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As mammals develop, they encounter increasing social complexity in the surrounding
world. In order to survive, mammals must show appropriate behaviors toward their mates,
offspring, and same-sex conspecifics. Although the behavioral effects of the neuropeptide
arginine vasopressin (AVP) have been studied in a variety of social contexts, the effects
of this neuropeptide on multimodal sensory processing have received less attention. AVP
is widely distributed through sensory regions of the brain and has been demonstrated to
modulate olfactory, auditory, gustatory, and visual processing. Here, we review the evi-
dence linking AVP to the processing of social stimuli in sensory regions of the brain and
explore how sensory processing can shape behavioral responses to these stimuli. In addi-
tion, we address the interplay between hormonal and neural AVP in regulating sensory
processing of social cues. Because AVP pathways show plasticity during development,
early life experiences may shape life-long processing of sensory information. Furthermore,
disorders of social behavior such as autism and schizophrenia that have been linked with
AVP also have been linked with dysfunctions in sensory processing. Together, these stud-
ies suggest that AVP’s diversity of effects on social behavior across a variety of mammalian
species may result from the effects of this neuropeptide on sensory processing.
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INTRODUCTION
In social species, survival depends on navigating complex social
cues. An individual must be able to use sensory cues to distin-
guish between familiar and unfamiliar individuals. These sensory
cues must then be filtered in a way that directs the animal to
make an appropriate behavioral response. Although interpreta-
tion of sensory cues is influenced by many neural pathways, the
neuropeptide arginine vasopressin (AVP) appears to be critical for
making these key social distinctions in mammals. This neuropep-
tide has been associated with pair bonding, aggression, parental
care, social memory formation, and stress responses in multiple
species of rodents [reviewed in Ref. (1)], possibly due to its broader
role in integrating sensory input. In addition, the distribution of
AVP and its receptors changes throughout the lifespan. During
development, AVP immunoreactivity and receptors show remark-
able plasticity in response to environmental influences, such as the
quality and quantity of interactions with peers and parents (2–10).
Therefore, early developmental experiences may shape how an ani-
mal interprets sensory cues related to social behavior throughout
its lifespan.

The focus of this article is to review evidence that links AVP
with the processing of sensory information and to explore whether
this alteration of sensory processing leads to diverse behavioral
effects across different mammalian species. This paper describes
the distribution of AVP and its receptors within sensory organs
and within brain areas that receive direct sensory input. We
also describe anatomical pathways containing AVP and its recep-
tors that connect the primary sensory cortices with brain areas
that process social cues and that direct complex forms of social

behavior. We are proposing that the sex-specificity and species-
specificity of AVP effects on behavior in mammals result from the
variation in the pattern of distribution of AVP and its receptors
in sensory pathways. The convergence of sensory input with vaso-
pressin pathways that travel both within the brain and outside
of the brain suggests that the effects of AVP on behavior may be
mediated by both central pathways that alter the valence of social
stimuli and peripheral pathways that alter physiological responses
to social stimuli.

BACKGROUND
SEXUAL DIMORPHISM IN AVP: DIFFERENCES BETWEEN
PARVOCELLULAR AND MAGNOCELLULAR NEURONS
Arginine vasopressin has been localized in parvocellular and mag-
nocellular neurons that are widely distributed in the central ner-
vous system (11). AVP within a pathway that originates in the
medial amygdala (MA) and bed nucleus of the stria terminalis
(BNST) and projects to the lateral septum (LS) has been associated
with complex social behavior in mammals [reviewed in Ref. (1)].
Early exploration into the association between this pathway and
sex-specific patterns of social behavior originated with the identi-
fication of sexual dimorphism in AVP immunohistochemistry. In
rats (Rattus rattus), prairie voles (Microtus ochrogaster), meadow
voles (Microtus pennsylvanicus), and CD1 mice (Mus musculus),
males show more AVP-immunoreactive (AVP-ir) staining in the
BNST and its projections to the LS than do females (12–14). The
sexual dimorphism in AVP appears to be testosterone-dependent
because castration reduces AVP immunoreactivity in male rats and
testosterone implants increase AVP immunoreactivity in female
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rats (15–17). Although AVP is found only in mammals, similar
sexual dimorphism has been observed in the homologous arginine
vasotocin (AVT) pathways of birds, reptiles, and amphibians (18).
Although the role of AVT in regulating sensorimotor processing
in the amphibian Taricha granulosa has been explored elsewhere
(19), the role of AVP in regulating sensory processing in mammals
has received less attention.

Because AVP immunoreactivity is more pronounced in the
male brain, it has been suggested that AVP may regulate male
social behavior, and that oxytocin may serve a similar role in the
female brain. Early evidence supported the contention that AVP
was a key regulator of male social behavior during pair-bonding
and aggressive encounters, but more recent evidence also impli-
cates AVP in regulating female social behavior (9, 20–30). The
role of AVP in regulating species-specific social behavior in both
males and females in different ways in a variety of mammalian
species suggests that this neuropeptide serves a broader function
in behavioral regulation.

