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Mechanical loading is essential to maintain normal bone metabolism and the balance
between bone formation and resorption. The cellular mechanisms that control mechan-
otransduction are not fully defined, but several key pathways have been identified. We
discuss the roles of several components of the Wnt signaling cascade, namely Lrp5, Lrp6,
and β-catenin in mechanical loading-induced bone formation. Lrp5 is an important Wnt
co-receptor for regulating bone mass and mechanotransduction, and appears to function
principally by augmenting bone formation. Lrp6 also regulates bone mass but its action
might involve resorption as well as formation. The role of Lrp6 in mechanotransduction is
unclear. Studies addressing the role of β-catenin in bone metabolism and mechanotrans-
duction highlight the uncertainties in downstream modulators of Lrp5 and Lrp6. Taken
together, these data indicate that mechanical loading might affect bone regulation trigger-
ing the canonical Wnt signaling (and perhaps other pathways) not only via Lrp5 but also via
Lrp6. Further work is needed to clarify the role of the Wnt signaling pathway in Lrp5 and/or
Lrp6-mediated mechanotransduction, which could eventually lead to powerful therapeutic
agents that might mimic the anabolic effects of mechanical stimulation.
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INTRODUCTION
Mechanical loading is essential to maintain normal bone metab-
olism and the balance between bone formation and resorption
(1, 2). Disuse of bone or insufficient loading can cause reduced
bone formation as well as increased bone turnover, which can
be appreciated in astronauts that have spent significant time in
space, among patients restricted to bed rest, and in people suffer-
ing from muscle paralysis (3). Conversely, exposure to frequent,
high-impact loading results in active bone formation (4). A good
example of this effect can be seen among competitive racquet
sports players, in whom the upper limb bones of the dominant
(playing) arm is generally more robust compared to the non-
playing skeletal elements (5). These effects are consequences of
Wolff ’s law (6) and have been verified in numerous murine models
of mechanotransduction, such as ulna- and tibia-loading mod-
els, the tail suspension model, and the botulinum toxin paralysis
model (7–9). However, the precise physical and biological mech-
anisms that drive adaptation to disuse/overuse have not been
completely elucidated.

Although the biological mechanisms that control mechan-
otransduction are far from certain, considerable progress has been
made in identification of some of the key players in this process.
For example, very early after a mechanical signal is received by
bone cells, adenosine triphosphate (ATP) is released from stimu-
lated cells and intracellular Ca2+ concentration increases within
1 min after loading (10–12). Subsequently, at least two other essen-
tial second messengers, prostaglandin E2 (PGE2) and nitric oxide
(NO), are released from the mechanically stimulated cells (13–15)

(Figure 1). Those events lead to the induction of MAP-kinase sig-
naling (ERK 1/2) and C-fos expression (16, 17). Later, inhibition
of Sost and Dkk1expression, along with increased expression of
IGF-I and other bone matrix-related genes such as osteopontin
and collagen have been documented (18, 19).

In this process, the Wnt pathway has been reported to play
an important role in transmitting mechanical signaling in bone
remodeling through both activating and inactivating several sig-
naling cascades (20). The canonical Wnt pathway is initiated when
released Wnt proteins bind to receptor complexes including a
seven pass transmembrane co-receptor called Frizzled, and either
low-density lipoprotein-related receptor-5 (Lrp5) or -6 (Lrp6).
Formation of this receptor complex at the cell surface eventually
leads to increased β-catenin-induced transcriptional activity via
increased β-catenin levels in the cytoplasm.

Over the past decade, this Wnt/β-catenin signaling pathway has
been identified as an essential component of mechanically induced
signal transduction. Heterozygous deletion of β-catenin in osteo-
cytes has been reported to significantly reduce loading-induced
anabolic responses in bone (21). Wnt/β-catenin signaling in bone
remodeling is proposed to be regulated by both Lrp5 and Lrp6 (22–
25). Although Lrp5 and Lrp6 have common properties, such as
sequence and structural similarity within this subfamily of the LDL
receptor-related proteins (26–28), their molecular downstream
events might be different in the context of bone remodeling. In this
review, we discuss the roles of both Lrp5 and Lrp6 in mechanical
loading-induced Wnt/β-catenin signaling pathways in the process
of bone remodeling.

www.frontiersin.org January 2015 | Volume 5 | Article 246 | 1

http://www.frontiersin.org/Endocrinology
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/about
http://www.frontiersin.org/Journal/10.3389/fendo.2014.00246/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2014.00246/abstract
http://www.frontiersin.org/people/u/194353
http://www.frontiersin.org/people/u/149972
mailto:arobling@iupui.edu
http://www.frontiersin.org
http://www.frontiersin.org/Bone_Research/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kang and Robling Wnt signaling in mechanotransduction

FIGURE 1 | Cellular mechanisms of action in mechanically stimulated osteocytes, which control osteoblast and osteoclast activity.

