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Distraction osteogenesis (DO) is a surgical technique where gradual and controlled sepa-
ration of two bony fragments following an osteotomy leads to the induction of new bone
formation in the distracted gap. DO is used for limb lengthening, correction of bony defor-
mities, and the replacement of bone loss secondary to infection, trauma, and tumors.
Although DO gives satisfactory results in most cases, one major drawback of this tech-
nique is the prolonged period of time the external fixator has to be kept on until the newly
formed bone consolidates thus leading to numerous complications. Numerous attempts
at accelerating bone formation during DO have been reported. One specific approach is
manipulation of the mechanical environment during DO by applying changes in the stan-
dard protocol of distraction. Attempts at changing this mechanical environment led to mixed
results. Increasing the rate or applying acute distraction, led to poor bone formation in the
distracted zone. On the other hand, the addition of compressive forces (such as weight bear-
ing, alternating distraction with compression or by over-lengthening, and then shortening)
has been reported to increase bone formation. It still remains unclear why these alterations
may lead to changes in bone formation. While the cellular and molecular changes occur-
ring during the standard DO protocol, specifically increased expression of transforming
growth factor-β1, platelet-derived growth factor, insulin-like growth factor, basic fibroblast
growth factor, vascular endothelial growth factor, and bone morphogenic proteins have
been extensively investigated, the literature is sparse on the changes occurring when this
protocol is altered. It is the purpose of this article to review the pertinent literature on the
changes in the expression of various proteins and molecules as a result of changes in the
mechanical loading technique in DO and try to define potential future research directions.

Keywords: mechanical loading, growth factor, distraction osteogensis, bone regeneration, bone regenerating
molecule

INTRODUCTION
Distraction osteogenesis (DO) is a surgical technique first
described by the Russian physician Ilizarov in the early 1950s
(1, 2). This technique consists of performing an osteotomy to a
bone that needs to be lengthened followed by gradual and con-
trolled distraction of the two ends of the osteotomized bone.
These mechanical forces of distraction lead to the induction and
formation of new bone in the distracted gap (Figures 1 and 2)
(1, 2). When the desired amount of lengthening is reached, the
distraction is stopped but the external fixator is kept on until
the newly formed bone in the distracted gap consolidates and
becomes strong enough to withstand external forces after removal
of the external fixator without bending or fracturing. The sur-
gical technique of DO involves several temporal phases outlined
below (3).

LATENCY PHASE
The latency phase starts immediately following the osteotomy and
lasts between 5 and 7 days. It allows the formation and organiza-
tion of the hematoma and facilitates the recruitment of inflam-
matory cells and mesenchymal stem cells (4). This stage resembles
the acute stage of fracture healing, including hematoma formation,
immediate inflammatory response, and subsequent differentiation
of stem cells into chondrocytes and osteoblasts (4).

DISTRACTION PHASE
In this phase, following the latency period, distraction of the two
bone segments is started at a specific rate and rhythm of 1.0 mm
a day, divided into four increments. This protocol was shown –
experimentally and clinically – by Ilizarov to be the optimal rate
and rhythm of distraction for bone formation. Higher rates of
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Alzahrani et al. Mechanical loading in distraction osteogenesis

FIGURE 1 | (A) Application of distractor; (B) start of distraction; (C) end of distraction; (D,E) consolidation phase without any distraction until bone in the
distraction gap consolidates; (F) removal of distractor. ©2012 Hamdy et al. (7).

distraction lead to poor or delayed regenerate bone formation
while slower rates of distraction lead to premature consolidation
(3). This phase is characterized by the formation of a radiolucent
central fibrous interzone (FIZ) in the middle of the distracted gap
(Figure 2). The fibroblast cells and collagen fibers are arranged
longitudinally along the axis of distraction. In addition, one of
the hallmarks of this phase is formation of new blood vessels with
intense angiogenesis, neoangiogenesis, recruitment of osteoblasts,
and new bone formation (5).