Although behavioral studies usually focus on AVP in the parvo-
cellular pathway described above, AVP produced within magno-
cellular neurons of the hypothalamus also regulates physiological
functions that may indirectly influence an animal’s behavioral
responses to social stimuli. After its release from the posterior
pituitary gland, AVP also enters into the bloodstream where it
produces hormonal effects on a variety of peripheral tissues. The
magnocellular neurons of the paraventricular nucleus (PVN) of
the hypothalamus and of the supraoptic nucleus (SON) appear
to be the main sites of AVP production in this pathway and can
be distinguished from the parvocellular neurons by measuring
their voltage-gated currents (31). Within the bloodstream, AVP
is more commonly known as anti-diuretic hormone (ADH), a
hormone that increases blood pressure and decreases ion con-
centrations within the blood by lowering the amount of water
that is excreted in urine. AVP also modulates cardiac function
by increasing activity of the sympathetic neurons that inner-
vate the heart and decreasing activity of parasympathetic neu-
rons [reviewed in Ref. (32)]. Although the changes in blood
pressure and heart rate produced by AVP in response to acti-
vation of magnocellular neurons are often overlooked in stud-
ies of social behavior, the coupling of these effects with central
effects can be critical for normal emotional responses (33). Appro-
priate responses to social stimuli may be more likely to occur
when alterations in heart rate and blood pressure create an opti-
mal level of arousal that allows the animal to focus on subtle
social cues.

DISTRIBUTION OF THREE TYPES OF AVP RECEPTORS
Arginine vasopressin produces different effects within the central
and peripheral nervous systems because it binds to three main
categories of receptors: V1a, V1b, and V2 receptors. Although V2
receptors and both subtypes of V1 receptors are found within the
peripheral nervous system, only V1 receptors are found within the
central nervous system. Despite the early suggestion that binding
of AVP to V1a receptors was responsible for all of the behavioral
effects of this neuropeptide, more recent evidence using receptor
knockouts indicates that central V1b receptors also are critical for
social behavior [(1); for review of V1b receptors, see Ref. (34, 35);

for review of V1a receptors, see Ref. (36–38)]. Adding an addi-
tional layer of complexity to our understanding of the central
effects of AVP is the observation that AVP can bind to oxytocin
receptors and that oxytocin may act as an agonist at AVP recep-
tors because of the similarities between the structures of these
peptides and their G-protein linked receptors [(39); reviewed in
Ref. (40)]. However, the impact of this potential peptide cross-
reactivity on social behavior is unclear as it has not been well
studied.

Although V1a receptor distribution often varies between closely
related species with different mating systems [e.g., Ref. (41–44)],
consistent patterns of differences between monogamous and non-
monogamous species have not yet been identified. Monogamous
California mice (Peromyscus californicus) show elevated V1a recep-
tor binding in the LS in comparison to non-monogamous white-
footed mice (Peromyscus leucopus), but studies in voles have found
an opposite pattern with higher V1a receptor binding in the non-
monogamous species (42, 45, 46). Despite the lack of consistency
in patterns of variability across species, social behaviors related to
monogamy can be altered using manipulations of AVP within a
single species. In prairie voles, a monogamous species, reduction of
V1a gene activity using RNA interference reduces partner prefer-
ence and other behaviors related to monogamy (47). However, the
lack of consistency in V1a receptor distribution patterns between
closely related species has led to multiple hypotheses about the
reasons for these differences. Although it has been suggested that
interspecies variation in V1a receptor distribution may result from
differences in aggression, different ecological pressures that alter
spatial distributions of animals within their habitats, and/or other
social pressures, none of these explanations seem to fit all of the
existing data (38, 42, 44, 48, 49). Therefore, it seems reasonable
to hypothesize that AVP pathways may serve a broader function
related to social behavior because of the large amount of sex and
species variation in this system.

VASOPRESSIN AND SENSORY SIGNALING
VASOPRESSIN AND OLFACTION
Olfactory brain circuitry: overview
Two separate olfactory systems exist within the rodent brain that
process socially relevant olfactory information. Both of these path-
ways contain AVP and its receptors (Figure 1). In the main olfac-
tory system, input travels from the main olfactory bulb (MOB)
to the anterior olfactory nucleus, piriform cortex (PC), and amyg-
dala for additional processing (50). This multi-step pathway brings
olfactory information to be processed in multiple areas of the cere-
bral cortex, including the anterior olfactory nucleus and PC. The
anterior olfactory nucleus, a cortical area adjacent to the olfac-
tory bulb that is part of the main olfactory pathway, contains
AVP neurons that are activated by the exposure to social odors
in rats but not by exposure to other odor cues (51). A parallel
system, the accessory olfactory system, brings information from
the vomeronasal organ (VNO) into the accessory olfactory bulb
(AOB), which innervates the MA, BNST, and cortical amygdala
(52). Although it was originally assumed that only the accessory
olfactory system processed pheromones and other socially rele-
vant odors, more recent evidence suggests that social information
is processed by both pathways (52).
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FIGURE 1 |The distribution of AVP (red triangles),V1a receptors (blue
triangles), and V1b receptors (green triangles) in olfactory regions of
the rodent brain. Information in the main olfactory system travels from the
OE to the MOB and then is processed in the accessory olfactory nucleus,
PC, and MA. Information in the accessory olfactory system travels from the
VNO to the AOB and then to the MA, BNST, and LS.

