiments, n=3). SZ,
surface zone; DZ, deep zone. Fluorescent photomicrograph of transverse
cryosection from BMP-2 treated MLO-Y4/MG63 co-cultures at day 5 (C)
revealed presence of type I pro-collagen in the upper layer of cells and in
cells up to 100 µm beneath the surface, which are all MG63 cells since
M38 antibody does not recognize mouse type I pro-collagen (two
independent experiments, n=3).

type I pro-collagen is abundant in surface MG63 cells after 5 days
BMP-2 treatment (Figures 10A,B).

EMBEDDED MLO-Y4 CELLS RELEASE PGE2 IN RESPONSE TO
MECHANICAL LOADING
A pilot experiment to determine whether mechanical load-
ing induced PGE2 release in MLO-Y4 cells in 3D gels in
the silicone plate, revealed that load (5 min, 10 Hz, 2.5 N)
increased PGE2 release between 0.5 and 24 h. Mean PGE2 release
was increased approximately 4-fold at 0.5 h post-load (control
1206.55± 37.32 pg/ml; loaded 4632.91± 1773.78 pg/ml; n= 2 at
each time) (Figure 11A).

To determine whether load-induced PGE2 release was affected
by MLO-Y4 culture time in 3D gels prior to loading, MLO-
Y4 cells were pre-cultured in gels for 24, 48, or 72 h and PGE2

measured 0.5 h after loading as before. After normalizing to
cell number, PGE2 was not detectable in loaded or control 3D
MLO-Y4 mono-cultures pre-cultured for 24 h, whereas mean
PGE2 was increased in loaded osteocytes pre-cultured for 48 h
and for 72 h compared with their respective unloaded controls
(Figure 11B, n= 3 per pre-culture time). When MLO-Y4 cells
were pre-cultured for 7 days prior to mechanical loading, mean
PGE2 release, normalized to cell number, was also increased 0.5 h
post-load [control 1195.40± 109.72 pg/ml/OD492 nm, loaded
3152.26± 435.20 pg/ml/OD492 nm; n= 2 or 3 (Figure 11C)].

To determine whether mechanical loading could induce type
I pro-collagen synthesis a pilot experiment assessed PINP syn-
thesis 1 and 5 days post-load. This was carried out in 3D MLO-
Y4/MC3T3-E1(14) co-cultures grown in the silicone plate pre-
cultured for 7 days prior to load. Our preliminary findings reveal
mean PINP release was increased in loaded 3D co-cultures when
compared to control cultures at day 1 or 5 (Figure 11D, n= 2
control and loaded).

DISCUSSION
This paper describes methodology for a novel in vitro 3D
osteocyte–osteoblast co-culture model, which can be used to assess
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Vazquez et al. Osteocyte–osteoblast co-culture model

FIGURE 9 | Effects of BMP-2 treatment on osteoblast and osteocyte
phenotype in MLO-Y4/MG63 3D co-cultures. Quantification of gene
expression in surface and deep zone cells of 3D co-cultures at day 1 and 5
after BMP-2 treatment by relative RT-qPCR, boxplots of COL1A1 (A,B), OCN

(C,D), and E11 (E,F) expressed as REU and normalized to GAPDH expression.
Significant differences obtained by GLM of log10 data denoted by *P < 0.05.
Data are from two independent experiments of n= 3 for surface and deep
zones.

how osteocytes regulate osteoblasts in response to mechanical
load. The model has been morphologically and phenotypically
characterized, and methodology optimized based on responses
to mechanical load. The model is a two-phase culture system
where osteocytes are embedded within collagen gels and cul-
tured overnight before osteoblasts were added to the surface of

the gel. In this model, cells were viable, expressed appropriate
phenotypic markers and contacted neighboring cells. A 16-well
silicone plate was developed to enable application of physiological
and osteogenic forces within each gel. Our preliminary findings
indicate that these 3D cultures increase PGE2 synthesis and PINP
release in response to mechanical loading.
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Vazquez et al. Osteocyte–osteoblast co-culture model

FIGURE 10 | Effects of BMP-2 treatment on type I pro-collagen
synthesis in co-cultures of MLO-Y4 and MG63 cells (type I
pro-collagen: red; DAPI: blue). Confocal microscope image of the surface
cells from an untreated 3D co-culture revealed presence of particulate type
I pro-collagen in all surface cells (A). Fluorescence microscope images of
transverse cryosections from BMP-2 treated 3D co-cultures at day 5
(B) revealed presence of type I pro-collagen in the upper layer of cells and
in cells up to 100 µm beneath the surface, which are all MG63 cells since
M38 antibody does not recognize mouse type I pro-collagen.

