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Cholecystokinin (CCK) signaling appears well conserved over evolution. In Drosophila, the 
CCK-like sulfakinins (DSKs) regulate aspects of gut function, satiety and food ingestion, 
hyperactivity and aggression, as well as escape-related locomotion and synaptic plasticity 
during neuromuscular junction development. Activity in the DSK-producing neurons is regulated 
by octopamine. We discuss mechanisms behind CCK function in satiety, aggression, and 
locomotion in some detail and highlight similarities to mammalian CCK signaling.
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IntroductIon
Many neuropeptide signaling pathways are well conserved over evolution (1–3). One example is 
the cholecystokinin (CCK) signaling that regulates satiety and food intake in nematode worms, 
insects, and mammals (4–8). The first CCK-like peptide of insects was isolated from the cockroach, 
Leucophaea maderae, and designated leucosulfakinin (9). In Drosophila, two sulfakinins (DSK1 and 
DSK2; encoded by CG18090) and two DSK receptors (CCKLR1 and CCKLR2; encoded by CG6881 
and CG6857) have been identified (10–12). The DSKs display strong sequence similarities to vertebrate 
gastrin/CCKs and sulfakinins (SKs) of other invertebrates (Table 1) and also their G-protein coupled 
receptors (GPCRs) are well conserved, suggesting a ligand–receptor coevolution (13). Actually, the 
amino acid sequences of the two DSKs are identical in the nine residues of the carboxy terminus, and 
DSK-II is N-terminally extended by five residues compared to DSK-I (12) (Table 1). The tyrosine 
residues of mammalian CCK, and many of the insect sulfakinins, are sulfated, a modification essential 
for proper activation of their receptors.

In mammals, CCK secreted from the intestine acts on receptors in the nucleus of the solitary 
tract of the brain to signal satiety and thus inhibit feeding (7, 14). In Drosophila, DSKs released 
from insulin-producing cells (IPCs) of the brain appear sufficient to induce satiety (8, 15). As with 
many neuropeptides and peptide hormones, CCK is multifunctional and can also act locally in 
the intestine to decrease gastrointestinal motility, stimulate secretion of pepsinogen, inhibit gastric 
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Key concept 1 | neuropeptides and peptide hormones
Neuropeptides and peptide hormones typically consist of 5–80 amino acids linked by peptide bonds. They act on 
G-protein-coupled receptors (GPCRs) or in some cases receptor tyrosine kinases. In Drosophila, about 50 genes 
have been identified that encode precursors of neuropeptides or peptide hormones, and more than 45 GPCRs are 
known.

acid secretion, stimulate gallbladder contraction, and trigger secretion of hormones in the pancreas 
(13, 16). Furthermore, CCK released from brain neuroendocrine cells has regulatory functions 
in nociception, memory and learning processes, panic, and anxiety (17). To what extent are these 
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targeted genetic interference with expression of DSKs also revealed 
that these peptides are important for satiety signaling (8, 15). 
In the adult Drosophila CNS, there is a small number of DSK-

CCK functions subserved by DSKs in Drosophila and SKs of other 
insects? We provide a brief update on DSK signaling in Drosophila 
and show that, in addition to inducing satiety, several functions are 
conserved over evolution.

MultIple roles of sulfakInIns In IntestInal functIon 
In Insects
In several insects, it was shown that SKs modulate spontaneous 
activity of the foregut and hindgut muscle, as well as heart contrac-
tions [see Ref. (3, 9, 13, 18)]. In some insect species, SKs were also 
shown to induce secretion of the digestive enzyme α-amylase (19). 
In Drosophila, the enteroendocrine cells of the gut do not produce 
DSKs, and there is no direct innervation of the posterior intestine 
by DSK-expressing neurons (20, 21). Thus, actions of DSKs on the 
more posterior intestine are likely to be hormonal, via release from 
median neurosecretory cells (MNCs) that also produce insulin-like 
peptides and have axon terminations in  neurohemal regions of the 

Key concept 4 | Satiety signaling
Hunger and satiety can be determined either by willingness to approach food, 
or by amount of food ingested. Food intake in adult Drosophila can be 
monitored by a capillary feeding (CAFE) assay: flies feed from a calibrated 
capillary, and the amount ingested is calculated from the diminished level in 
the capillary. In some cases colored food is used and ingestion is determined 
by spectrophotometry.

Key concept 2 | neuroendocrine cells
Neuropeptides and peptide hormones are produced by a variety of neurons, 
and neuroendocrine cells in the central and peripheral nervous system as 
well as in glandular cells in other tissues, including the intestinal tract. Within 
the CNS, peptidergic neurons form a large variety of modulatory circuits. 
Peptide hormones are typically released into the circulation.

corpora cardiaca and anterior aorta, crop duct, and anterior midgut 
(8, 22). The DSK action on the heart, crop, and anterior intestine 
could, however, be by means of direct release onto these structures by 
axon terminations of the same neurosecretory cells. Taken together, 
these findings indicate that insect SKs and mammalian CCKs have 
some conserved actions in relation to intestinal function.

satIety sIgnalIng
Endocrinological studies demonstrated that SKs inhibit food 
intake in several insects, such as blowfly, locust, cricket, cockroach, 
and the beetle Tribolium castaneum (5, 13, 23–26). In Drosophila, 

table 1 | Sequences of ccK-like peptidesa.