This redundancy allows olfactory input to be processed
simultaneously by non-dimorphic brain areas and by sexually
dimorphic, AVP-rich areas such as the BNST, amygdala, and LS.
For example, in male rats, exposure to the odors of a receptive
female held behind a perforated plastic partition leads to Fos
expression in the AVP neurons of the MA (53). The presence of
this neuronal marker of gene activation in the MA indicates that
the odor of the estrous female is driving activation of the MA
and the interconnected hypothalamic brain areas that are asso-
ciated with reproductive behavior. A different pattern of neural
activation occurs in the brain of a female exposed to the odor of
an estrous female. Similarly, female rough skin newts (T. gran-
ulosa) that have been treated with testosterone and AVT show
male-typical responses to female odors, suggesting that manipu-
lations of AVP and its homologs can alter olfactory processing of
social cues. The ability of AVP to lead to differentiated responses
to complex social odors would be favored by natural selection
because these differentiated responses allow mammals to target
their behavioral responses toward other individuals in a way that
maximizes individual fitness. However, the specific role of AVP in
driving complex behavioral responses to social odors has yet to be
elucidated.

Arginine vasopressin alters olfactory processing in rats from the
moment that olfactory information enters the brain via the MOB
or the AOB, but this processing occurs in a variety of complex ways.
In rats, the olfactory bulb contains a population of AVP neurons
with V1b receptors that does not project outside of the olfactory
bulb and that may regulate their own activity (54). This modula-
tion within the bulb could decrease or increase sensitivity to social
odors. Social odors also activate OR37 receptors in the main olfac-
tory system, which provide direct, monosynaptic input into both
the magnocellular and parvocellular AVP neurons of the PVN and
the SON (55). It is not clear, however, whether activation of these
receptors leads to release of AVP into the bloodstream, activation

of brain areas associated with social behavior, or both. V1a and
V1b receptors within the olfactory bulb are also associated with
neurons that transmit information outside of the olfactory bulb,
and additional V1a and V1b receptors have been localized in the
olfactory epithelium (OE) and targets of the olfactory pathways
such as the PC (56–58). The presence of AVP and its receptors in
so many olfactory processing areas indicates that AVP is able to
modulate olfactory information, as the information is evaluated
by areas of the brain that direct behavioral responses.

Olfactory brain circuitry: interactions between olfactory pathways
Arginine vasopressin’s influence on olfactory processing extends
beyond the main and accessory olfactory systems. Although some
processing of social odors appears to occur in a sexually dimor-
phic way to allow males and females to respond differentially to
sexual cues, other processing of social odors follows similar neural
pathways in both sexes. In mice, anatomical evidence suggests that
olfactory cues may stimulate the non-dimorphic cells of the MA
and activate the magnocellular cells of the SON (14). SON or PVN
activation has the potential to lead to release of AVP in the blood-
stream where it may alter the behavior of the animal by affecting
the arousal level of the animal due to changes in blood pressure
or autonomic activation. However, even though this pathway is
not sexually dimorphic, modulation of the activity of this path-
way might occur in a sexually dimorphic way through interactions
with other neurotransmitter systems or with AVP in other neural
pathways that are sexually dimorphic.

Our understanding of how AVP alters olfactory processing
has been extended by the use of functional magnetic resonance
imaging (fMRI) in addition to traditional neuroanatomical tech-
niques. In this paradigm, fMRI BOLD responses are used to
monitor changes in neural activation. Central administration of
a V1a receptor antagonist in conjunction with the presentation
of a male intruder increases BOLD responses in the anterior
olfactory nucleus and in the infralimbic prefrontal cortex and
decreases BOLD responses in the cortical amygdala in dams (27).
The finding indicates that blocking AVP receptor binding dur-
ing a threatening situation alters how olfactory cues are processed
within the brain. In addition, the alteration in infralimbic pre-
frontal cortex activation is intriguing because this brain area has
been implicated in the regulation of fear and autonomic responses
to olfactory stimuli and projects to the BNST and LS (59). Because
the BNST and LS have been associated with maternal aggres-
sion in rodents (22, 23), this pattern of neuronal activation may
indicate readiness to attack an intruder. Although we are only
beginning to understand how complex behavioral responses are
integrated across the entire brain during social situations, these
findings suggest that AVP’s modulation of olfactory systems may
have important implications for an animal’s fitness. When AVP
receptors are blocked, the typical fear response to an olfactory
threat is diminished.