CONSOLIDATION PHASE
Once the desired amount of lengthening is obtained, distraction
ceases, and the newly formed bone gradually bridges the gap
between the two ends of the osteotomy (Figure 2). This new regen-
erate bone arises from the periosteum (hence, the importance of
avoiding damage to the periosteum), the medullary canal, and the
surrounding soft tissues (6). This phase is the longest phase in DO,
about 1 month for each centimeter lengthened (1). In addition, it
lasts until the newly formed bone in the distracted gap becomes
biomechanically strong enough to allow removal of the fixator.

ADVANTAGES OF DO OVER OTHER TECHNIQUES OF BONE
REGENERATION
Distraction osteogenesis is widely considered the best in vivo tis-
sue engineering and has numerous advantages over other bone
graft techniques, such as autografts, allografts, vascularized fibular
grafts, and various artificial bone substitutes (7). With the tech-
nique of DO, very large and almost unlimited amounts of new
bone can be generated and this newly formed bone is vascular-
ized and of the same micro and macrostructure as the native
bone. Furthermore, DO leads to the generation of new bone in
a reproducible and predictable manner. One other major advan-
tage of DO is the simultaneous regeneration and lengthening of
all soft tissues surrounding the lengthened bone, including skin,
subcutaneous tissues, blood vessels, nerves, and muscles (8).

CLINICAL APPLICATIONS OF DO
Nowadays, the technique of DO is widely used worldwide in
the management of numerous orthopedic conditions including
gradual correction of bony deformities, limb lengthening, and

management of bone loss secondary to infection, trauma, and
tumors (Figure 3) (7, 9). Currently, this technique has been applied
in maxillofacial surgery for mandibular lengthening and in the
treatment of craniofacial deformities (10). DO has also gained
popularity in the field of dental surgery (11–13).

PROBLEMS ASSOCIATED WITH DO
Although DO gives satisfactory results in most cases, one of the
drawbacks of this technique is the prolonged length of time the
external fixator has to be kept in place until the newly formed bone
in the distracted gap consolidates. For every centimeter length-
ened, the fixator has to be kept in place for about a month. For
example, a child undergoing a 6.0 cm lengthening will require the
fixator to be kept in place for about 6 months. This prolonged
length of time during which the fixator is kept in place, may
increase the risk of complications, such as pin site infections, pain,
discomfort, and psychological complications (Figure 4) (14, 15).

Numerous methods have been described in an attempt to accel-
erate the consolidation of the newly formed bone and hence
allow early removal of the fixator (16). Most of these techniques
are invasive and involve the local application of substances such
as osteogenic growth factors, allografts, autografts, mesenchymal
stem cells, various synthetic bone substitutes (such as TCP – tri-
calcium phosphates), the systemic application of bone stimulating
pharmacological agents or the use of external stimulation such as
electromagnetic fields (17).

One area that has been surprisingly less extensively investi-
gated in this context is the mechanical loading environment in
DO and whether changes in this mechanical environment during
the process of DO may have an impact on bone formation and
consolidation (Figure 5) (18–20). Ilizarov discovered that when
gradual and controlled distraction is applied to the two ends of an
osteotomized bone, new bone would form in the distraction gap
(1, 6). He called this phenomenon the “Law of Tension Stress.” In
fact, without knowing it and long before the term mechanotrans-
duction was coined for the first time by Harold Frost in the 1960s
(21), Ilizarov laid the foundation of the whole field of mechan-
otransduction, where the mechanical forces of distraction applied
during the process of DO are translated into molecular signals
that lead to the induction of new regenerate bone (the tension
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Alzahrani et al. Mechanical loading in distraction osteogenesis