LRP5
LOSS-OF-FUNCTION STUDIES
Experiments performed on mice engineered with loss-of-function
mutations in Lrp5 have revealed that Lrp5 is important to trans-
fer the mechanical loading-induced signals in mechanosensory
bone cells. Sawakami et al. investigated the crucial role of Lrp5 on
skeletal mechanotransduction using mice with loss-of-function
mutations (Lrp5-null) (25). Similar to the human patients with
loss-of-function mutations in LRP5, the loss of Lrp5 signaling
in mice yielded a significant decrease in bone-mineral density and
bone strength. Mechanotransduction studies in these mice showed
a reduced osteogenic response to mechanical loading, which was
due to a reduction in load-induced synthesis of bone matrix, but
not due to osteoblast recruitment and/or activation on the sur-
faces. Saxon et al. confirmed that Lrp5 has an important role in
mechanotransduction using a different Lrp5−/−mouse model and
a different skeletal loading modality. Among the experiments they
reported that where their control mice (Lrp5+/+) exhibited dose-
responsiveness to loading, they observed a loss of responsiveness
in the Lrp5 mutants (29).

Based on the positive effects of the mechanical loading on bone
formation, we can surmise that loading might either increase
expression of Wnt stimulatory molecules, reduce expression of
inhibitory molecules, or both. One of the more notable inhibitors
of bone formation is sclerostin, which is known to participate in
the Wnt signaling pathway (Figure 1). Sclerostin is an Lrp5/Lrp6
antagonist that is encoded by the Sost gene. It is primarily
expressed in the osteocyte population, and loss-of-function muta-
tions in Sost (or in its regulatory elements) are known to cause
sclerosing bone disorders such as sclerosteosis and Van Buchem

disease (30–32). Sost transcript expression and sclerostin protein
levels are dramatically decreased as a result of mechanical loading,
especially in the high strain regions of the bone (8). Conversely,
skeletal disuse causes an increase in Sost expression. The functional
role of Sost regulation during mechanical loading was addressed
by Tu et al., who showed that if the normal decrease in Sost expres-
sion that occurs during loading was prevented, the anabolic effects
of loading were abolished (33). They accomplished this effect by
loading engineered mice that harbored a transgene comprising an
8 kb Dmp1 promoter driving a human SOST cDNA. In these mice,
the normal drop in endogenous Sost levels that occurs during load-
ing was countered by an increase in human SOST during loading,
owing to the load-sensitive Dmp1 promoter that regulated the
hSOST cDNA.

GAIN-OF-FUNCTION STUDIES
Other mutations in LRP5 have been identified in the human
population that, rather than causing loss-of-function and very
low bone mass, were found to cause abnormally high bone mass
(HBM). Engineered mice have been generated to study the effect
of these gain-of-function missense mutations in LRP5, including
transgenic and knock-in models. Published reports from these
mouse models demonstrate that the gain-of-function mutations
in Lrp5 are associated with an HBM phenotype (24, 29). The
mechanotransduction phenotype observed in the loss-of-function
(Lrp5−/−) mice prompted several investigators to ask whether the
HBM-causing mutations in Lrp5 also affect mechanotransduc-
tion, perhaps in the converse (beneficial) direction. To this end,
Robinson et al. conducted ulnar loading experiments in mice har-
boring a human cDNA for LRP5 that included the G171V-causing
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nucleotide substitution (34). The cDNA was driven by the 2.3 kb
Col1a1 promoter, which provided specificity of the HBM allele
to mature osteoblasts and osteocytes. They showed that Wnt/β-
catenin target gene expression was increased after loading and
this effect was associated with increased cell responsiveness to
mechanical loading. This result was confirmed by Saxon et al., who
reported the same mouse model (2.3 kb Col1a1 – G171V) sub-
jected to tibial loading produced an increased osteogenic response
to mechanical loading (29). They also indicated that these HBM
transgenic mice had increased resistance to bone loss associated
with disuse compared to wild type (WT) controls.