OSTEOCYTE AND OSTEOBLAST VIABILITY IN 3D CO-CULTURES
In the 3D co-cultures, both MC3T3-E1(14) and MG63 surface
osteoblasts were 100% viable. It is likely that osteoblasts on the
surface of the co-culture behave like a monolayer of cells, with
dead osteoblasts detaching from the top of the collagen gel and
being replaced by new osteoblasts to maintain the single cell
layer.

In the 3D co-cultures, embedded osteocytes displayed 16%
death after 1 day of culture [MLO-Y4/MC3T3-E1(14)] and 10–
14% death at day 7 (both co-culture systems). Osteocyte death is
common in normal human bone (57) and increases from <1% at
birth up to 75% by 80 years old (58–60). If there is a linear relation-
ship between age and osteocyte death, 20% osteocyte death would
occur in humans in their early 20s, consistent with osteocyte via-
bility observed in both 3D models. Cells undergoing cell death
are usually destroyed by neighboring or phagocytic cells (61), but
dead osteocytes, embedded within a mineralized matrix are inac-
cessible, and can be detected within their lacunae in vivo (62, 63).
In the 3D co-culture a similar percentage osteocyte cell death was
observed at day 1 and day 7, which may reflect dead osteocyte
retention within the matrix, but this remains to be determined.

OSTEOCYTE AND OSTEOBLAST MORPHOLOGY IN 3D CO-CULTURES
In the 3D co-culture model, both MC3T3-E1(14) and MG63 cells
displayed a range of osteoblastic, ovoid, and pyriform morpholo-
gies, when maintained for 7 days. They formed a pavement-like
monolayer on top of the 3D culture with well-defined stress-fibers.
Whilst both MC3T3-E1(14) (64) and MG63 (65) monolayer cul-
tures show fibroblastic morphology during logarithmic growth
in vitro, they assume a pyriform shape with prominent stress-
fibers across their cell bodies when confluent (39, 64). In vivo,
osteoblasts can be ovoid, rectangular, columnar, cuboidal, or pyri-
form (66). Osteoblasts form a pavement-like or “overlapping roof
tiles” monolayer on the bone surface [Bidder, 1906 as cited in
Bourne (66) and Sudo et al. (64)] overlaying osteocytes within the

FIGURE 11 | Prostaglandin E2 and PINP release in mechanically loaded
(5 min, 10 Hz, 2.5 N) 3D cultures by ELISA.

(Continued)
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Vazquez et al. Osteocyte–osteoblast co-culture model

FIGURE 11 | Continued
Graphs showing PGE2 release from 3D osteocyte mono-cultures in a pilot
experiment of 24 h cultures (A), categorized by time of culture (B), and
7 days cultures (C) at 0.5 h post-load unless other time-points are indicated.
Data were normalized to the absorbance (OD492 nm) of LDH lysates (cell
number) (B,C). (D) Boxplot of PINP release from control and loaded
MLO-Y4/MC3T3-E1(14) 3D co-cultures cultures at day 1 and day 5 post-load,
normalized to total DNA. *P < 0.05 as obtained by GLM, GLM of ranked
data (B) or one-way ANOVA (C,D). Significant differences as obtained by
GLM pairwise comparisons denoted by “a” with respect to 24 h loaded
cultures (B). Data presented are from (A) one independent experiment,
n=2 or 3; (B) one (48–72 h cultures) or two (24 h cultures) independent
experiments, n=3; (C,D) one independent experiment, n=2 or 3.

bone matrix [Gegenbaur, 1864 as cited in Bourne (66)]. Osteoblast
position is essential for osteocyte–osteoblast interactions, which
ultimately regulate bone matrix formation (36, 67–69). Osteoblast
morphology in the 3D co-culture is thus consistent with in vitro
and in vivo observations.

In the 3D co-culture model, MLO-Y4 cells maintain their
osteocytic morphology throughout all gel depths for 7 days, with
cell projections from adjacent cells in contact. In vivo, osteocytes
present a dendritic morphology that allows communication with
neighboring osteocytes. This forms an extensive network known as
the LCS (12, 70–73), which permits metabolic traffic and exchange
within the mineralized environment of the bone matrix. In vitro,
monolayer cultures of MLO-Y4 cells display a 2D dendritic mor-
phology, which becomes 3D in collagen gel cultures (34, 39).
Furthermore, IDG-SW3 cells also display dendritic morphology
in 3D gels (35). The osteocyte morphology in the 3D co-cultures
is consistent with both in vivo and in vitro observations, with mor-
phological characteristics indicative of a 3D network throughout
the co-culture.

