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How mechanical forces influence the regeneration of bone remains an open question.Their
effect has been demonstrated experimentally, which has allowed mathematical theories
of mechanically driven tissue differentiation to be developed. Many simulations driven by
these theories have been presented, however, validation of these models has remained
difficult due to the number of independent parameters considered. An overview of these
theories and models is presented along with a review of experimental studies and the fac-
tors they consider. Finally limitations of current experimental data and how this influences
modeling are discussed and potential solutions are proposed.
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INTRODUCTION
Bone’s capability of “perfect” regeneration is unique, unlike other
tissues it is capable of recovering its form without permanent
scars. However not all fractures heal spontaneously, it has been
found that 20 per 100,000 people per year will have delayed heal-
ing or a non-union, where the fractured bone fails to fuse (1).
It is known that mechanical forces can influence the pathways
through which healing occurs; several studies have shown that
changes in the mechanical environment can modulate the time
taken to heal, change the proportions of different tissue type as
well as gene expression patterns of cells in the healing bone (2,
3). The exact mechanism through which mechanical stimuli are
sensed and incorporated in the healing process is not fully under-
stood and still remains an open question. Answering this question
will lead to improved treatment methods for bone fracture repair,
reducing the amount of time patients are hospitalized. To this end,
we have compiled a summary of literature on the topic examining
the experimental studies and numerical theories.

Depending on the stability of the bone fragments the healing
can progress down two paths, rigidly fixed fragments with only a
small fracture gap can heal through primary bone healing, where
the bone remodeling units, responsible for the adaption of the cor-
tical bone, bridge the gap; secondary fracture healing occurs when
relative motion occurs between the bone fragments, causing a cal-
lus to form. Secondary fracture healing can be divided into three
overlapping stages as described in Figure 1, the reactive, repara-
tive, and remodeling phases. Immediately post-fracture there is an
inflammatory response, termed the reactive phase, in which blood
vessels, which have ruptured fill the injured area with blood form-
ing clot called the fracture hematoma. The fracture hematoma is
infiltrated by fibroblasts and small blood vessels, becoming gran-
ulation tissue. The initial callus is thus a mixture of hematoma,
fibrous tissues, and infiltrating blood vessels. The reparative phase
begins once bone and cartilage form, the bone is initially formed
through intramembranous ossification initiating on the existing
cortical bone and progressing with time toward the plane of the

fracture, while the cartilage forms in regions of low oxygen ten-
sion (4, 5). Once the blood supply is sufficient enough, cartilage
is calcified and converted into woven bone through endochon-
dral ossification. The stability of a fracture influences the amount
of intramembranous and endochondral ossification, with more
cartilage being formed in less stable fractures and thus more endo-
chondral ossification (6). Bony bridging, the union of the hard
callus from either side of the fracture, occurs making the struc-
ture extremely stable. The remodeling phase begins during the
reparative stage, with the bone structure being adapted back to its
original load bearing form. The cortical bone is also remodeled
with the cortical bone adjacent to the fracture becoming woven
bone, likely as the vasculature within this bone is damaged dur-
ing the fracture, causing hypoxia (7–9). Hypoxia has been shown
to up regulate the formation, size, and activity of osteoclasts, the
cells responsible for the resorption of bone (10). The remodeling
phase concludes with the callus being completely remodeled into
the shape of the original bone, recovering the original strength,
and functionality. The events are driven through intercellular sig-
naling, levels of oxygen tension and the mechanical environment
directing mesenchymal stems cells to differentiate into osteoblasts,
chondrocytes, or fibroblasts each of these cells being responsible
for the production of particular tissues (7). In this review, we
concentrate explicitly on the mechanical factors influencing bone
regeneration, what has been experimentally observed as well as
theories and models, which have been developed to explain this.

EXPERIMENTAL STUDIES
Mechanical loads are applied at the organ level and propagate
to a level where cells can sense them, which in turn results in
changes at the tissue level. Many studies have investigated apply-
ing different forces to fractured bones in vivo and quantifying the
tissue produced or the mechanical competence of the bone. Loads
applied to bone cause non-homogenous strains throughout the
healing tissue, resulting in a variety of tissues forming. Exper-
imentally, these strains cannot be quantified in vivo preventing
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FIGURE 1 |The healing of a tibial fracture. A hematoma (A) forms during
the reactive phase, beneath the injured periosteum (B). During the
reparative phase woven bone (C) forms through intramembranous
ossification along with cartilage (C), which is eventually ossified (E), bony
bridging occurs and finally the callus is remodeled into cortical bone.

the direct development of mechanobiological rules, however, the
result of organ level loading is important for validating fracture
healing models, as an accurate rule set should predict the outcomes
of such studies. Experimental studies investigating the effect of
inter-fragmentary movement (IFM) and fixator stability/stiffness
are essentially referring to how loading effects fracture healing
outcome. IFM is ambiguously used to describe either axial ten-
sion/compression of the bone defect, shear movement in the plane
of the defect, relative axial rotation of the fragments, or a bend-
ing. Here, we will distinguish between these different modes using
the following terms: inter-fragmentary compression (IFC), inter-
fragmentary tension (IFT), inter-fragmentary bending (IFB), and
inter-fragmentary shear (IFS). The different loading modes are
illustrated in Figures 2A–E with the exception of IFT, which is
just the opposite of IFC. The cases of shear movement and rota-
tion both create a non-uniform shear loading within the tissue,
therefore we combine both of these loading states as IFS.

To study the effect of each mode of movement demands the
precise control and measurement of bone fragment movement
requiring the use of some form of fixation. There are two categories
of fixation used in biomechanical research, external and internal
fixation, which can be seen in Figures 2F–I. External fixation is
commonly used in large animal studies often with modifications
to the fixator or to the surgical technique so as to change the
stability of the fixator, or be instrumented to measure the frag-
ment displacements (11). In contrast, internal fixators are simpler
in design and technique. An intramedullary nail for example is
guided by the medullary cavity and can be a single piece, which
has made them much more commonly used in small animal stud-
ies (12–15). The fixation method has a large effect on the loads,
which can be applied, external fixation allows for controlled move-
ments or fixed forces, whereas, internal fixation typically limits the
load to an applied force. The fragile nature of the soft tissue means

FIGURE 2 |The different loading modes for a fracture, shown on a
femur (A). IFC causes in a narrowing of the fracture gap (B), IFS is a shear
movement (C) across the gap plane, or a relative torsional movement
around the axis of the bone (D), and IFB is a bending movement
(E) centered around the fracture. Fixation methods for fractures are shown
in (F,G), external fixator (F), the ring fixator (G), intramedullary nailing (H),
and plating (I).

that constant loading throughout a study is not always possible,
thus some studies will define a maximum load and displacement.
For example, Goodship and Kenwright (16) apply a 33% inter-
fragmentary strain or a 360 N load, as initially such a load would
induce strains in the hematoma that inhibited healing, whereas,
once bony bridging occurs, this level of strain would damage the
new bone.