The effect of HBM-causing mutations in Lrp5 on mechan-
otransduction were further probed by Niziolek et al., who used two
novel HBM knock-in models to elucidate the role of Lrp5 in the
loading response. Those investigators used a different approach
than the G171V transgenic approach used by Robinson et al.
(34) and Saxon et al. (29). Rather than overexpressing cDNAs
for HBM-causing alleles only in osteoblastic cells, Niziolek et al.
knocked in the G171V and A214V HBM-causing mutations into
the endogenous loci. This strategy allowed for normal expression
levels and tissue distribution, owing to the undisturbed promoter
and regulatory elements. These mice are therefore a more orthol-
ogous model to two of the human HBM families (7). When
axial tibia loading was applied for 3 days to mature male Lrp5
G171V and Lrp5 A214V knock-in mice and to their WT controls,
fluorochrome-labeling results showed that this loading resulted in
a significantly enhanced periosteal response in the A214V knock-
in mice, whereas the G171V knock-in mice exhibited greater bone
formation on the endocortical surface. This bone formation dif-
ference in two different HBM-inducing Lrp5 mutations indicated
that these types of mutations can alter the mechanisms responsi-
ble for anabolic mechanotransduction, and also, that a portion of
the HBM phenotype observed in human patients carrying gain-
of-function mutations in LRP5 might be at least partially due to
enhanced mechanoresponsiveness in their skeletons.

LRP6
Lrp6 is similar in sequence and structure to Lrp5, and these two
receptors have been proposed to function largely in the same con-
texts and signaling pathways. However, there are some important
differences between the two receptors. The most obvious differ-
ence is that whereas Lrp5−/− mice are viable and fertile (albeit
with low bone mass), Lrp6−/− mice exhibit an embryonic lethal
phenotype. Those observations suggest that either (1) the tim-
ing, location, and/or level of embryonic expression is different
between Lrp5 and Lrp6, (2) the ligands, inhibitors, and/or down-
stream cascades differ between these two receptors, or (3) some
combination of those two possibilities. For example, Lrp6 appears
to be crucially important for bone’s anabolic response to intermit-
tent parathyroid hormone (PTH) treatment, whereas Lrp5 appears
to be uninvolved. Li et al. showed that deletion of a floxed Lrp6
allele in osteoblasts, using osteocalcin-driven Cre recombinase,
disrupts the bone anabolic activity of PTH by reducing number
of osteoblasts (23). Wan et al. showed direct interaction between
Lrp6 and the PTH 1 receptor using fluorescence resonance energy
transfer (35). While Lrp6 appears to be important for PTH signal-
ing, at least two published reports indicate that Lrp5 is not essential

for transducing PTH signaling (25, 36). These data suggested that
Lrp5 and Lrp6 might participate selectively and differently in Wnt
and/or other hormonal signaling. On the other hand, while Lrp5 is
crucial for mechanotransduction, there is to date no clear evidence
indicating that Lrp6 participates in mechanical loading-induced
activation of Wnt signaling pathway.

Although both Lrp5 and Lrp6 are required to develop normal
postnatal bone, available evidence indicates that their roles in this
process might differ. Lrp6 has been reported to play a role in bone
resorption and formation, whereas Lrp5 appears to affect bone for-
mation but not bone resorption (22–25). These observations come
from a number of studies that have looked at cell-specific effects
of Lrp5 and Lrp6 in bone. For example, Kubota et al. reported the
discovery of a naturally occurring mutation in Lrp6, which con-
ferred hypomorphic properties to the receptor (referred to as the
“rs” mutation). In a careful analysis of these mice, they found that
canonical Wnt signaling was severely impaired in cells harvested
from the rs/rs mice compared to WT mice (22). As expected, the
rs/rs mice displayed low bone mass in vivo, but the phenotype was
primarily due to increased bone resorption, with no detectable
change in bone formation. This result stands in stark contrast
to that reported for Lrp5−/− mice, in which bone resorption is
normal but bone formation is reduced considerably. While both
Lrp5 and Lrp6 can regulate Wnt signaling, the receptors might be
active in osteoblasts over different time windows. A recent report
indicates that Lrp6 might affect early osteogenic differentiation,
whereas Lrp5 seems to affect late osteogenic differentiation (24).
It should also be noted that the resorption/formation phenotype
observed in the Lrp6 hypomorphic mice was not confirmed in
an osteoblast-specific deletion model (Ocn-Cre with Lrp5flox/flox

mice); in fact, the opposite mechanism was reported, i.e., reduced
bone formation and no change in resorption (23, 24). Li et al.
observed that Lrp6 KO mice showed little change in the osteoclast
number but reduced the osteoblast number compared with the
WT littermates (23).