AVP and olfactory processing in Syrian hamsters
Arginine vasopressin also has been demonstrated to play a crit-
ical behavioral role in the interpretation of chemical signals
during social interactions in Syrian hamsters (Mesocricetus aura-
tus). In both male and female Syrian hamsters, infusions of AVP
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into the BNST, LS, or anterior hypothalamus increase the fre-
quency of flank marking (60–62). V1a receptor binding in tar-
gets of this pathway, such as the ventromedial hypothalamus, is
downregulated in response to social cues. Male Syrian hamsters
who win repeated aggressive encounters show less submissive
behavior and greater V1a receptor binding in the ventromedial
hypothalamus than socially subjugated males (6). Therefore, social
experience during development in Syrian hamsters leads to plas-
ticity in AVP receptor distribution that shapes the production
of olfactory signals. Although it is not known whether AVP also
alters the interpretation of olfactory signals in this species, social
odor preferences in both females and males are eliminated with
lesions in brain areas that contain AVP and its receptors (63,
64). This plasticity indicates that social experiences that alter the
distribution of AVP or its receptors within the brain may also
shape a mammal’s ability to produce and respond to olfactory
signals.

Despite parallels between the role of AVP in regulating scent-
marking behavior in male and female Syrian hamsters, the social
context of AVP release may constrain scent mark production dif-
ferently in males and females. For example, infusions of AVP or a
V1a receptor antagonist into the anterior hypothalamus produce
opposite effects in males and females. In female, but not male Syr-
ian hamsters, AVP infusions decrease aggression whereas the V1a
receptor antagonist infusions increase aggression (65). Together
these results indicate that although AVP may shape the production
of olfactory signals like flank marking, the social context of these
signals determines how this peptide will influence social behavior.
Selection pressures, therefore, can lead to sex differences in how
AVP influences the processing of olfactory signals.

AVP and social recognition
The role of AVP in regulating the interpretation of olfactory sig-
nals has also been investigated in other rodents using various social
recognition paradigms [reviewed in Ref. (50, 52, 66–69)]. A typical
protocol involves the exposure of a rodent to an unfamiliar juve-
nile conspecific. After a delay of 30-120 min and infusion of AVP
or one of its antagonists, the animal then is returned to a testing
arena that contains either the same conspecific, a novel animal, or
both [e.g., Ref. (70, 71)]. Exposure to the odor of a familiar animal
typically leads to less olfactory exploration than exposure to the
odor of a novel animal.

Arginine vasopressin influences social recognition via two sep-
arate pathways: one pathway that is contained entirely within the
olfactory bulb and a second pathway that is sexually dimorphic and
leads to the LS. Infusion of AVP into the olfactory bulb enhances
social recognition in male rats (72). Although infusions of a com-
monly used V1a receptor antagonist in the olfactory bulb does not
eliminate social recognition, performance in a social recognition
test is impaired in male rats after infusions of OPC-21268, a non-
peptide V1 receptor antagonist that diffuses more widely (54, 72).
In both sexes, infusion of a V1a receptor antagonist into the LS
decreases olfactory exploration of a novel same-sex juvenile rat
(73). Although this finding is somewhat surprising because AVP
immunoreactivity is lower in the LS in female rats, V1a receptors
are more abundant in females (73). Therefore, the lower AVP con-
tent of the LS in females may be counteracted by the presence of

additional receptors in this brain area. These findings also indicate
that activation of AVP neural pathways may be important for social
recognition in both sexes despite anatomical differences between
the sexes.

Although initial processing of the olfactory cues used in social
recognition occurs within the olfactory bulb, more complex pro-
cessing occurs in sexually dimorphic AVP pathways. Innate varia-
tion in the production of AVP and its receptors within these areas
leads to individual variation in social recognition. Female mice
who were categorized as “high recognizers” because of strong per-
formance in a social recognition test expressed less mRNA for AVP,
V1a receptors, and V1b receptors in the lateral amygdala than “low
recognizers,” although no differences were identified in the BNST
or MA (74). The ability to perform well during a social recognition
task appears to result from downregulation of AVP in the lateral
amygdala even if AVP in other brain areas like the LS is essential for
processing the olfactory cues related to the social recognition task.
In addition, in some rodent species, AVP pathways used in social
recognition are responsive to changes in the environment that
alter gene expression through epigenetic mechanisms that change
the packaging of DNA and histones within the nucleus of a cell.
For example, environmental influences such as maternal separa-
tion have been shown to alter methylation of DNA and to alter
AVP gene expression (75). Similarly, administration of a histone
deacetylase inhibitor like valproic acid creates epigenetic modifica-
tions that can alter olfactory processing. In female mice, valproic
acid masculinizes AVP fiber density in the LS and increases the
attraction of a female toward same-sex odors (76). This finding
suggests that epigenetic mechanisms that are shaped by the prena-
tal and postnatal environment can alter AVP distribution within
the brain and modify an animal’s social behavior by modulating
responses to olfactory stimuli.

The effects of central release of AVP on social recognition may
be amplified by the simultaneous release of AVP into the blood-
stream. During a social recognition test in mice using an intact
male mouse as a stimulus animal, AVP is released in the SON
as measured by microdialysis (77). Because AVP release from the
SON leads to elevation of plasma AVP, this indicates that cen-
tral activation and peripheral activation of AVP pathways may be
linked. Lesions of the MA also disrupt the release of AVP from the
SON, suggesting that olfactory processing by the pathway project-
ing from the MA to the LS may activate release of AVP from the
SON (77). This connection between the MA and the magnocel-
lular cells of the SON may modulate aggressive responses while
elevating levels of AVP in the bloodstream (14).