There exists no standard methodology for loading during frac-
ture healing. Studies can either use active loading like Goodship
and Kenwright (16) passively allow a limited amount of movement
as done by Claes et al. (11) or use a fixator structure or orientation
with a different stiffness as done by Klein et al. (17) and Schell
et al. (18). While it is often possible to compare initial loading of
the callus, the loading is altered as the tissue distribution changes.
This can lead to diverging results making comparisons between
how bone heals in relation to loading difficult between studies.
We attempt to provide a summary of how different organ level
loadings affect the healing outcome and were possible highlight
variations in fixation and loading between studies.
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INTER-FRAGMENTARY COMPRESSION AND INTER-FRAGMENTARY
TENSION
There are a substantial number of studies, which have investigated
the effects of IFC on bone healing, several are summarized within
Table 1. It is widely accepted that a certain amount of IFC has a
positive effect on the healing process, which was first shown by
Goodship and Kenwright (16). The timing of the load is also criti-
cal with Gardner et al. (12) showing that immediate application of
loading post-surgery resulted in reduced healing potential com-
pared to those applied 4 days after. They also demonstrated that
too high an IFC force can be detrimental to healing. However, as
they used an intramedullary nail and applied a force rather than
a displacement, it is difficult to compare the results. Rate depen-
dence with respect to the application of IFC has been identified by
Goodship et al. (19) showing that for the same number of cycles
a strain rate of 40 mm/s showed superior healing compared to 2
and 400 mm/s. High frequency low amplitude IFC was investi-
gated by Goodship et al. (20) demonstrating an increase in the
callus stiffness.

Inter-fragmentary tension is movement applied in the opposite
direction to compression, causing an increase in gap size. Cheal
et al. (25) showed that high tensile loads lead to reduced healing
with even cortical resorption occurring, while lower tensile loads
lead to callus formation.

INTER-FRAGMENTARY SHEAR
How IFS affects the bone regeneration process remains controver-
sial, with studies showing that it can inhibit healing and others
showing that it can have a positive effect. Several studies in this
area are summarized in Table 2, with Bishop et al. (27) and Park
et al. (28) showing neutral or positive effects and the others show-
ing negative outcomes. These differences are likely due to the
loading conditions. Park et al. (28) studied rabbits in which the
femur was fractured instead of the more common method of cut-
ting a discrete unit of bone out with a saw, i.e., osteotomy. They
compared compression and shear loading showing an increase in
periosteal cartilage formation and a significantly stiffer callus after
4 weeks. It is possible that traumatic injury will solicit a different
biological response, which osteotomies do not cause. In addition,
fracture planes will not have been as uniform and perhaps will
have influenced the tissue loading.

Bishop et al. (27), for example, applied torsion using a cus-
tom designed fixator aiming to produce a principal strain of 25%
between the fragments and compared it to equivalent principal
strain produced though IFC, he reports torsion having stimulated
intercortical mineralization. The complex loading condition pre-
sented through shear loading confounds such a comparison, as the
pure shear loading produced an equal maximum and minimum
principal strains of±25%, whereas as compression produces a sin-
gle negative principle strain of −25%. Thus the gap tissue stored
twice the amount of elastic energy in the case of IFS as IFC. Addi-
tionally, the rotation of 7.2° with a cortical radius of 10 mm and a
gap of 2.4 mm would have induced principal strains of 52%, not
the 25% stated within the paper. Bishop et al. (27) assumed their
torsional fixator to be completely rigid axially with no IFC, in com-
parison Schell et al. (18) measure both the IFS and IFC for their
flexible fixator, when considering just the IFS they calculated a

principal strain of±26%, while including it they received+18.5%
and −33%, respectively. It is possible that compliance of the fixa-
tor and physiological loading created a beneficial amount of IFC,
which was not considered by Bishop et al. (27) in their study. The
conclusion which can be drawn is that pure shear motion applied
to the whole organ is not pure shear within the healing tissue.
It seems inappropriate to compare tissue strain between loading
cases using a single value from the strain tensor, a solution would
be through using a scalar valued function such as strain energy
density (SED), or a combination of deviatoric and volumetric
strain.

INTER-FRAGMENTARY BENDING
The case of IFB has not be sufficiently investigated to form a con-
clusion, the two studies, which consider this are summarized in
Table 3. What has been shown is that asymmetric bending, results
in asymmetric callus formation. Healing appears to be inhibited
on the tensile side of the callus and promoted on the compressive
side (33). This is in agreement with studies looking at axial com-
pression and tension individually as shown before. Cyclic bending
appears to cause bone healing to take a different pathway. It has
been shown that cyclic bending induces changes in gene expres-
sion, where genes responsible for bone morphogenetic proteins are
down regulated while genes responsible for cartilage production
are up regulated. More cartilage within the callus was observed
compared to the unloaded case indicating that the balance of tis-
sue production during the reparative phase was altered (3). The
increased level of cartilage indicates that the stimulated callus is
not as vascularized as the fixed callus, and the healing will progress
along the endochondral ossification pathway rather than through
endochondral ossification.

THEORIES AND MODELS
In this section, different theories for tissue differentiation are
described followed by an overview of the simulations, which have
been performed using them (summary of these data can be found
in Table 4). Experimental evidence demonstrates that mechanical
forces can direct the healing process, i.e., tissue differentiation is
mechanobiologically regulated. There are several theories as to
which mechanical quantities are the stimuli for differentiation
such as SED, deviatoric and volumetric strain, or relative fluid flow
between cells and the matrix. Due to the complicated geometries,
which occur in fracture healing it is not possible to analytically
apply these theories. Instead they are applied as components of
simulations, we concentrate here on mechanically driven simula-
tions, which typically consist of five parts summarized in Figure 3;
the geometries of bone, defect and callus; the boundary conditions;
finite element analysis used to determine the mechanical signal in
the callus; the tissue differentiation rules, through which a new
callus geometry is created; and finally most simulations consider
an additional “biological aspect,” which adds a temporal scale and
directs spatially where the ossification occurs. A simulation will
go through several iterations changing the tissues composing the
callus until a state of equilibrium is reached.