Another remarkable point of difference between Lrp5 and Lrp6
function is that the bone compartment affected might be differ-
ent, although both Lrp5 and Lrp6 can both influence cortical bone
remodeling. Sawakami et al. showed that the cross-sectional area
of ulnas from Lrp5-deficient mice was reduced compared to WT
mice (25), whereas Lrp6 appeared to be involved preferentially in
trabecular bone development (22). This suggests that the devel-
opmental role of Lrp5 and Lrp6 might be different across bone
surfaces. Other examples of compartment-specific effects have
been reported for the Wnt cascade. For example, Liu et al. observed
a surface-specific influence of Wnt signaling on bone metabolism.
They found that Wnt16 deletion decreased cortical bone thickness
and increased cortical bone porosity, while very minor changes
were observed in trabecular bone in mice lacking Wnt16 (37).

β-CATENIN
A major canonical downstream target of both Lrp5 and Lrp6 is
β-catenin. Inactivation of β-catenin in osteoblasts (e.g., 2.3 kb
Col1a1-Cre crossed to β-cateninflox/flox) causes osteopenia by
affecting bone resorption rather than bone formation (38). The
resorption phenotype in these mice has been replicated using
Dmp1-Cre, a Cre driver that is active later in the osteoblast
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differentiation pathway, i.e., late-stage osteoblasts and osteocytes.
Osteocyte-specific β-catenin-deficient mice showed a low bone
mass phenotype via increased osteoclast number and activity,
while osteoblastic function was normal (39). Mechanistically,
downregulated osteoprotegerin (OPG) expression was implicated
in osteoclastic resorptive activity effect of those mice. Because β-
catenin is downstream of Lrp5/6, this result is consistent with
the Kubota et al. report on the Lrp6 hypomorphic mouse, but is
inconsistent with the reports on Lrp5−/− and osteoblastic Lrp6−/−

mice. It is interesting to note that the β-catenin resulted in a more
severe bone phenotype than lack of either Lrp5 or Lrp6, indi-
cating that there might be a combined (or synergistic) effect of
Lrp5 and Lrp6 on bone regulation. Holmen et al. showed this
possibility by comparing mice lacking various combinations of
Lrp5 and Lrp6 (40). Additionally, β-catenin receives input from
other proteins (e.g., mTOR, Pi3K), so it might be unreasonable to
expect that β-catenin deletion would phenocopy the deletion of
Lrp5/6. Regarding the role of β-catenin in mechanotransduction,
it was recently shown that both copies of β-catenin are required in
osteocytes and/or late-stage osteoblasts for mechanotransduction
to occur; mice haploinsufficient for β-catenin in those cell popula-
tions showed no measureable response to mechanical stimulation
in vivo (21).

Based on the various evidences regarding the Lrp5 function on
bone formation and the Lrp6 role on bone regulation via bone
resorption, we can hypothesize that the mechanical loading might
affect bone regulation triggering the canonical Wnt signaling not
only via Lrp5 (bone formation) but also via Lrp6 (perhaps both
bone resorption and formation). In normal conditions, Wnt sig-
naling pathways probably are influenced by both Lrp5 and Lrp6
at the same time, but in different ways and their roles might be
synergistic. Further investigation on the role of Lrp6 in mechan-
ical loading-induced signaling pathways and the synergistic effect
of Lrp5 and Lrp6 could show more clearly the mechanism of Wnt
signaling, via both Lrp5 and Lrp6, in mechanotransduction.

CONCLUSION
Mechanical loading is a powerful modulator of bone modeling
and remodeling. The exact cellular and molecular mechanisms by
which this process occurs are still unclear. Substantial evidence
indicates that the Wnt signaling pathway participates in the trans-
duction of mechanical signals at the cell surface and ultimately
leads to the regulation of bone metabolism. Lrp5 is intricately
involved in bone cell mechanotransduction, but there is no indica-
tion at this time whether Lrp6 has any role in this process. Further
studies are needed to clarify the role of the Wnt signaling path-
way in Lrp5 and/or Lrp6-mediated mechanotransduction, which
could eventually lead to powerful therapeutic agents that might
mimic the anabolic effects of mechanical stimulation.
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