FIGURE 2 | Cellular changes in a rabbit DO model during distraction
osteogenesis of the tibia (stain isTrichrome staining). The numbers
indicate the number of weeks after the distraction process was started (1–3

are during the distraction phase and 4–6 are during the consolidation phase).
Co, cortex; LZ, lengthened zone; Ca, callus; FIZ, fibrous interzone. Bar
scale = 2 mm. Reprinted from Rauch et al. (34), with permission from Elsevier.

of the distraction forces causes stress in the distracted tissue).
This controlled distraction protocol described by Ilizarov more
than 60 years ago consists of a rate and rhythm of distraction of
0.25 mm four times a day and does not include any compression
forces besides those of distraction. This unique type of mechani-
cal loading in the context of bone regeneration, revolutionized the
field of bone regeneration, and continues to be followed almost to
the letter worldwide in both long bone DO (9, 22) and mandibular
DO (23).

It is surprising that in the present time and knowing the ben-
eficial and anabolic effects of compressive forces and loading on
skeletal tissue, this protocol remains largely unchallenged (2). In an
attempt to accelerate bone formation in DO, several authors have

analyzed the effects of applying various changes in the standard
protocol by changing the rate or rhythm of distraction or by the
addition of compressive forces that alternate with the distraction
cycles (accordion technique). Some of these attempts – specifically,
the addition of compressive forces – were successful in accelerating
bone formation while others (increasing the rate of distraction)
were not.

Although bone formation using standard protocol in DO has
been extensively investigated at both the cellular and molecular
levels, there have been very few reports analyzing the changes
in the molecular expression of various proteins and molecules
secondary to changes in the mechanical environment. It is the
aim of this study to review the pertinent literature on that topic,
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Alzahrani et al. Mechanical loading in distraction osteogenesis

FIGURE 3 | Distraction osteogenesis is used to manage multiple
orthopedic conditions including congenital short femur (A) and fibular
hemimelia (B).

try to identify potential therapeutic targets for accelerating bone
formation and define future research directions.

MOLECULAR CHANGES DURING STANDARD DISTRACTION
RATE AND RHYTHM
The expression of various proteins and molecules and signaling
pathways during the process of DO using the standard protocol –
1.0 mm distraction a day divided into four equal increments – has
been extensively investigated in both human beings and animal
models of DO (4, 27, 28). Compared to simple osteotomy without
distraction, systemic up-regulation of transforming growth factor-
β1 (TGF-β1), platelet-derived growth factor (PDGF), insulin-like
growth factor (IGF), basic fibroblast growth factor (bFGF), vascu-
lar endothelial growth factor (VEGF), and its receptors VEGFR
1 and 2 have been reported by multiple investigators suggest-
ing that these changes are caused by the distraction process
(29–31).

Using a standard DO protocol in various animal models
(mice, rats, rabbits, dogs, and sheep), we and others have shown
that the expression of numerous factors related to osteogenesis
and chondrogenesis is mostly upregulated during the distraction
phase, when the mechanical forces of distraction are applied and
then, the expression of these factors is downregulated once the
mechanical forces of distraction cease at the end of the distrac-
tion phase. These proteins include bone morphogenic proteins
(BMPs); an extensively studied protein in the context of DO
(Figure 6), in addition to TGF-β1, FGF, IGF, and PDGF (4, 28,
32–36).

In addition, the expression of extracellular matrix proteins col-
lagen type 1, 2, 4, and 10, osteocalcin, osteopontin, and osteonectin
during the various phases of DO has been reported in the litera-
ture, and showed highest expression during the distraction phase
of this process and decreased expression toward the end of the
lengthening process (33, 37–40).

FIGURE 4 | Ilizarov ring fixator frame applied for distraction
osteogenensis of the femur.

Angiogenesis and neoangiogenesis factors have also been iden-
tified in the distraction zone during DO, specifically members of
the VEGF and angiopontin signaling pathways (5, 41–45).

Pro-inflammatory cytokines involved in bone repair [interleukin-
6 (IL-6) and tumor necrosis factor (TNF)] have been found
to be expressed during the DO process, especially during the
latency phase (46). The expression of bone resorption factors was
investigated in the rabbit model of DO and showed diminished
expression during the consolidation phase of DO (47, 48).