DSK-I Drosophila melanogaster FDDyGHMRFamide

DSK-II Drosophila melanogaster GGDDQFDDyGHMRFamide

DSK 0 Drosophila melanogaster NQKTMSFamide

LSK Leucophaea maderae pQSDDySGHMRFamide

CCK-1 Aplysia californica SYGDYGIGGGRFamide

CCK-2 Aplysia californica QGAWSYDYGLGGGRFamide

NPL-12a Caenorhabditis elegans DYRPLQFamide

NPL-12b Caenorhabditis elegans DGYRPLQFamide

CCK8 Mammals DyMGWMDFamide

aSequences from Ref. (2, 6, 9, 12). Bold tyrosine (Y) residues are sulfated.

Key concept 3 | Median neurosecretory cells
In insects, a region in the dorsal midline of the brain, designated pars 
intercerebralis, contains a group of median neurosecretory cells (MNCs) that 
produce a number of peptide hormones, including insulin-like peptides (DILPs) 
and CCK-like peptides (DSKs). This brain region is considered functionally 
analogous to the hypothalamus.

producing neurons: four very large interneurons posteriorly in the 
brain, about eight smaller interneurons dorsolaterally and ventrally 
in the brain, and a varying number of MNCs (8, 20). The DSK-
expressing MNCs are a subpopulation of the 14 IPCs (8). Thus, 
most of the IPCs produce both the insulin-like peptides DILP2, 
3, and 5 and the DSKs.

Knockdown of DSK by RNAi targeted to DSK-producing 
neurons decreased satiety signaling in flies and hence intake of 
food increased, even when it was less palatable with no sugar or 
bitter with caffeine added (8). It was furthermore shown that 
knockdown of DSK only in the IPCs was sufficient to produce the 
same phenotype, suggesting that the hormonal action of DSKs is 
important as a satiety signal. Similar results were obtained from 
third instar larvae. In flies, inactivation of the IPCs or all the 
DSK-producing neurons by targeted expression of a hyperpolar-
izing potassium channel (Ork1) generated the same phenotype 
on food intake, indicating that activity in the IPCs is required 
to induce satiety (8). Flies deficient in DSKs displayed increased 
resistance to starvation compared to control flies, probably as a 
consequence of the dysregulated satiety signaling and resulting 
increase in food intake (8). Interestingly, knocking down DSKs 
either in IPCs or in all DSK-producing cells led to compensatory 
increases of Dilp2, 3, and 5 transcripts in the brain of flies fed 
ad libitum, but had no effect on flies starved for 24 h. Another 
study revealed that the Drosophila obesity-linked homologs 
Transcription factor AP-2 (TfAP-2) and Tiwaz (Twz) regulate 
octopamine signaling to initiate feeding and then octopamine, 
in a negative feedback loop, induces expression of Dsk to inhibit 
consummatory behavior (15). Combined, these findings suggest 
that DSKs released from IPCs are sufficient to induce satiety in 
larval and adult Drosophila, but the mechanisms remain elusive. 
The DSK receptor localization and targets of the peptide are yet 
to be identified, and it remains possible that the action could be 
either central or peripheral.

There are several sets of neurons in the brain known to regulate 
feeding. Among these are the so-called hugin neurons that pro-
duce a neuropeptide of pyrokinin type, whose branches are known 
to superimpose those of the IPCs (27). Functional interactions 
between the brain IPCs and the hugin neurons were demonstrated 
recently (28). The IPCs could signal to the hugin neurons by both 
DILPs and DSKs and thereby regulate the activity in these neu-
rons that are at the interface between gustatory inputs and feeding 
regulation. There are several other candidate targets among central 
neurons. Neurons in circuits that use the following neurotransmit-
ters and neuropeptides have been implicated in the regulation of 
foraging and feeding in addition to DILPs and DSKs: dopamine 
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(DA), neuropeptide F, short neuropeptide F, allatostatin A, leuco-
kinin, and hugin [see Ref. (3, 29)]. These sets of neurons are shown 
schematically in Figure 1.

aggressIon and anxIety
It was demonstrated that CCK signaling through the CCK B recep-
tor (CCKBR) within the rodent brain induces hyperactivity and 
aggression (30, 31). In support of this, CCKergic neuronal projec-
tions were identified within the limbic system, the brainstem, and 
the cerebral cortex, many of which overlap with neuronal pathways 
considered to be significant for the modulation of fear, anxiety, and 
aggression [for review, see Ref. (32)]. Furthermore, overexpression 
of CCKBR in the mouse brain increased aggressive behavior, while 
mice lacking CCKBR displayed increased exploratory behavior and 
reduced anxiety (31, 33).