The callus geometries are typically assumed to be constant and
ellipsoidal, so simulations of fracture healing start at the repar-
ative phase once the soft callus has formed. The only exception
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Table 1 | Experimental studies considering the effects of inter-fragmentary compression on fracture healing.

Author Study (n) Method Outcome

Goodship and

Kenwright (16)

Sheep (12) A osteotomy gap of 1 mm in the tibia, fixed with frame

fixator, loaded through 33% IFC or 360 N force applied at

a frequency of 0.5 Hz

Stimulated callus was significantly stiffer 12 weeks

post-surgery compared to rigidly fixed

Claes et al. (11) Sheep (42) Six groups with osteotomy gaps of 1.0, 2.0, or 6.0 mm of

the tibia and a maximum IFC of 7 or 31%.

Fractures fixed with instrumented ring fixator, which

measured IFC throughout the experiment

Increased osteotomy gap delayed healing, for

1 mm gap early bony bridging occurred. For larger

gaps increased IFC did not enhance healing

Claes and

Heigele (4)

Sheep (7) Osteotomy gap of 3 mm with max allowable IFC of

1.0 mm, fracture fixed with instrumented ring fixator,

which monitored IFC over the course of healing. Calcein

green injected at 4 weeks and reverin at 8 weeks

IFC reduced over the course of healing.

Histological sections appeared to show bone

advanced along a path from the cortical surface

Kenwright

et al. (21)

Human (85) Frame fixator applied to tibial fractures, IFC of

0.5–2.0 mm applied at 0.5 Hz for 30 min a day

Group with micro-movements showed a

significantly reduced healing time (17.9 vs.

23.2 weeks, p=0.0027)

Kenwright

et al. (22)

Human (80) Frame fixator applied to tibial fractures, IFC of 1.0 mm

applied at 0.5 Hz for 30 min a day. Initial loading limited to

12 kg

Healing time to unsupported weight bearing was

significantly reduced (23 vs. 29 weeks, p < 0.01).

Additionally, higher callus stiffness was observed

Gardner et al.

(12)

Mice (80) Tibial osteotomy fixed with an intramedullary nail, loaded

with compressive vibrations with a maximum load of 1,

2, and 4 N and amplitudes 0.5, 1, and 2 N where applied.

Immediate onset of loading regime was compared to a

delayed onset of 4 days

The lowest load case with delayed onset for

loading resulted in a significantly higher callus

strength. Immediate loading resulted in

significantly reduced strength in all cases, and

higher loads either in comparable or lower strength

Claes et al.

(23)

Sheep (10) Osteotomy of 2.0 mm mid tibia, two groups 10 and 50%

maximum IFC. Fractures fixed with instrumented ring

fixator, which measured IFC throughout the experiment.

Sacrificed at week 9

Higher IFM resulted in greater fibrocartilage

formation, and less bone. No significance in the

distribution of blood vessels

Claes et al.

(24)

Sheep (10) Tibial osteotomy of 2.1 or 5.7 mm, both groups had same

IFC strain of 30%. Fixation through ring fixator

Larger gap led to fewer blood vessels, less bone

formation, and more fibrocartilage

Goodship et al.

(19)

Sheep (24) Mid-diaphyseal tibial osteotomy gap of 3.0 mm, stabilized

with a frame fixator. An IFC of 33% or force of 200 N was

applied cyclically at 0.5 Hz at strain rates of 2, 40, and

400 mm/s commencing 1 week post-operatively. A

secondary study considered the application of the

400 mm/s strain rate 6 weeks post-operatively

The strain rate of 40 mm/s applied 1 week

post-operatively showed more mature, stiffer, and

stronger callus with a higher BMD when compared

to the other groups. There was no significance

between 400 and 2 mm/s

Goodship et al.

(20)

Sheep (8) Mid-diaphyseal tibial osteotomy gap of 3.0 mm, stabilized

with a frame fixator. IFC was applied at 30 Hz

High frequency loading led to a 3.6-fold stiffer,

2.5-fold stronger, and 29% lager callus compared

to controls

Cheal et al.

(25)

Sheep (11) Mid-diaphyseal tibial osteotomy gap of 1.0 mm, stabilized

with a flexible pate. A transducer was attached opposite

the plate producing a tensile strain gradient from 10 to

100% across the gap

Areas with higher strain led to cortical resorption,

while areas with lower strain showed callus

development

Mark et al. (26) Rats (84) Mid-diaphyseal femoral osteotomy was performed and

the gap adjusted from 0–2.0 mm. Axial stiffness was

measured at 265±34 N/mm for the 0 mm gap and

30.38±2.07 mm for the 2.0 mm gap

The group with larger gap and less stiffness

resulted in a late onset for bone formation and

greater endochondral bone formation. Full

ossification of the callus was delayed, however,

early in the healing stage no difference was found

between the two groups histologically

(Continued)
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Table 1 | Continued

Author Study (n) Method Outcome

Klein et al. (17) Sheep (12) Mid-diaphyseal tibial osteotomy was performed and fixed

with a gap of 3.0 mm. The fixation plane varied between

the two groups mounted either in the medial plane or

anteromedial plane. This lead to differential stiffness

between the groups with anteromedial fixation leading to

significantly higher IFS and IFC

The group with larger IFM resulted in a stiffer,

smaller callus when compared to rigid fixation. The

larger IFM group also presented signs of significant

remodeling of the callus indicating a more

advanced stage of healing

Table 2 | Experimental studies considering the effects of inter-fragmentary shear on fracture healing.

Author Subjects (n) Method Outcome

Schell

et al. (29)

Sheep (40) Mid-diaphyseal tibial osteotomy was performed and

fixed with a gap of 3.0 mm. Two fixators were used, a

rigid fixator and a fixator with high axial rigidity and no

resistance to shear motion

The group with free shear movement had significantly

reduced torsional strength and stiffness at every time point.