The expression of mechanotransduction factors during the dis-
traction process has also been reported and includes extracellular
signal-regulated kinase (ERK), proto-oncogene tyrosine-protein
kinase Src (c-Src), integrin pathway, and focal adhesion kinase
(FAK) (49–51).

EFFECT OF THE MECHANICAL ENVIRONMENT IN OTHER
BONE MODELS
Although DO attracted most of the attention in the literature when
assessing the effect of the mechanical environment on molecular
signaling, there have been numerous studies on these effects in
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Alzahrani et al. Mechanical loading in distraction osteogenesis

FIGURE 5 | (1) Standard DO: 0.25 mm/6 h to achieve 1 mm/24 h; (2)
continuous DO: 0.02 mm/24 min to achieve 1 mm/24 h; (3) accordion
maneuver: addition of compression to the standard distraction; (4)

accelerated DO: 1.5 mm/24 h; (5) highly accelerated DO: 3 mm/24 h.
(A) Normal callus formation; (B) abnormal callus formation. Based on Ref.
(24–26).

other bone models, including normal and fractured bones. The
addition of mechanical loading in these models leads to an alter-
ation of the protein and molecular signaling in the loaded segment,
especially during the early loading phases (52–57). In a study by
Mantila Roosa et al., they found increased bone matrix genes when
loading was applied to the intact forelimb of rats compared to the
contralateral unloaded limb (56). In the same study, the loaded
limb also showed up-regulation of TGF-β1, PDGF, and bFGF (56).
In the same animal model, but in intact hindlimb loading, Raab-
Cullen et al. also showed up-regulation of TGF-β1 and IGF when
a mechanical load was applied (58). These findings were further
proven by multiple in vivo and in vitro studies where levels of
these growth factors were found to be stimulated when loading

was applied (53, 59). On the other hand, a downregulation of
sclerostin was observed in axially loaded bones thus leading to
decreased inhibition of the Wnt/β-catenin signaling pathway and
ultimately improving bone quality (55, 57).

In the fractured bones, mechanical loading also showed an ago-
nist effect on bone formation. Palomares et al. studied these effects
on protein and molecular signaling during fracture healing in their
rat femoral model and found up-regulation of collagen type 2 in
the loaded segment of the fracture (60). In his model, BMP 3
was also upregulated by the loading process (60). In other studies,
stimulation of BMPs was observed when mechanical loading was
applied, but this stimulation was mostly attributed to an indirect
effect of the loading process through the Wnt/β-catenin signaling
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Alzahrani et al. Mechanical loading in distraction osteogenesis

pathway which also showed up-regulation when mechanical
stimulation was applied (52–54).

METHODS OF ALTERING THE MECHANICAL ENVIRONMENT
It has been previously shown that alterations of the mechanical
environment may have an effect on the healing process of DO
(18–20).

Changes in the mechanical environment include addition of
compression forces to the distraction forces applied, changes in
the technique of distraction (acute or gradual), changes in the
rate of distraction (continuous or intermittent), or changes in the
rhythm of distraction (for example, accelerated distraction).

ADDITION OF COMPRESSION FORCES
In the context of DO, addition of compression forces to the dis-
traction protocol may take one of several forms, including weight
bearing on the distracted limb, alternate cycles of distraction and
compression (accordion), over-lengthening, and then shortening
or fixator dynamization (18, 19).