Despite compelling data indicating that AVP regulates social
recognition in both sexes, elimination of one type of AVP recep-
tor does not block social recognition consistently. In male mice,
a null mutation in the V1a or the V1b receptor leads to impair-
ments in social recognition [V1a: (78) and V1b: (79)]. Deficits
caused by a null mutation in the V1a receptor can be reversed
by re-introducing the V1a receptor into the LS using a viral vector
(80). However, other studies have failed to identify any impairment
in social recognition in male V1a receptor knockout mice despite
mild olfactory impairments (81). Female mice with a null muta-
tion of the V1a receptor also display a normal Bruce effect, which is
the loss of a pregnancy after the odor of urine of an unfamiliar male
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activates the vomeronasal system (82). In contrast, female mice
with a null mutation in the V1b receptor do not show a normal
Bruce effect, indicating that the V1b receptor may be more critical
for this response in females (82). Inconsistencies between studies
may result from the involvement of multiple receptor types and
neurotransmitter systems in processing socially relevant olfactory
signals.

Evolutionary significance of olfactory processing
The ability to discriminate between the odors of a mate, offspring,
and an unfamiliar individual is important for individuals from
social species. The evolutionary significance of olfactory inves-
tigation, however, may be compounded by the ability to extract
additional complex information from odors. Male rats not only
can discriminate between individuals but also avoid the odors of
ill conspecifics. This avoidance response requires intact AVP neural
pathways because exposure to these odors upregulates mRNA for
V1a and V1b receptors in the MA, but does not occur if a rat
receives a microinfusion of a V1a or V1b receptor antagonist into
the MA (83). Although an increase in c-fos mRNA in the olfactory
bulb and BNST indicated that those brain areas were activated by
exposure to illness-related odors, V1a or V1b receptor binding was
not elevated in these brain areas. Therefore, processing of illness-
related odors in the AVP system occurs specifically in the MA, a
brain area associated with fear. This example illustrates the idea
that AVP pathways may assist with creating a complex emotional
and behavioral response to the odor of a conspecific that varies
depending on the conspecific’s familiarity, sex, health, age, and
other individual characteristics.

AVP AND AUDITORY PROCESSING
Neural processing of auditory signals in birds, fish, and frogs
Although AVP has most commonly been associated with pro-
cessing of olfactory signals, AVP also assists with processing of
auditory signals. A clear link between auditory processing and
a non-mammalian AVP homolog, AVT, has been established in
birds, frogs, and fish. For example, pairing male and female zebra
finches (Taeniopygia guttata) increases AVT mRNA in the PVN
and BNST of both sexes, and the magnitude of the increase in
mRNA production in males is associated with the quantity of
singing behaviors (84). Male zebra fiches that choose to sing to a
female behind a wire barrier also have more AVT-immunoreactive
neurons in the BNST than non-singers, again indicating a linkage
between auditory signal production and social behavior in this
species (85). In addition to these correlational linkages between
AVT and singing behavior, direct manipulations of AVT using
intraventricular infusions also increase singing behavior in female
sparrows (Zonotrichia leucophrys gambelii; 86). Even though these
studies do not indicate whether AVT influences auditory process-
ing, an additional study in Lincoln’s sparrows (Melospiza lincolnii)
demonstrates that sparrows alter the effort used in song produc-
tion and show changes in AVT-immunoreactivity depending on
the quality of songs to which they are exposed (87).

Evidence linking AVT to auditory processing also has been
found in fish and frogs. AVT is present in brain areas respon-
sible for auditory integration in the plainfin midshipman fish
(Porichthys notatus), a species where males vocalize to attract

mates and during nest defense (88, 89). Similarly, AVT is more
abundant in auditory processing areas of male bullfrogs (Rana
catesbeiana) in comparison to female bullfrogs (90). Because calls
are only produced by males in this species, this sexual dimorphism
may indicate that AVT plays a key role in assessing the salience of
auditory signals that are being produced by conspecifics. Manipu-
lations of the AVT system support this idea because AVT infusions
change call properties of túngara frogs (Physalaemus pustulosus),
possibly interfering with communication between the sender and
the recipient (91, 92). Similarly, in the gray tree frog (Hyla versi-
color), auditory cues shape the effects of AVT on calling behavior
because AVT only alters call quality when a male is in close prox-
imity to another male (93). Together, these results indicate that
AVT modulates calling behavior in response to auditory cues and
allows animals to produce calls that are appropriate for a particular
social context.