OSTEOCYTE AND OSTEOBLAST PHENOTYPE IN 3D CO-CULTURES
In 3D co-cultures, MC3T3-E1(14) cells expressed E11 mRNA and
protein and MG63 cells expressed E11 mRNA (antibody does
not recognize human E11). E11 has been detected in mature
osteoblasts and osteoblasts undergoing bone matrix synthesis (74–
78). The E11 expression detected in the surface zone of the model
suggests that osteoblasts may be sending out projections to con-
nect with neighboring osteoblasts and/or embedded osteocytes.
Previous studies have shown that osteoblasts have cytoplasmic
processes connecting them to neighboring cells [Spuler, 1899 as
cited in Bourne (66), Wetterwald et al. (75), and Schulze et al.
(79)], with prominent stress-fibers that stretch across their cell
bodies into small cytoplasmic processes (39).

OCN, Runx2, and Col1a1 were also expressed in MC3T3-
E1(14) and MG63 cells when in 3D co-cultures, consistent with
in vivo and in vitro studies (51, 80–84). ALP mRNA expression
was also found in MC3T3-E1(14) cells in 3D co-cultures consistent
with previous reports (51, 80, 81, 84–86). CX43 protein expression
was observed throughout osteoblast cytoplasm and cell membrane
in both MC3T3-E1(14) and MG63 cells in 3D co-cultures, sug-
gesting that the surface osteoblasts have the potential to connect
to neighboring cells. Osteoblasts have been shown to express the
gap junction CX43 protein (36, 87, 88), which is important in

responses to mechanical loading (21) and skeletal function (68,
89, 90).

In 3D co-cultures MLO-Y4 cells expressed mRNA and protein
for the early osteocyte marker E11 (75–77, 79) consistent with pre-
vious data (75–77). OCN, Runx2, Col1a1, and ALP mRNAs were
also detected in these cells in co-cultures. Osteocytes have been
previously shown to express OCN, Col1a1, and ALP in vivo and
in vitro (34, 91) and Runx2 in vitro (92).

Confocal imaging of osteocytes in 3D co-cultures showed the
presence of CX43 throughout the cytoplasm, osteocytic processes,
and around the nucleus. Osteocytes express CX43 both in vivo
and in vitro (34, 36, 93, 94), which allows the formation of the
LCS within the bone matrix, and connects osteocytes to surface
osteoblasts (36, 95). CX43 gap junctions in osteocytes contribute
to bone remodeling and formation (96) and they are also mediate
load-induced PGE2 release in osteocytes (97). The expression of
CX43 indicates that osteocytes within the 3D co-culture are poten-
tially able to form a network similar to the LCS, as well as connect
to the osteoblasts on the surface.

In 3D co-cultures, MC3T3-E1(14) cells showed a significantly
higher expression of Col1a1 mRNA compared to the deep zone
of the model. Interestingly, deep zone cells within the 3D co-
cultures expressed significantly higher levels of ALP compared to
the surface zone of the model. This suggests that under appropriate
conditions the MLO-Y4 cells within the 3D model may con-
tribute to mineralization the collagen matrix within which they are
embedded, as previously seen in embedded IDG-SW3 cells (35).

TESTING OSTEOGENIC RESPONSES IN THE 3D CO-CULTURE MODEL
Pilot experiments were performed to see whether the co-culture
methodology could reveal an osteogenic response. This was tested
firstly by treatment with BMP-2 and secondly by testing responses
to mechanical loading.

In the MLO-Y4/MG63 co-culture, osteoblasts were able to
respond to BMP-2, by significantly increasing their COL1A1
mRNA expression and showing abundant type I pro-collagen pro-
tein expression after 5 days of BMP-2 treatment. These data are
consistent with previous in vitro studies,which showed that BMP-2
stimulates collagen synthesis in MC3T3-E1 cells (85).