Weight bearing
Weight bearing during the process of DO has been shown to be an
important stimulus for regenerate formation and maturation in
DO (1, 6, 61, 62). Radiographical and histological evidence of sig-
nificantly improved bone formation has been shown when weight
bearing was applied in a goat tibial model of DO (63). In a rat
model of DO, Radomisli et al. showed that in the weight bearing
group BMP2/4, collagen type 1, and osteocalcin expression was

FIGURE 6 | Bone morphogenic protein pathway. BMP; bone
morphogenic protein, NBP; nuclear binding protein.

more abundant (64). Leung et al. also showed increased expres-
sion of TGF-β1 when weight bearing was applied in the lengthened
bone thus emphasizing the importance of early weight bearing
in DO (63). Although the exact mechanism of increased weight
bearing is still not fully understood, the findings in the studies
of Radomisli and Leung – specifically, the increased expression of
collagen type 1, suggest that weight bearing may have a more signif-
icant effect on osteogenesis then chondrogenesis, as it is associated
with early collagen type 1 and osteocalcin expression (64).

Distraction with addition of compression forces
When examining the impact of adding compression forces to the
distraction protocol on molecular signaling the literature is scarce
in this aspect (Table 1). In addition, there is no consensus on a
standard compression–distraction protocol.

Several studies – mostly anecdotal – have shown that the addi-
tion of compressive forces alternating with the standard distraction
protocol – known as the accordion technique – stimulates bone
formation in the distracted gap (67–70). The accordion technique
has also been successful after bone transport in obtaining union
at the docking site and thus managing the bone defect (71, 72). It
is believed that compression forces favor intramembranous bone
formation, whereas distraction (tensile) forces favor endochondral
bone formation (Figure 7) (38, 73–75). Hence, the combination
of these two different types of mechanical loading may stimu-
late bone formation more than either type of loading alone. The
literature lacks in studies examining the molecular effect of the
accordion maneuver in DO, as most of the studies apply compres-
sion at the end of the distraction process and not in an alternating
pattern.

Table 1 | Factor expression in distraction and compression forces in

rabbit DO model.

Factor Outcome Reference

BMP-4

(mRNA)

Acceleration of expression of

BMP-4 when compression applied

Kim et al. (65)a

TGF-β1

(mRNA)

Increased and sustained expression

of TGF-β1 when compression

applied

Kim et al. (65)a

Osteonectin

(mRNA)

Sustained expression of

osteonectin up to 3 weeks

post-compression in the accordion

group

Kim et al. (65)a

VEGF (protein) Increased expression of VEGF in the

compression group

Mori et al. (66)b

DO, distraction osteogenesis; BMP, bone morphogenic protein; VEGF, vascular

endothelial growth factor; TGF-β1, transforming growth factor beta.
aControl group (distraction of 1 mm/day for 8 days) and experimental group (dis-

traction of 1 mm/day for 10 days followed by a 3-day latency period after which

they compressed 1 mm/day for 2 days) – rabbit mandibular DO.
bControl group (distraction of 0.7 mm/day for 14 days) and experimental group

(distraction of 0.7 mm/day for 14 days then compression of 0.7 mm/day for

3 days) – rabbit tibial DO.
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Alzahrani et al. Mechanical loading in distraction osteogenesis

FIGURE 7 | Diagram showing the process of osteogenesis by different
mechanical environments. Adopted from Chao and Inoue (75).

Another method of adding compressive forces is the protocol of
over distracting the bone by a few millimeters, beyond the planned
amount of lengthening followed by gradual shortening (or com-
pression) equivalent to the amount of over-lengthening. One
well-designed study by Kim et al. examined the effect of the addi-
tion of compressive forces (distraction followed by compression)
on BMP-4 in the mandible DO rabbit model (65). They divided
their experiment into a control group (distraction of 1 mm/day
for 8 days) and an experimental group (distraction of 1 mm/day
for 10 days followed by a 3-day latency period after which they
compressed 1 mm/day for 2 days). The level of BMP-4 expression
increased in both groups at the end of the distraction process,
but in the experimental group the expression accelerated when
compression was applied and was maintained for 2 weeks post-
compression. In the same study, it was reported that the expres-
sion of TGF-β1 not only markedly increased when compression
was applied but also continued until 2 weeks after compression,
whereas in the control group, there was only moderate elevation
and remained elevated for a significantly shorter period of the DO
process (65). Hamanishi et al. also applied this method in a rabbit
model of tibia DO and found histologically increased proliferation
of osteoblasts in the distraction gap (76). Surprisingly, this was
associated with decreased vascularity, which they attributed to the
compression forces causing vascular lumen collapse (76). Also, in
a rabbit DO model, Mori et al. demonstrated that although there
was collapse of the vascular lumen when compression was applied,
VEGF and hypoxia inducible factor-1a (HIF-1a) showed marked
increase in expression (66). They concluded that this method
enhanced membranous bone formation in the distraction gap.