Three animals in this group presented hypertrophic

non-unions after 6 months

Vetter

et al. (9)

Sheep (64) Mid-diaphyseal tibial osteotomy was performed and

fixed with a gap of 3.0 mm. The animals were divided

into two groups, one with rigid fixation, and the other

with a fixator, which allowed greater shear movement

Histological slices where categorized as belonging to one of

six different healing stages based on topological features

present. Rigid fixation resulted in a faster progression in

healing, this could also be seen in the ratio of bone area to

total are which was higher for rigid fixation

Bishop

et al. (27)

Sheep (18) Mid-diaphyseal tibial osteotomy was performed and

fixed with a gap of 2.4 mm. Three groups one with

rigid fixation, one with torsional shear, and one with

IFC. Movement was stimulated to cause 25%

principal strain

The group with torsional shear motion had a greater callus

area and similar stiffness when compared to the group with

no motion, while IFC produced small callus, less advanced

with little bridging

Schell

et al. (18)

Sheep (64) Mid-diaphyseal femoral osteotomy was performed

and fixed with a gap of 3.0 mm. Two different fixators

were used of different stiffness. This resulted in

greater IFS within the less stable group

Throughout the healing significantly more cartilage formed

with the less rigid fixation group. The rigid group had a larger

callus formation. At 9 weeks, there was no significant

difference between the two groups

Park et al.

(28)

Rabbit (56) Two cohorts with oblique and transverse tibial

fractures each consisting of a rigid fixation and a

sliding fixation group. The sliding fixator allowed IFC

while the transverse group and IFS in the oblique

group

The oblique IFS group showed accelerated healing compared

to the other three groups, the torsional strength by 4 weeks

exceeded that of intact bone

Klein et al.

(30)

Sheep (12) Mid-diaphyseal femoral osteotomy was performed

and fixed with a gap of 3.0 mm. One group of animals

was fixed through un-reamed medullary nailing

allowing torsional rotation of 10°, the other with a rigid

frame fixator. The IFMs were measured throughout

The nailed group showed significantly inferior healing

compared to the rigidly fixed group, when comparing

mechanical properties and histological sections of the callus

after 9 weeks

Lienau

et al. (31)

Sheep (64) Mid-diaphyseal tibial osteotomy gap of 3.0 mm

stabilized with a frame fixator. Test group received a

fixator, which allowed increased IFS compared to

control

Group with higher IFS initially showed a lower blood supply,

the healing stage for this group lagged behind, presenting

lower stiffness at 6 weeks, this was compensated after

9 weeks. However, the rigid group appeared to have entered

the remodeling phase, whereas, the IFS group had not

Epari et al.

(32)

Sheep (64) Mid-diaphyseal tibial osteotomy gap of 3.0 mm,

stabilized with a frame fixator. Test group a fixator,

which allowed increased IFS compared to control

IFS induced a larger amount of cartilage formation compared

control, while also have a more compliant callus. The

remodeling process was initiated earlier for rigidly fixed

fractures
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Table 3 | Experimental studies considering the effects of inter-fragmentary bending on fracture healing.

Author Subjects (n) Method Outcome

Hente et al.

(33)

Sheep (18) Mid-diaphyseal femoral osteotomy was performed and fixed with

a gap of 2.0 mm. Using a custom fixator bending cycles lasting

0.8 s creating a 50% inter-fragmentary strain at the endosteum

was applied. The number of loading cycles was varied, the control

received no loading, while the first group received 10 bending

cycles per day and a second group received 1000 cycles per day

The compressive side of the osteotomy gap

resulted in 25-fold greater periosteal callus

formation. Greater cycle number showed

again a 10-fold difference to the lower cycle

number. Bridging occurred exclusively at the

compressed side.

Palomares

et al. (3)

Rats (85) Mid-diaphyseal femoral osteotomy of 1.5 mm, the animal were

fixed with an external frame, which allowed bending,

approximately centered on the gap, the experimental group had

stimulated −25/+35° bending applied at 1 Hz for 15 min per day

starting 10 days post-surgery

Stimulation up regulated cartilage related

genes, and down regulated several genes

responsible for bone morphogenetic proteins

(BMPs). Serial sectioning showed a much

more prolific presence of cartilage and less

mineralized callus compared to control.

to this is the model of Gomez-Benito et al. (44) who presented
a model, which allows the callus boundaries to evolve over time.
Boundary conditions are based upon the loading described by the
experimental study the authors aim to replicate.

TISSUE DIFFERENTIATION THEORIES
In 1960, Pauwels first proposed that tissue differentiation within
a fracture callus was governed by mechanical stimuli. He theo-
rized that cartilage formed as a result of local hydrostatic pres-
sure causing mesenchymal stem cells to become chondroblasts,
whereas, bone and fibrous tissues resulted from shear strains caus-
ing mesenchymal stem cells to differentiate into osteoblasts and
fibroblasts, respectively (68). Perren and Cordey (69) defined the
upper limits of mechanical stimulation of fracture healing. Their
inter-fragmentary strain theory states that the tissue within the
fracture gap must be capable of withstanding the strain produced
by the IFM. They then suggested that rigid fixation of fractures
should result in the healing process commencing at a later stage.
This was later contradicted by the study of Goodship and Ken-
wright (16) that showed that a certain level of micro-movement
accelerated aspects of the healing process. However, their inter-
fragmentary strain theory certainly governs what tissues can exist
and is particularly important in cases where tension is dominant.

The theory of Pauwels (68) was numerically investigated by
Carter et al. (70). As a fracture callus is an internal three dimen-
sional structure, it was not possible to study the strain in vivo.
Using a finite element model of an idealized fracture geometry
with soft callus they investigated what they called the osteogenic
index, a relationship between hydrostatic pressure and octahedral
shear stress.

I =
c∑

i=1

ni (Si + kDi)

Where I is the osteogenic index, c is the number of load cases, n
is the number of loading cycles, Si is the cyclic octahedral shear
stress, Di is the cyclic hydrostatic pressure, and k is a scaling fac-
tor relating the two. They also recognized that the load applied
to a fracture would not be constant, but vary between different

load cases. The osteogenic index was therefore a summation of
the mechanical signals at these different load cases. The proposed
theory also considered a distinction between tissues with poor
and good bloody supply, with good blood supply being capable
of forming all tissue types, but requiring significant hydrostatic
pressure to form cartilage, whereas, tissue with poor blood supply
formed either connective tissue of cartilage (70).