To determine whether the osteocytes within the co-culture
model responded to loading, we cultured MLO-Y4 in 3D colla-
gen gels, without surface osteoblasts, and measured PGE2 release
in response to loading. To facilitate loading of the 3D model, a
16-well silicone plate was developed that applied uniform strain
within each gel. The loading regime applied (5 min, 10 Hz, 2.5 N)
was based on previous publications showing that 10 min of 10 Hz,
4000–4500 µε loading is physiological and osteogenic in vivo (91,
98, 99). In 3D osteocyte mono-cultures, loading induced PGE2

release over 24 h with maximum PGE2 release occurred after 0.5 h.
In osteocytes pre-cultured in 3D collagen gels for 48, 72 h, or
7 days, mechanical loading increased PGE2 release 0.5 h post-load.
No PGE2 release occurred in osteocytes pre-cultured in 3D gels
for 24 h. This suggests that the osteocytes may require at least
48 h in 3D collagen gels to develop an osteocytic phenotype, form
dendrites and the CX43 gap junctions that are involved in the
release of PGE2 from osteocytes in vitro (100, 101). Others have
shown that mechanically loaded osteocytes in monolayer increase
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PGE2 release (24, 93, 102, 103), as early as 0.5 h post-load (93)
but no previous studies have investigated osteocyte response to
load in 3D.

To determine whether mechanical loading in 3D co-cultures
could elicit an osteogenic response, co-cultures were mechani-
cally loaded as before and type I collagen synthesis quantified.
In 3D co-cultures, mechanical loading increased PINP release,
suggesting that mechanical stimuli of 3D co-cultures elicit an
osteogenic response. PINP synthesis was measured from whole
3D co-cultures, therefore, PINP synthesis may not only be from
surface osteoblasts, but also from embedded osteocytes. Both
osteoblasts and osteocytes produce type I collagen in vitro (34, 104)
although MLO-Y4 cells express reduced Col1a1 mRNA compared
to osteoblasts both in monolayer (34) and here in 3D co-cultures.

Our preliminary data showing that both BMP-2 and mechani-
cal loading can induce type I collagen synthesis, reveals the poten-
tial for the new 3D co-culture and loading methodology described
in this paper in investigating osteogenic responses regulated by
osteocytes.

LIMITATIONS OF THE 3D CO-CULTURE MODEL
Cell migration in co-cultures
The 3D co-culture method is subject to the possibility of cross-
contamination of RNA between surface osteoblasts and embed-
ded osteocytes, due to the extraction protocol, or mixing of cell
types between zones due to osteoblast and/or osteocyte migra-
tion. We used expression of the SV40 large T-antigen, exclusive
to MLO-Y4 cells [derived from mice expressing the SV40 large T-
antigen oncogene under the control of the OCN promoter (34)],
and an antibody that detects human but not mouse type I pro-
collagen, to investigate this. The expression of SV40 large T-antigen
mRNA in RNA extracted from the surface zone, suggests that
there is low level RNA cross-contamination from the osteocytes, or
MLO-Y4 cell migration to the surface in MLO-Y4/MC3T3-E1(14)
co-cultures. Since no SV40 large T-antigen immunostaining was
observed in the surface zone of the model even after 7 days of
co-culture, we conclude that no osteocytes migrated to the surface
zone of the 3D co-culture and that the SV40 large T-antigen mRNA
contamination in the surface zone is due to MLO-Y4 cells imme-
diately underlying gel surface, lysing, and releasing RNA during
extraction from surface cells. However, the human-specific type
I pro-collagen antibody revealed that, although rare, some MG63
cells migrated from the surface to the deep zone of the model, in
MLO-Y4/MG63 co-cultures.

Phenotype and function
Whilst the 3D co-culture model described here has shown
osteoblast and osteocyte cell viabilities (58–60, 105, 106), mor-
phologies (66, 71, 107, 108), phenotypes (75, 81, 86, 91, 109–114),
and loading (104) and osteogenic responses (115, 116) consistent
with those found in vivo, the use of MLO-Y4 cells means that the
important mechanically regulated factor, SOST, is not expressed
in the osteocytes in the model. This limitation could be solved by
replacing the MLO-Y4 cells with the IDG-SW3 cell line, which are
able to differentiate into mature osteocytes and express SOST (35).
Furthermore, the phenotypic characterization was performed in
3D co-cultures grown in plastic plates and it is possible that aspects

of the phenotype would be affected by growing cells in silicone
plates.

Although the 3D model is designed to investigate mechani-
cally induced osteogenesis in a similar in vivo physiological envi-
ronment, it is not mineralized and so it would only represent
interactions that occur in newly formed osteoid rather than min-
eralized bone. Previous studies have shown the mineralization of
3D collagen gels is possible with IDG-SW3 cells (35) during dif-
ferentiation to osteocytes, and therefore the 3D co-culture could
be mineralized. Mineralization of the 3D collagen gel would affect
the properties of the matrix and cell–ECM interactions. Previous
in vitro studies have shown that after mineralization the ECM of
monolayer cultures became gradually stiffer (117). Furthermore,
ECM composition has been shown to affect gene expression (118)
and osteoblast differentiation and behavior (119). Therefore, min-
eralizing the 3D co-culture would make the collagen gels stiffer
and alter phenotype, further mimicking a physiological environ-
ment. If the 3D co-culture was mineralized, further investigations
should be done to test the mechanical properties of the mineral-
ized 3D co-cultures as well as the viability and phenotype of the
cells within the model and assess whether the medium nutrients
can still diffuse to all areas of the 3D gel.