ACUTE VERSUS GRADUAL DISTRACTION
Compared to gradual distraction (GD), acute distraction (AD) is a
less favorable method for bone regeneration in DO (Table 2) (25,
51, 77). At the molecular level, studies comparing GD and AD in
the context of DO are limited. Warren et al. found a low expres-
sion of collagen type 1 and osteocalcin in the mandibular DO rat
model during the consolidation phase of the AD group compared
with the control (25). Fang et al. compared FGF expression in GD
with AD and found that expression of FGF increased in GD more
than AD (77).

CONTINUOUS VERSUS INTERMITTENT DISTRACTION
Several experimental studies have shown improved bone regener-
ation using continuous versus intermittent DO (Table 3) (78–80).
Continuous distraction leads to up-regulation of several genes

Table 2 | Factor expression in acute versus gradual distraction

osteogenesis in rat mandibles.

Factor Outcome Reference

ERK 1/2, BMP 2/4

(protein)

GD → ↑ ERK1/2+ ↑

BMP2/4

Rhee et al. (51)a

AD → no ERK1/2

VEGF/FGF (protein) GD → ↑ VEGF and FGF Fang et al. (77)b

AD → absence of GF

Osteocalcin, collagen

type 1, TIMP-1, VEGF

(mRNA)

GD → ↑ osteocalcin

Collagen type 1 and

TIMP-1 compared to AD

Both protocols had no

effect on VEGF

Warren et al. (25)c

DO, distraction osteogenesis; GD, gradual distraction; AD, acute distraction;

ERK1/2 extracellular signal-related kinase; BMP, bone morphogenic protein;VEGF,

vascular endothelial growth factor; FGF, fibroblast growth factor; GF, growth

factors; TIMP-1, tissue inhibitor metalloproteinase’s-1.
aGradual distraction group (distraction of 0.6 mm/day for 8.5 days), Acute dis-

traction groups (intra-operative separation of 2.1 mm in group 1 and 5.1 mm in

group 2).
bGradual distraction group (distraction of 0.5 mm/day for 8 days) and acute

distraction group (intra-operative separation of 4 mm).
cGradual distraction group (distraction of 0.5 mm/day for 6 days) and acute

distraction group (intra-operative separation of 3 mm).

more than intermittent traction (78, 79, 81). In a mandibular DO
rabbit model comparing continuous versus intermittent distrac-
tion, Zheng et al. found that VEGF was significantly upregulated at
the early stage of distraction phase and remained elevated through-
out the consolidation phase, while FGF was significantly higher at
the early stage of distraction phase only and no significant differ-
ence was established between the two groups in the other stages.
Also, there was advanced bone formation and partial bone healing
in continuous DO based on histological examination (78). In the
same model, Zheng et al. also reported that, compared to inter-
mittent DO, the mRNA level for BMP-2 in rabbits undergoing
continuous distraction, was significantly higher throughout the
distraction phase, whereas no significant difference was noted in
the consolidation phase (79). Furthermore, the mRNA expression
of TGF-β1 was significantly higher at the early stage of distraction
phase in the continuous distraction group, although no significant
difference was found between two groups in other stages (79).

Contradicting the previously mentioned positive results of
continuous distraction, a recent clinical study by Bright et al.
showed no significant difference between intermittent (0.25 mm
4 times/day) and continuous distraction (1/1440 mm 1400
times/day) in time to union or complication rate (82).