Prendergast and Huiskes (71) studied how the osteogenic index
differed between the use of linear-elastic or poro-elastic material
properties for the healing tissues. The aqueous nature of biologi-
cal tissues, particularly soft tissues, means that representing them
as a mixture of fluid and solid phases describes the tissue behav-
ior more accurately than linear-elastic models. Using the experi-
ments of Søballe et al. (35), where a loadable bone chamber was
implanted in the femoral condyle of canines and the tissues, which
formed under different loadings quantified cross-sectionally over
a number of weeks, Prendergast and Huiskes (71) were able to
determine that the poro-elastic model predicted the osteogenic
index more appropriately when compared to tissue distributions
in the experiment. They expanded on this work by developing a
new theory, that the relative velocity between fluid, solid, and shear
strain, rather than hydrostatic pressure and shear strain where the
stimuli for tissue differentiation as described by Figure 4A (72).

S = γ/a + ν/b

Condition for bone : S < Sbone

Condition for cartilage : Sbone < S < Scartilage

Condition for fibrous connective tissue : S > Scartilage

where γ is the deviatoric shear strain, ν is the solid/fluid velocity,
and a and b are empirically derived constants varying for each
tissue type.

The relationship was defined as a summation of maximal dis-
tortional strain and relative velocity between fluid and solid (34).
It is important to reiterate that this theory was developed from
experiments using a bone chamber, which has a simple geometry
known a priori that can be easily represented in finite element
simulations with the applied loads being known. In contrast, the
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Table 4 | Numerical studies.

Author Application Stimuli Validation/comparison

Huiskes et al. (34) Bone chamber Fluid/solid velocity Søballe et al. (35)

Shear strain

Ament and Hofer (36),

Palomares et al. (3)

Mid-diaphyseal fracture Strain energy density Claes et al. (11)

Lacroix and Prendergast (37) Mid-diaphyseal fracture Fluid/solid velocity Claes et al. (38)

Shear strain

Lacroix et al. (39) Mid-diaphyseal fracture Fluid/solid velocity None

Shear strain

Bailón-Plaza and van der

Meulen (40)

Mid-diaphyseal fracture Dilatational strains Goodship and Kenwright (16)

Deviatoric strains

Geris et al. (41) Bone chamber Fluid/solid velocity Unpublished pilot study and Geris et al. (41)

Shear strain

Shefelbine et al. (42) Trabecular bone Dilatational strains None

Deviatoric strains

Kelly and Prendergast (43) Osteochondral defect Fluid/solid velocity None

Shear strain

Gomez-Benito et al. (44) Mid-diaphyseal fracture Second invariant of deviatoric

strain tensor

Claes et al. (38)

Pérez and Prendergast (45) Bone-implant interface Fluid/solid velocity None

Shear strain

Isaksson et al. (46, 47) Mid-diaphyseal fracture Fluid/solid velocity None

Shear strain

Geris et al. (48) Bone chamber Fluid/solid velocity Geris et al. (48)

Shear strain

Chen et al. (49) Mid-diaphyseal fracture Dilatational strains Claes et al. (11)

Deviatoric strains

Hayward and Morgan (50) Mid-diaphyseal fracture,

mouse

Fluid/solid velocity Cullinane et al. (51)

Shear strain

Khayyeri et al. (52) Bone chamber Fluid/solid velocity Tägil and Aspenberg (53)

Shear strain

Checa and Prendergast (54) Total hip replacement,

stem–bone integration

Fluid/solid velocity None

Shear strain

Isaksson et al. (55) Mid-diaphyseal fracture Fluid/solid velocity None

Shear strain

Geris et al. (56) Mid-diaphyseal fracture Fluid/solid velocity None

Hydrostatic pressure

Wehner et al. (57) Tibial fracture Dilatational strains Wehner et al. (57)

Deviatoric strains

Simon et al. (58) Mid-diaphyseal fracture Dilatational strains Claes et al. (11)

Deviatoric strains

Byrne et al. (59) Tibial fracture Fluid/solid velocity Richardson et al. (60)

Shear strain

(Continued)

www.frontiersin.org December 2014 | Volume 5 | Article 211 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Bone_Research/archive


Betts and Müller Mechanical regulation of bone regeneration

Table 4 | Continued

Author Application Stimuli Validation/comparison

Witt et al. (61) Tibial fracture Principal strain with largest

absolute value

Witt et al. (61)

Burke and Kelly (62) Mid-diaphyseal fracture Substrate stiffness Vetter et al. (9)

Vetter et al. (63) Mid-diaphyseal fracture Various Vetter et al. (9)

Steiner et al. (64) Mid-diaphyseal fracture Dilatational strains Vetter et al. (9)

Deviatoric strains

Steiner et al. (65) Mid-diaphyseal fracture Dilatational strains Epari et al. (66), Bottlang et al. (67), Schell

et al. (29), Hente et al. (33), Bishop et al. (27)Deviatoric strains

FIGURE 3 | Structure of a typical fracture healing simulation. Initially a
model is created consisting of the cortical bone fragments, soft callus, and
the fixator. Material properties and boundary conditions are then applied to
the model based on the tissue distribution and fixator properties, a finite
element analysis is performed to determine the mechanicals stimuli, this
then is used to drive cell proliferation and tissue differentiation, which
updates the tissue distribution and thus new mechanical properties for the
next iteration.

boundaries of the callus are not known exactly and the loading is
an approximation of the physiological condition.

Carter et al. (73) proposed that tissue differentiation was deter-
mined through tensile principal strain and hydrostatic pressure
as shown in Figure 4C. High principal tensile strains result in
fibrous tissue when pressure is low and fibrocartilage when pres-
sure is high, whereas, low principal tensile strains results in bone
and cartilage when pressure is low or high, respectively.

The theory of Pauwels (68) was revisited by Claes et al. (38)
who in a large interdisciplinary study compared the tissue distrib-
ution of healing tibial fractures in an animal study and equivalent
finite element study. They attempted to determine the values of
hydrostatic pressure and axial strains, which caused differing tissue
differentiation. They determined that bellow a hydrostatic pressure
of 0.15 MPa and strain <5% stimulate intramembranous ossi-
fication, compressive hydrostatic pressure >0.15 MPa and strain
<15% stimulated endochondral ossification and that pressure and
strain outside of these regions resulted in fibrous tissue or cartilage,

as shown in Figure 4D. Claes and Heigele (4) then proposed
ossification only occurs on an existing bony surface. While they
did not develop a simulation, they created FE models, which repre-
sented the healing callus at different stages and correlated the stress
and strain from these models with histological sections from an
animal study, which was performed in parallel.