Neural processing of auditory signals in mammals
The distribution of AVP and its receptors within brain areas asso-
ciated with auditory processing has been studied in less detail in
mammals, possibly because much of the AVP research has focused
on rodents that use olfaction as the primary sense for social assess-
ments. Although it is known that female, but not male, guinea pigs
(Cavia porcellus) display AVP-ir staining in the auditory brain-
stem, the function of this sexual dimorphism is unknown (94). In
the few rodent species where the functional importance of AVP
on vocalization has been studied, a role for both V1a and V1b
receptors has been identified. Female mice with a null mutation in
the V1b receptor show decreased ultrasonic vocalizations during
resident-intruder aggressive encounters (95). Although vocal pro-
duction is affected, it is not known whether auditory processing
also differs between control mice and mice with a null mutation in
the V1b receptor. Anatomical studies using singing mice (Scotin-
omys teguina and Scotinomys xerampelinus) that vocalize in social
contexts have identified the presence of V1a receptors in brain
areas used for vocal production and auditory responses (49). In
both species of singing mice, V1a receptors are expressed in the
medial geniculate nucleus, which is the region of the thalamus
that processes auditory information (49). In addition, both species
display V1a receptor binding in two brain areas associated with
vocalization, the periaqueductal gray and anterior hypothalamus,
with more extensive binding in the more vocal species, S. teguina
(49). These findings are intriguing because they implicate AVP in
the give-and-take of information that occurs during social com-
munication. In mammalian species where vocalizations are used in
social situations, selection may favor a role for AVP in modulating
these signals.

Although the effects of central AVP on auditory processing
have not been studied in humans due to methodological limi-
tations, human genetic variation in V1a receptor haplotypes has
been linked with auditory processing and communication. The
number of repeats in the RS3 microsatellite marker for the V1a
receptor has been positively linked with prepulse inhibition, a
startle response that is suppressed in individuals with schizophre-
nia and other disorders of social communication (96, 97). This
phenotype has been linked more closely to auditory communica-
tion in studies examining the relationship between V1a receptor
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variation and an individual’s musical aptitude. In families contain-
ing either a professional or active amateur musician, the ability to
detect structural changes in abstract sounds is linked with RS1
and RS3 microsatellite markers for the V1a receptor (98). Interest
in music, another marker of interest in listening to auditory cues,
is also associated with V1a receptor distribution in humans: the
RS1 haplotype is most strongly associated with listening to music
regularly at the present time and the RS3 haplotype is most promi-
nently associated with listening to music regularly throughout the
lifespan (99). Although studies using viral vectors to manipulate
V1a receptor activity cannot be performed in humans, these corre-
lational results indicate that central processing of auditory signals
in humans is modulated by AVP and its receptors.

AVP as a hormone and acoustic processing in the ear
In addition to affecting neural processing of auditory signals, AVP
in the bloodstream also affects hearing. Peripheral injections of
AVP in rats create short-term hearing impairment as measured
by evoked auditory brainstem responses to sound (100). In the
inner ear, AVP also alters hearing by binding to V2 receptors and
reducing the number of aquaporin-2 membrane channels, chan-
nels that increase water permeability (101). AVP binding to V2
receptors thus leads to hearing impairment through the accumu-
lation of excess water in the membrane of the endolymphatic sac
(102, 103). Because insulin interacts with the signaling pathway
that regulates V2 receptors, disruption in this pathway in diabetic
patients has been linked to hearing loss in humans (103). Similarly,
excess endolymphatic fluid due to excess plasma AVP levels or V2
receptors in the inner ear produces the symptoms of Menière’s dis-
ease, a disorder in humans that results in intermittent hearing loss,
vertigo, and tinnitus (104–106). Therefore, release of AVP into the
bloodstream in response to social or stressful stimuli may have a
secondary effect of reducing sensitivity to sound cues.

Although excess AVP in the bloodstream may hamper the abil-
ity to detect auditory cues, smaller elevations in plasma AVP may
increase recall of auditory information due to increased arousal.
Peripheral administration of AVP can enhance performance in
learning tasks due to elevation of heart rate, blood pressure, and
other sympathetic nervous system activity [reviewed in Ref. (107)].
Administration of AVP via intranasal infusions in healthy, non-
depressed elderly humans increases recall of auditory information,
possibly due to this increase in arousal (108). Natural variation in
AVP in humans also is correlated with performance on auditory
learning tasks. In humans with major depression, plasma con-
centrations of AVP correlate positively with auditory memory
as measured by a 10-WLLA test for audio recall (109). Diabetes
insipidus, a disorder characterized by a mutation in the vasopressin
prohormone that leads to lower plasma levels of AVP, is associated
with decreased performance on a test of verbal memory in humans
(110). Although elevations of AVP in the bloodstream can lower
detection of auditory signals, once those signals are detected, AVP
can enhance recall of information provided in those signals.

AVP AND PROCESSING OF TASTE INFORMATION
AVP and conditioned taste avoidance
A key to understanding the evolution of taste aversion in mammals
and its link to social behavior has been provided by studies

of gustatory learning in Caenorhabditis elegans, a nematode
that utilizes chemoattraction to locate low salt environments
(111). Modulation of this ability occurs through the action
of a vasopressin/oxytocin-like neuropeptide, nematocin. When
exposed to preferred low salt environments in the absence of food,
worms with a null mutation for nematocin or its receptor are not
able to learn to avoid these environments (111). Individuals lack-
ing nematocin or its receptors also exhibit deficiencies in male
mating behavior and other forms of social behavior due to altered
activity of mechanosensory neurons (112). These findings impli-
cate the ancient neuropeptide, nematocin, in the integration of
sensory input into complex motor output in the model organ-
ism C. elegans. This link between AVP, taste, and social behavior
seems to be preserved in more complex organisms like birds and
mammals. In the zebra finch (Taenioypygia guttata), intraseptal
infusion of a V1 antagonist reduces gregariousness and increases
the latency to feed in the presence of a novel stimulus (113). How-
ever, in mammals, it is unclear whether the effects of AVP on taste
also modify social behaviors.