VARIABLE DISTRACTION RATE AND RHYTHM
The effect of the rate and rhythm used in the applied DO proto-
col has a significant effect on the expression of factors involved
in the DO process (Table 4). Cheung et al. examined the expres-
sion of BMP-2, -4, and -7 with routine (0.9 mm/day) and rapid
(2.7 mm/day) distraction in the mandible DO rabbit model (83).
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Alzahrani et al. Mechanical loading in distraction osteogenesis

They showed that in the early consolidation phase there was
intense signaling of BMP-2 and BMP-4 at the edges of the dis-
traction regenerate in the routine group, which spread to the
primary trabecule as the consolidation phase progressed, whereas
in the rapid group there were only weak signals of these BMPs in
the area of the distraction regenerate and no extension to other
parts of the bone throughout the consolidation phase. In both
groups, BMP-7 was not detected throughout the experimental
periods.

Schiller et al. studied the alteration of expression of various
growth factors in rapid distraction (0.75 mm twice/day) com-
pared to routine (0.25 mm twice/day). They found that there was
decreased cellular staining of FGF, VEGF, and PDGF in the rapid
distraction group starting on the first day of lengthening (26).

Table 3 | Factor expression in continuous versus intermittent

distraction osteogenesis in rabbit mandibles.

Factor Outcome Reference

TIMP-1

(mRNA)

Up-regulating TIMP-1 in continuous

DO

Liu et al.

(80, 81)a

TGF-β1/BMP 2

(mRNA)

High level of TGF-β1 and BMP 2 in

continuous DO

Zheng et al.

(78, 79)a

VEGF/bFGF

(mRNA)

Continuous DO → proper mechanical

environment for angiogenesis

through up-regulation of the

angiogenic mediators

Zheng et al.

(78, 79)a

DO, distraction osteogenesis; TIMP-1, tissue inhibitor metalloproteinase’s-1;

BMP, bone morphogenic protein; TGF-β1, transforming growth factor beta; bFGF,

basic fibroblast growth factor; VEGF, vascular endothelial growth factor.
aContinuous distraction group (0.9 mm/day for 11 days at a rate of 8 times/s) and

intermittent distraction group (0.9 mm/day for 11 days at a rate of once per day).

DISCUSSION
The beneficial effects of mechanical loading on bone formation
have been known for more than a century, when Wolff developed
the concept that bone adapts to its environment (75). However,
of all the forms of mechanical loading – compression, tension
(or distraction), bending, torsion, and shear – only compression
forces were mostly recognized as having an anabolic effect on bone
formation. It was Ilizarov, in the 1950s, who was the first one to
introduce the concept that distraction (tension) forces could also
lead to bone formation, provided these forces are applied in a
controlled environment, and that was the key to the success of
the technique of DO (1, 6). As previously mentioned, although
DO is a very successful technique in generating large amounts of
new bone, the long period of time the external fixator has to be
kept on until the newly formed bone consolidates, presented a
major problem of this technique. The question then arises: how
to accelerate newly formed bone in the distracted gap? Numer-
ous techniques have been described to accelerate bone formation,
however, manipulation of the mechanical loading environment is
probably the most attractive as it is non-invasive, easily applic-
able, and furthermore adds no cost to the technique. This led
some authors to challenge the standard distraction protocol devel-
oped by Ilizarov. Several reports in the literature have shown that
the addition of compressive forces to the distraction protocol,
specifically the accordion technique, could be beneficial in acceler-
ating bone formation in the distracted gap (67–70, 84). However,
there has been no detailed analysis of this technique: how much
compression should be applied, which phase of DO should the
compression be added and for how long? More importantly, it still
remains largely unknown how the effects of compression forces
differ from those of distraction forces at the molecular level in
stimulating bone formation in the context of DO.