Ament and Hofer (36) presented a simulation using a fuzzy
logic controller with nine linguistic rules, which defined how levels
of SED and the concentration of bone in neighboring elements to
control the differentiation of elements into three tissue types, carti-
lage, bone, and fibrous connective tissue. The SED could be within
four different levels; low, physiological, increased, and pathologi-
cal. These were independent of the tissue type, as SED is relatively
invariant to tissue type. Results were compared with the experi-
ments of Claes et al. (11) and showed strong similarities in the
reduction of IFM over time.

Fuzzy logic was again used by Shefelbine et al. (42), mod-
eling trabecular regeneration. Their model was based on the
proposed relationship of Claes and Heigele (4). However, they
modified the tissue differentiation theory replacing the hydrosta-
tic pressure criteria with an equivalent volumetric strain. Thus,
the mechanical stimuli became volumetric strain and octahedral
shear strain, described in Figure 4B. This model had 21 linguis-
tic rules to describe how tissue differentiated; it considered three
tissue types, bone, cartilage, and fibrous tissue. In addition, vas-
cularization was also modeled using fuzzy rules. The simulation
required the strains in a particular element to reach a certain
range before tissue within the element began differentiating, for
bone to form the elements must also have sufficient vascularity
while cartilage formed independently of vascularity. The vascu-
lature was also driven mechanically only advancing to elements
within an acceptable strain level. The model was implemented as a
three dimensional linear-elastic simulation. While this model can
capture the events of bone regeneration, Steiner et al. (65) con-
ducted a parameter study of fixator stiffness, which encompassed
values used several in vivo studies and achieved comparable out-
comes, it is a linguistic representation of observed phenomenon.
Thus it is entirely phenomenological and does not encompass
any underlying mechanism in physical or chemical terms. This
raises issues with regards scaling, should the resolution of the
model or length of the iteration change, as there is no governing
equation.

Frontiers in Endocrinology | Bone Research December 2014 | Volume 5 | Article 211 | 8

http://www.frontiersin.org/Bone_Research
http://www.frontiersin.org/Bone_Research/archive


Betts and Müller Mechanical regulation of bone regeneration

FIGURE 4 | (A) The tissue differentiation rules based on fluid flow
relative to solid phase and shear strain. Reprinted from Lacroix and
Prendergast (37) with permission from Elsevier. (B) Tissue
differentiation based on hydrostatic and octahedral shear strain.
Reprinted from Shefelbine et al. (42) with permission from Elsevier.
(C) The tissue differentiation rules with pressure line and tension line.

Reprinted from Carter et al. (73) with permission from Lippincott
Williams and Wilkins. (D) The tissue differentiation rules using
hydrostatic pressure and strain. Reprinted from L. Claes and Heigele (4)
with permission from Elsevier. (E) The tissue differentiation rule based
on substrate stiffness and oxygen tension. Reprinted from Burke and
Kelly (62) with permission from PLoS ONE.

BIOLOGICAL ASPECTS
The majority of simulations included an additional level often
described as the biological aspect. As Claes and Heigele (4)
observed the front of healing bone follows a path, starting at the
original cortical faces and advancing toward the fracture gap. The
inclusion of biological aspects in the form of cell, revascularization,
nutrient supply, or oxygen tension, allows ossification to follow
such a path. These biological elements are typically modeled as
diffusive processes (39), random walks (45, 74), or through logical
association of neighboring elements (36, 42). While cell prolifera-
tion and revascularization are vital aspects of fracture healing, the
interplay between mechanical forces and these processes are not

fully understood, in addition there is limited experimental data
available so the validation of such model becomes much more
difficult.

How the biologic aspect influences the course of fracture heal-
ing can vary, Lacroix et al. (39) considered cells diffusing within the
callus and scaled the tissue stiffness according to cell destiny within
an element. An issue exists with this approach, as the maturity of
the tissue is determined purely by the cell number within and
the tissue phenotype by the mechanical stimuli this allows mature
cartilage to switch directly to mature bone. Kelly and Prendergast
(43) similarly applied a scaling, but considered multiple cell phe-
notypes and so multiple tissues within a single element removing
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this issue. Shefelbine et al. (42) considered nutrient supply to be the
critical biological factor in bone development, and so bone could
only form in areas with good vascularization. This was again used
by Wehner et al. (57) and Simon et al. (58). Chen et al. (49) added
an additional level to this considering nutrient diffusion from the
developing vasculature.

Burke and Kelly (62) proposed a theory in which tissue differen-
tiation is indirectly driven by mechanical forces. Revascularization
is allowed on in elements where the deviatoric strain is below a level
of 6%. The blood vessels were assumed to diffuse into the tissue.∫

Ωγ<0.06

dV

dt
dx =

∫
Ωγ<0.06

0.5×∆V dx

Where V is the vascularity, γ is the deviatoric strain, and Ω is
the computational domain with all elements where this strain was
<6%. The oxygen is then assumed to diffuse from the vasculature
without any dependence on the local mechanical environment.∫

Ω

dO2

dt
dx =

∫
Ω

D∆O2 − Q · nmaxn dx

Here O2 is the oxygen concentration, D is the diffusion coef-
ficient of oxygen in the tissue, Q is the oxygen consumption rate
of cells in the tissue, and n represents the number of cells in the
element and nmax the maximum cell density. The tissues then
differentiated based on the oxygen tension and the stiffness of
neighboring elements as described in Figure 4E.

Several models exist which consider purely biological factors in
fracture healing, Bailon-Plaza and Van Der Meulen (75) first pro-
posed a model for bone regeneration, which included diffusion of
stem cells, and various growth factors, but no mechanical feed-
back. Geris et al. (76) applied this model to simulate the healing
of tibial fractures in mice, finding that the model could predict the
course of healing, but was sensitive to initial levels of growth factor
production. Geris et al. (56) investigated if mechanical regulation
of angiogenesis and growth factor production could improve this
model and account for load induced non-unions, and concluded
that mechanical feedback for both angiogenesis and osteogenesis
was required to correctly predict unions and non-unions. Later
changes to this model have excluded mechanics and focused on
more detailed representations of angiogenesis (77, 78).