Arginine vasopressin within the bloodstream may alter the
processing of taste in mammals through a mechanism similar
to the one described above for auditory learning. By altering
arousal through activation of the sympathetic nervous system,AVP
improves an animal’s ability to learn to avoid an aversive stimulus.
In rats, taste aversion to saccharine lasts longer if administration
of desglycinamide-lysine vasopressin occurs prior to pairing of
the taste of saccharine with nausea induced by injections of LiCl
(114). Other studies, however, have demonstrated the opposite
relationship with AVP injections leading to faster extinction of
learned responses. The timing of AVP administration appears to
be critical because the learned association disappears more rapidly
if AVP is administered after the acquisition process, regardless of
whether the AVP is administered peripherally or centrally (115–
117). However, dosage of AVP does play a critical role because high
doses are capable of inducing taste aversion without administra-
tion of LiCl following consumption of a sucrose solution (117).
Although peripheral AVP injections produce similar effects as cen-
tral AVP infusions, this effect still seems to result in part from the
release of AVP from the neurons of the PVN. AVP is released
in the PVN during extinction of taste avoidance responses in
rats that have not been deprived of water as part of the test-
ing protocol (118). Because radioimmunoassay shows no changes
in AVP content in brain areas that have been associated with
conditioned taste avoidance such as the medial septum, LS, insu-
lar cortex, or MA, this increase in AVP content in the PVN is
most likely related to the osmoregulatory properties of AVP in
the PVN (118). However, future studies may clarify the role of
neural AVP in regulating taste aversion. Taken together, these data
indicate that AVP can either improve sensory learning or hasten
extinction of learned responses depending on the timing of AVP
release.

AVP and modulation of taste
One molecular mechanism that AVP may use to modify taste
is through modulation of the activity of epithelial sodium ion
channels (ENaCs) that regulate salty and sour tastes [Figure 2;
(119)]. ENaCs are found in the renal collecting duct, urinary
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FIGURE 2 | Epithelial Na+ channel structure. ENaCs are composed of
three subunits: α, β, and γ, and transport salt in a variety of epithelial
tissues in the body. The α subunit alone is capable of functioning as a
sodium transporter, but the addition of β and γ subunits increase the
efficiency of this process. Sodium transport activity of ENaCs can be
blocked with amiloride or enhanced with AVP.

bladder, lung, and taste buds and consist of three subunits that
form a pore that selectively permits sodium to cross the mem-
brane [reviewed in Ref. (120)]. In fungiform taste cells of hamsters,
AVP increases sodium ion currents in ENaCs, indicating that the
threshold for stimulation of these cells is being lowered (121).
Therefore, AVP in the bloodstream may increase sensitivity to
salty or sour tastes through its action on the ENaCs in taste cells.
Under conditions where blood volume is low, this response may
be part of a homeostatic mechanism to increase water retention
in the blood by enhancing the palatability and consumption of
salty food (121, 122). Although high doses of AVP appear to
inhibit salt intake by making animals feel ill, central adminis-
tration of lower doses of AVP stimulate salt intake whereas V1

receptor antagonists inhibit salt intake (123). At the neural level,
ENaCs also appear to be involved in regulating salt intake because
they are co-localized with AVP in the magnocellular neurons of
the SON and PVN, cells that assist with osmoregulation (124).
Interestingly, these neural sodium channels are similar to ENaCs
of the tongue in that both exhibit sensitivity to amiloride, a
potassium-sparing diuretic that inhibits taste responses (124). In
the brain, ENaCs may act as sensors of salt concentrations on the
cells of the PVN and SON and lead to alterations in neural fir-
ing rates in response to fluctuations in salt concentration in the
cerebrospinal fluid (124). Although it is unknown how ENaC acti-
vation by AVP may alter complex social behavior in mammals,
these data indicate that behavioral responses that lead to release
of AVP from the PVN and SON may also increase sensitivity to
taste.

Disruption of taste sensitivity may be an important clue in
diagnosing diseases that are accompanied by AVP dysregulation,
such as syndrome of inappropriate ADH secretion (SIADH) (81,
125). In patients with SIADH related to lung cancer, the excess
AVP alters taste perception (81, 126, 127). In patients with low
serum sodium levels due to the effects of AVP on blood osmolal-
ity, correction of these levels led to improvement of taste function
(81, 126, 127).

AVP AND VISUAL PROCESSING
Although visual information feeds into many brain areas that con-
tain AVP, such as the BNST and LS (128, 129), the effect of AVP
on processing of visual information has received little attention.
Comparative analysis of visual opsin sequences in a variety of
vertebrate species indicates that the visual opsins and AVP recep-
tors are found in a shared genomic region that was duplicated
twice during vertebrate evolution (130). However, the behavioral
significance of the linkage between these sequences has not been
examined. In chickens, a visual opsin has been co-localized with
AVT in the neurons of the PVN, SON, and BNST (131). Although
the function of opsins outside of the eye is unknown, these pig-
ments may allow these neurons to respond to light and assist with
coordination of circadian rhythmicity in behavior (131).