The expression of multiple growth factors has been identified
in context of standard DO protocol, including TGF-β, PDGF, IGF,
bFGF, and VEGF. While alteration of the mechanical environment

Table 4 | Factor expression in variable distraction rates and rhythms of distraction osteogenesis.

Factor Distraction protocol Model Outcome Reference

BMP-2/4/7

(protein)

0.9 mm/day versus 2.7 mm/day Mandibular DO in

rabbits

Increased Expression of BMP-2/4 in

0.9 mm/day group

Cheung et al. (83)

No BMP-7 in both groups

FGF/VEGF/PDGF

(protein)

0.5 mm/day versus 1.5 mm/day Femur DO in rats Increased expression of VEGF, FGF and

PDGF in 0.5 mm/day group

Schiller et al. (26)

Endothelial cells

antigen (protein)

Four varying rates (0.3, 0.7, 1.3,

and 2.7 mm/day)

Tibia DO in rabbits The vascularization process was

maximally stimulated at distraction rates

of 0.7 and 1.3 mm/day. While impaired in

0.3 mm/day and not maximally stimulated

in 2.7 mm/day

Li et al. (24, 38)

Collagen type 4

(protein)

Four varying rates (0.3, 0.7, 1.3,

and 2.7 mm/day)

Tibia DO in rabbits Collagen type 4 expression was highest at

rates of 0.7 mm/day and 1.3 mm/day

Li et al. (24, 38)

DO, distraction osteogenesis; BMP, bone morphogenic protein; VEGF, vascular endothelial growth factor; FGF, fibroblast growth factor; PDGF, platelet-derived growth

factor.
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lead to variable changes in expression of these factors. Except for
the BMP pathway, we were unable to identify any other specific
protein, molecule or pathway that clearly characterizes specific
changes in signaling when the biomechanical loading environ-
ment is altered. The BMP pathway has been extensively studied
in the context of bone regeneration and DO and we and others
have shown that it plays a significant role in DO using the stan-
dard protocol (28, 32, 36, 85). We have also shown (Tables 1–4)
that the expression of BMPs changes when the mechanical load-
ing environment is altered, specifically an increased expression of
BMPs when compression forces are added to the standard protocol
and when continuous distraction is applied. More research needs
to be done in that area to identify which specific combination of
biomechanical forces leads to optimal expression of BMPs.

Another possible explanation on the beneficial effects of com-
pression loading on bone formation in DO at the molecular level
is related to the expression of sclerostin and the difference in scle-
rostin inhibition with various types of loading. The emergence of
the Wnt pathway as a major player in bone regeneration,along with
its alteration when sclerostin is inhibited led to extensive research
in that area (86, 87). We know today that sclerostin inhibition is
one of the numerous pathways through which mechantransduc-
tion may lead to new bone formation (55,88). In our laboratory,we
have demonstrated in a mouse model of DO that various members
of the Wnt signaling pathway are expressed during the distraction
process (86) and that systemic application of sclerostin antibod-
ies caused increased bone formation in the distracted gap (87).
However, to the best of our knowledge, there has been no study
evaluating the effects of altering the mechanical loading environ-
ment in the context of DO on the expression of Wnt pathway
members and the degree of sclerostin inhibition. The only study we
were able to find comparing the effects of compression versus dis-
traction on the expression of sclerostin, was by Robling et al., who
showed in an ulnar loading model in the rat that compression load-
ing causes 80% suppression of sclerostin, while distraction loading
caused only 20% inhibition of sclerostin (55). This is an extremely
important observation as it supports the hypothesis that the addi-
tion of compressive loading to the distraction protocol may be
beneficial to bone formation by suppressing more sclerostin than
distraction forces only. We believe that future research should also
focus on analyzing the effects of altering the biomechanical load-
ing environment on the expression of various members of this
pathway and hence try to identify the optimal “non-invasive tissue
engineering” method to enhance bone formation in DO.
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