In Drosophila, while DA and serotonin are involved in the modu-
lation of aggressive behavior, the central regulator of aggression 
is the noradrenaline analog, octopamine (34–37). Recently, it was 

Figure 1 | neuromodulators that regulate feeding modules in 
Drosophila. The neuromodulators in black and red units are produced by 
identified neurons: dopamine (DA) in DL1 neurons (for foraging) and in ventral 
unpaired neurons (for meal initiation), NPF in non-clock NPF neurons, sNPF in 
olfactory sensory neurons (OSNs), DSK in IPCs. The other peptides Hugin, 
allatostatin A (AstA), leucokinin (LK) are produced by several neurons types 
and it is not known which mediate the feeding responses. Probably, DILPs 
from IPCs contribute to inhibition of food ingestion. Note that DILPs inhibit 
the sNPF signaling in OSNs. This figure was compiled from data in Figure 3 in 
Ref. (29).

Figure 2 | Model for the regulation of aggressive behavior by DSK. Twz 
and TfAP-2 regulate the expression of Tbh and Vmat, which control octopamine 
production and release from octopaminergic neurons. Octopamine then signals 

to the IPCs to induce Dsk transcription. Dsk signals to stimulate aggression, 
while inhibiting mating and feeding behavior (15). This figure was modified from 
Figure 8 in Ref. (36).

Key concept 5 | Aggressive behavior
Male fruitflies fight over mates and resources and display elaborate aggressive 
behavior. The neuronal circuitry regulating aggressive behavior in Drosophila is 
intensely studied with genetic methods. Both monoamines and neuropeptides 
are known modulators of aggression in flies. It has been possible to identify 
small groups of neurons that regulate specific aspects of aggression.

reported that Drosophila homologs of the human obesity-linked 
genes TFAP2B and KCTD15 [TfAP-2 and Tiwaz (Twz)] regulate at 
least two genes involved in the production and secretion of octopa-
mine within the brain, Tyramine β hydroxylase (Tbh) and Vesicular 
monoamine transporter (Vmat) (Figure 2). Octopamine then regu-
lates aggression, mating, and activity in Drosophila by controlling 
the expression of Dsk in the IPCs (36) (Figure 2).

Overexpressing TfAP-2 in octopaminergic neurons was suf-
ficient to induce the expression of Dsk. This Dsk induction was 
blocked by feeding males an octopamine antagonist, indicating 
that TfAP-2 and Twz induce Dsk expression via octopamine 
signaling (Figure 2). Furthermore, Dsk overexpression in the 
IPCs was itself sufficient to induce hyperactivity and aggressive 
behavior. Interestingly, TfAP-2-induced aggressive behavior was 
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blocked by feeding flies, a CCK antagonist. This suggests that 
octopamine-induced aggression is due to an increase in DSK 
signaling (Figure 2).

developMent of the neuroMuscular JunctIon and 
ModulatIon of locoMotIon
Similar to mammals, the Drosophila genome encodes two different 
Dsk receptors, CCKLR1 (CCKLR-17D1) and CCKLR2 (CCKLR-
17D3). In Drosophila larvae, CCKLR-17D1 signaling was reported 
to be necessary for body-wall muscle contractions involved in 
stress-induced escape behavior (38). Moreover, it was demonstrated 
that Dsk and CCKLR-17D1 are required for proper neuromuscular 
junction (NMJ) formation in larvae (39). Interestingly, another 
study reported that octopamine regulates synaptic plasticity in the 
NMJ during development, as well as under starvation conditions. 
By activating Octβ2R receptors in octopaminergic neurons, octo-
pamine initiates signaling events that induce the development of 
new synaptic boutons at larval NMJs (40, 41). This lends itself to 
the hypothesis that, similar to what was reported in the Drosophila 
brain, octopamine and Dsk interact at NMJs to regulate their devel-
opment, as well as plasticity under condition of increased locomo-
tor behavior.

conclusIon and outlook
The CCK-like peptides, DSKs, of Drosophila and SKs of other 
insects regulate gut function, satiety/food ingestion, hyperactivity, 
and aggression, as well as escape-related locomotion and synaptic 
plasticity during NMJ development. Thus, many of the functional 
roles of CCK signaling known in mammals are present also in 
insects. Recent studies have shown that the neurons producing 
DSKs are under regulatory control by octopaminergic neurons (36) 
and more specifically the IPCs that co-express DILPs and DSKs are 
regulated by the octopamine receptor OAMB (42). An important 
question for the future is to determine the targets of DSK signaling 
within the brain and at peripheral sites that regulate the different 
aspects of behavior and physiology.
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