These theories consider cell density in homogenous tissue ele-
ments and apply rules for motion, differentiation, and prolifera-
tion to the cell population based upon tissue level stimuli. In vivo,
the structure of tissues within callus is microscopically heteroge-
neous, thus mechanical stimuli at the tissue level are not easily
translated to the cellular level. While at the tissue level, strains
and perfusion of interstitial fluid (ISF) in the callus can be accu-
rately determined, the stimulation they cause at the cellular level
will be different for each cell within a tissue element due to the
heterogeneity. This has not yet been quantified in vivo, however,
fluid dynamic studies of perfusion bioreactors can lend insights as
to the heterogeneity of mechanical stimuli when fluid is perfused
through a structure at physiological rates. Zermatten et al. (79)
used high resolution micro computed tomography (micro-CT)

images of bone tissue engineering scaffolds. Fluid dynamic simu-
lations of medium perfusion showed the wall shear stress within
a scaffold had a wide range of values. It has been known for some
time that in vitro osteoblastic differentiation and bone formation
are augmented with ISF flow (80), however, application of this
biological information in silico will require more detailed models
of the tissue structure.

The features all these biological aspects share are the boundary
conditions, considering the periosteum of the cortical fragments
and the surrounding tissue at the source of cells, nutrients, or
vascular tissue. The propagation of these are mainly all diffu-
sive processes, though for ease of implementation and to reduce
computational power required implementations have varied, the
random walk used by Pérez and Prendergast (45) and fuzzy logic
of Shefelbine et al. (42) allowed diffusive behavior without the
computational cost of solving the diffusion equation numerically.

COMPARISON OF MODEL PERFORMANCE
Validation of models has remained a significant problem, looking
at Table 4 approximately half of the studies have no experimental
reference. The study of Claes et al. (11) has frequently been used
as a comparison due to clear experimental method and inclusion
of IFC values longitudinally as well as histological slices obtained
cross-sectionally. However, while the IFC data are available no
quantitative comparison has be made between simulations and the
results, instead visually comparing general trends and histological
slices has predominated. In Figure 5, we see simulation results
from (A) Burke and Kelly (62), (B) Lacroix and Prendergast (37),
and (C) Steiner et al. (65) these all consist of a uniform corti-
cal bone and callus geometry, which is made up of non-uniform
finite elements, in the case of Burke and Kelly (62) and Lacroix
and Prendergast (37) they are two dimensional axisymmetric sim-
ulations and in Steiner et al. (65) three dimensional. Figure 5D is
a histological section from an in vivo study by Claes and Heigele
(4); we see the callus is non-uniform and asymmetric. This mis-
match between the asymmetric callus in the histological images
and uniformly simulated calluses complicates direct comparison,
additionally axisymmetric boundary conditions implies the simu-
lation should match every quadrant of the histological slice, which
is clearly impossible, when using three dimensional models like
Steiner et al. (65) one must also find the correct slice of the model
to compare to the histology. Vetter et al. (63) compared the use
of volumetric strain, deviatoric strain, greatest-shear strain, and
principal strain as stimuli for tissue differentiation. Through car-
rying out a parametric study they found that all of these could
accurately predict bone healing within a range of thresholds. They
used quantitative metrics to assess the accuracy, comparing aver-
aged histological sections from Vetter et al. (9) with simulated
images. This allowed the comparison of volume fraction and num-
ber of co-located pixels. However, this work was in two dimensions
and thus did not consider IFS or IFB. The data of Vetter et al. (9)
were later used a visual comparison by Burke and Kelly (62), who
showed their simulations appeared to agree well with the results,
however, no quantitative comparison was used.

There are several studies comparing the performance of the dif-
ferent tissue differentiation theories. Isaksson et al. (81) and Epari
et al. (82) both compared the models of Prendergast and Huiskes

Frontiers in Endocrinology | Bone Research December 2014 | Volume 5 | Article 211 | 10

http://www.frontiersin.org/Bone_Research
http://www.frontiersin.org/Bone_Research/archive


Betts and Müller Mechanical regulation of bone regeneration

FIGURE 5 |The results of fracture healing simulations, (A) Burke and
Kelly (62) reprinted with permission from PLoS ONE. (B) Lacroix and
Prendergast (37) reprinted with permission from Elsevier. (C) Steiner et al.
(65) reprinted with permission from PLoS ONE. (D) Histological section of
healing ovine tibia, new woven bone is lightly stained, while cartilage is
darkly stained. Reprinted with permission from Elsevier.

(71) and Claes and Heigele (4). Both used three dimensional mod-
els with poro-elastic element properties, however, different results
were presented for similar load cases. Isaksson et al. (81) found that
under 7.2° of torsion only the model of Prendergast and Huiskes
(71) correctly predicted healing. While Epari et al. (82) found that
for 10° of torsion both models predicted fracture healing. The dif-
ferences can possibly be explained through differences in material
properties, with Isaksson et al. (81) using an elastic modulus for
the granulation tissue an order of magnitude larger than Epari
et al. (82). However, the mechanical properties for all of the tis-
sues included by Epari et al. (82) are not listed, making a complete
comparison not possible. One further erroneous element is the
formation of unconnected bone in both studies when using the
Claes and Heigele (4) differentiation theory. This theory explicitly
states that ossification occurs in the soft tissue contacting the sur-
face of existing bone, and that the rest of the callus is fibrous tissue
unless a pressure of −0.15 MPa is present and then it becomes
cartilage. The formation of unconnected bone can only imply that
both implementations did not consider this aspect of the differen-
tiation rules, and applied the surface ossification rules throughout
the callus. To complicate this further Klein et al. (30) and Bishop
et al. (27) found contradictory results for healing under torsional
loading. The theory of Shefelbine et al. (42) is essentially an equiv-
alent theory to Claes and Heigele (4) except it uses deviatoric and
dilatational stress and strain rather than stress. This model has
been used by Steiner et al. (64), Wehner et al. (57), and Simon
et al. (58). Steiner et al. (64) demonstrated that with the correct
threshold values the model could predict union for the cases of
IFC and IRF, but non-union for IFS.

Isaksson et al. (83) again compared the theories of Claes and
Heigele (4) and Prendergast and Huiskes (71), as well as Carter
et al. (73). They found the theories predicted extremely similar
temporal and spatial patterns in healing. In addition, they com-
pared the volumetric components (relative fluid solid velocity and
pore pressure) of the theories with the distortional components,
finding that deviatoric strain alone could also predict similar tissue
formations, whereas, volumetric components such as pore pres-
sure and fluid velocity could not predict healing by themselves.
This is however contradicted by Isaksson et al. (81) who found
that the tissue formation predicted by deviatoric strain alone did
not match in vivo data.