A technical challenge is to ensure that MLO-Y4 cells are evenly
distributed within the collagen solution when gels are being set up,
otherwise some 3D cultures will have more osteocytes than oth-
ers. This will lead to cell number variability between experimental
replicates, which could cause differences in osteocytic network and
loading responses. This was further affected by a variation of up
to 20% in the weight of collagen supplied by Sigma, meaning that,
since the defined collagen mass was dissolved in a set volume of
acid, the collagen gels varied from 2.0 to 2.6 mg/ml. These are
potential explanations for differences in magnitude of responses
across independent experiments and the essential 3D pre-culture
time of at least 48 h for a consistent increase in PGE2 in response
to mechanical loading.

Mechanical loading device
Currently, there are two devices similar to the one developed here
(120, 121). Tata et al. (121) developed a silicone plate in a six-
well plate format to mechanically load vascular smooth muscle
cells (VSMCs) in monolayers, whereas, the device developed by
Neidlinger-Wilke et al. (120) is a single-well silicone plate, which
was designed to load 3D collagen cultures of intervertebral disk
cells. Both devices applied cyclic mechanical stimuli by stretch-
ing in a similar fashion to the device described here, but used
much higher strains at low frequency (Neidlinger-Wilke et al.,
24 h, 0.1 Hz, 10,000 µε; Tata et al., 6–72 h, 1 Hz, 10–20% strain)
(120, 121). Neidlinger-Wilke et al. (120) did not publish how
they assessed strain associated with their device. Tata et al. (121)
assessed the strain field at the bottom surface of the wells using
finite element (FE) modeling, but did not validate this FE model
with DIC, or any other methods. Therefore, our loading device is
the first where the strains have been directly measured, albeit on
the plate surface rather than within the gel.

Digital image correlation showed that when 2.5 N is applied to
the silicone plate, the majority of the wells experienced strains of
4000–4500 µε. Peak strain values in vertebrate bone range from
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2000 to 3500 µε (122–125), 4000–4500 µε loading is physiological
and osteogenic (91, 98, 99), whereas, 6000 µε is pathophysiological
(126). The strain testing performed was carried out on an empty
plate. Testing a silicone plate with 3D cultures within the wells
would further validate the loading plate. Whilst incorporation of
particles into the 3D gels (127) would enable strains to be mea-
sured directly within the gels, we were unable to achieve this by
DIC given the limited well size and the pink color and reflective
properties of the gels. Further work is necessary to confirm the
strain experienced by the cells in the gels is similar to that on the
base of the plate.

CONCLUSION
There is a great need for a fully characterized in vitro 3D matrix
based bone model. The majority of the available 3D models
involve culturing cells on scaffolds (44–46, 128), which does not
represent the bone environment in vivo where osteocytes, are
embedded within a matrix. Published models involving embed-
ding osteoblasts (39, 129), MLO-Y4 (38, 39), primary osteocytes
(42), or normal human bone-derived cells (NHBCs) (41) within
a matrix showed maintenance of cell viability (38, 129), osteo-
cyte cell morphology (38, 39, 41, 42), connectivity (38), and gene
expression (41, 42). However, none of these models have been
individually assessed in all key areas. Furthermore, none of the
available 3D collagen based cultures involve co-culturing osteo-
cytes and osteoblasts, nor they have been exposed to mechanical
stimuli. Therefore, none investigate the important interactions
between these cell types, which lead to mechanically induced bone
formation.

This co-culture model facilitates a 3D network of osteocyte-like
cells that can be subjected to appropriate anabolic and mechani-
cal loading cues to act upon osteoblasts. Osteoblasts and osteo-
cytes retain appropriate morphology, phenotype, and viability,
and osteoblasts increase COL1A1 expression when stimulated with
BMP-2 and mechanical load. Furthermore, embedded osteocytes
respond to mechanical loading by releasing PGE2. Potentially,
this model may be useful in elucidating osteocyte-driven mech-
anisms that regulate bone formation as a result of mechanical
loading, something other current 3D models do not provide (38,
39, 41, 42). The 3D co-culture, combined with a multi-well load-
ing system could provide a novel platform for drug discovery and
development for the treatment of age-related bone diseases.
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