Hayward and Morgan (50) implemented a model using Pren-
dergast and Huiskes (71) theory of tissue differentiation. They
used three dimensional models based on micro-CT images of
a mouse femur. The model correctly predicted a mechanically
induced non-union and larger volume of cartilage formed due to
the loading, but was not completely accurate in the patterns of tis-
sue formation, predicting an excess of bone formation within the
gap. Checa et al. (84) investigated if the Prendergast and Huiskes
(71) theory could be directly applied different species, specifically
rats and sheep. They reported that differences in healing between
the species observed in vivo cannot be purely attributed to dif-
ferences in loading and animal size, but also the thresholds for
formation are different between, for sheep a larger mechanical
stimuli was capable of forming bone, which in the case of the rat
would result in cartilage. Given that Hayward and Morgan (50)
did not scale these parameters for mice, this is a limitation of their
study, which was not considered.

Another form of validation is possible; instead of using results
directly from fracture healing one can compare how algorithms
perform when modeling a bone chamber. Geris et al. (48) com-
pared the differentiation rules of Prendergast and Huiskes (71),
Carter et al. (73), and Claes and Heigele (4) against tissue for-
mation in a bone chamber. They concluded that the models only
partially matched experimental findings, with models predicting
cartilage formation, which was not observed experimentally. The
implementation of Prendergast and Huiskes (71) algorithm did
not consider bone resorption, which is found in the implemen-
tation of Lacroix and Prendergast (37). As the other algorithms
do not include resorption this modification is understandable to
enable comparison between them, however, it would be interesting
to see if its inclusion increased or decreased the accuracy.

OUTLOOK
Mechanical forces and bone regeneration are intrinsically linked.
While there has been a vast amount of research on this topic,
experimental comparison between studies is extremely difficult.
The greatest difficulty comes from non-standard experimental
setups, specifically, different defect sizes and use of modified and
non-standard fixators. While great efforts have been made to char-
acterize the movements and stiffness of devices, without knowing
the true bone geometry and exact tissue composition it is difficult
to determine the precise strains tissues are experiencing. These
factors play a part in the validation of simulations using this data,
as differences in geometry between simulation and experiments
should cause different mechanical stimuli.
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Validation of models with experimental data is crucial for
all simulation work, and is the distinguishing factor between
simulation and animation. What is clear is that in the field of
bone regeneration, comparing the results of in silico studies with
in vivo studies is not trivial. It is impossible to measure every fac-
tor simultaneously, yet models for fracture healing have become
increasingly complicated. More factors are considered such as cel-
lular events, revascularization, and even protein secretion. While
validation of such models is not impossible it requires large cross-
sectional studies, which have yet to be performed. To compound
this, current models of bone regeneration all consider tissues as
homogenous continuum, while woven bone is a macroscopically
porous structure. The theories of Carter et al. (73), Claes and
Heigele (4), and Prendergast et al. (72) are based on comparing the
results of continuum finite element analyzes with histological data,
and correlating the areas where bone has formed with the local
mechanical environment. The histological data were the result of
cross-sectional studies, so while they could observe the forma-
tion of woven bone, they could not see how individual structures
evolved. One solution to this problem lies in in vivo micro-CT.
Micro-CT uses two dimensional X-ray images of a sample taken
from multiple directions to reconstruct a three dimensional image
of the sample. The application of in vivo micro-CT means time-
lapsed longitudinal studies can be performed, where the same
animals can be imaged at several time points. These images can
then be compared, highlighting the changes in the regenerating
tissue. When combined with a well-defined loading regime an
equivalent finite element analysis can be performed using the
micro-CT images as a basis. The results of which can be compared
to the changes in tissue observed in vivo, allowing the validation
or falsification of current theories for tissue differentiation.

The development and maturation of the callus (reactive and
reparative phase) is a single aspect of fracture healing, eventually
the bone must remodel to its original form, while Lacroix and
Prendergast (37) include this, it has never been shown that this is
the correct mechanism. Schell et al. (8) have shown that early in
the healing process osteoclasts are present, and that cortical bone
closest to the defect gets remodeled into woven bone, then back to
cortical. With in vivo micro-CT based studies this remodeling can
be quantified. With quantitative data remodeling theories can be
corroborated. Such a study could provide a window into the rela-
tionship between cortical remodeling and trabecular remodeling
and what causes the differentiation between the two.

Subject specific simulations are a necessity, allowing direct com-
parison between simulations and experimental results on a sample
by sample basis. Currently, no study has performed an animal
specific simulation and determined if the simulation produces
results without a significant difference to the in vivo results. This
will remove the any error associated with averaging experimen-
tal results so they can be compared to simulations using idealized
geometry. Additionally simulations using realistic geometry and
loading conditions will allow the effects of the non-uniform bone
geometry and strain distribution within the callus to be quanti-
fied. In Figure 5D, we can see clearly how asymmetric the callus
is, and that on the left side of the bone cartilage has formed within
the osteotomy gap whereas on the right side of the image the car-
tilage is bridging the larger hard callus. The asymmetry of the

bone, callus, and loading cannot be captured in axisymmetric
models and only partially using idealized models of the geom-
etry. This geometric information will be the product of studies
using in vivo micro-CT. What parameters should be compared
between such models is an open question,which must be addressed
first. Work already presented in the field of bone remodeling and
adaptation (85) provides a basis for what can be measured, and
models for bone remodeling such as Schulte et al. (86) may also be
incorporated in simulations, representing the remodeling phase.

CONCLUSION
This review has presented how the mechanical models and exper-
iments of fracture healing have developed since Pauwels (68) first
proposed his theory. The differences between the types of data
produced by simulations and experimental studies remains an
obstacle for advancing the field. Existing rules without exception
have all been derived from two dimensional continuum finite ele-
ment models, though associating the simulated mechanical stimuli
to tissue growth seen in histological section from cross-sectional
a study. As more detailed, quantitative and longitudinal data are
being gathered experimentally these rules must be re-examined,
their accuracy assessed using longitudinal time-lapsed data. With
simulations there is a need for simulations to move away from sim-
plified representations of the geometry with continuum material
properties, toward real bone microstructural geometries measured
through micro-CT, so as to allow direct and quantitative compar-
ison of their predicted tissue distribution directly to the results
of in vivo studies, rather than a visual comparison with single
histological slices.
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