Connections between AVP and visual processing have been
made in studies of visual learning, although these studies have
focused more on AVP enhancement of sensory learning instead
of AVP alteration of visual processing [e.g., Ref. (132, 133)]. In
non-mammalian species, however, it has been demonstrated that
AVT, a homolog of AVP, stimulates interest in visual cues asso-
ciated with reproduction in rough skin newts (134). Additional
studies in mammalian species that rely on visual cues during social
interactions will help to clarify the role of AVP in visual processing.

CONCLUSION AND FUTURE DIRECTIONS
A social animal is bombarded with sensory cues throughout his
or her lifetime. Even at birth, animals are usually attracted to the
odors of their mothers but avoid unfamiliar odors. These and
similar sensory cues are channeled through the central nervous
system of the animal leading to output in the form of the social
behaviors that are necessary for that individual’s survival. In social
rodents who heavily utilize their olfactory senses to distinguish
threat from other environmental stimuli, AVP has been local-
ized within the olfactory bulb itself and within the targets of the
olfactory pathways. Therefore, as AVP neurons of the main and
accessory olfactory systems are activated, they may modulate this
olfactory input and direct it to the appropriate sites in the brain
that regulate behavioral output. In addition, olfactory pathways
also send information to the magnocellular neurons of the PVN
and SON, which release AVP into the bloodstream. Additional
research may clarify the degree of interplay between these two sys-
tems. The relationships between AVP in the olfactory system and
other neurotransmitter systems and other sensory systems also
should be explored in greater detail.

Although evidence also indicates that a relationship exists
between AVP and other sensory modalities, these relationships
have not been studied as extensively as the relationship between
AVP and olfactory processing. Because most studies examining the
role of AVP in sensory processing have been performed in rodents
that use olfaction as the primary sense, other sensory modalities
have received less attention. At this time, it is not known whether
AVP in brain areas associated with mammalian visual, taste, or
auditory processing shows the same level of plasticity in response
to social or hormonal cues that shape behavior. It is also unknown
whether manipulations of AVP can produce broad alterations in
sensory processing in a variety of modalities in mammalian species
with different social systems. How an animal is able to filter these
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social cues and make complex behavioral decisions needs to be
explored in additional detail. However, it is clear that AVP modu-
lates sensory processing through a variety of neural and hormonal
pathways that are critical for the expression of species-typical social
behavior.

Arginine vasopressin may be essential for integration of sen-
sory input during complex forms of social behavior in mammals.
As described earlier in this paper, fMRI has been used to assess
neural activation in maternal rats presented with the threat of a
male intruder (27). When a V1a antagonist is administered prior to
exposure to the intruder, the gustatory cortex and olfactory areas
of the brain show enhanced BOLD responses in females (27). This
finding indicates that AVP is involved in regulating multiple sen-
sory responses during complex social interactions, but should be
explored under other social contexts and in additional species.

Studies using peripheral and central injections of AVP have
demonstrated that the hormonal effects of AVP can shape gusta-
tory, visual, and auditory learning through its effects on general
levels of arousal. In addition, levels of AVP within the bloodstream
can influence sensory processing in the ear and tongue through
modulation of sodium channels. Within the ear, excess AVP has
been associated with impaired hearing due to excess endolymph
accumulation. In the tongue, AVP appears to modulate the activity
of sodium channels known as ENaCs. Whether AVP shows similar
ability to regulate visual signal transduction in a similar way has
yet to be explored.

The apparent consequence of this fine-tuning of sensory input
is that an animal is able to display appropriate social behavior
in response to particular environmental stimuli. Animals with
null mutations in vasopressin or its receptors demonstrate sen-
sory deficits that appear to be potentially correlated with deficits
in social behavior. In addition, the plasticity in AVP pathways dur-
ing development that has been demonstrated in a variety of rodent
species (2–4, 8, 135–137) may affect social behavior through alter-
ations in the processing of sensory signals. However, the impact of
developmental plasticity in AVP on sensory processing in multiple
modalities has not yet been explored.

In humans, attempts have been made to link AVP with disorders
that affect social behavior and involve sensory processing issues
such as autism and schizophrenia [reviewed in Ref. (138)]. Because
it is impossible to directly manipulate AVP or its receptors within
specific brain areas in humans, the relationship between AVP and
behavioral disorders has been assessed by correlating plasma AVP
levels or V1a receptor promoter polymorphisms with behaviors
associated with these disorders. Although the relationship between
AVP and social behavior disorders has been difficult to establish
in males, plasma levels of AVP have been linked to severity of psy-
chosis in women with schizophrenia (139). Similarly, in girls with
autism, plasma levels of AVP have been linked to the intensity of
repetitive behaviors (140). Genetic linkages between AVP and the
likelihood of developing a disorder of social behavior have also
been identified in humans. A specific genetic polymorphism in
the V1a receptor promoter was associated with increased suscep-
tibility of psychopathology in children that had been exposed to
war (141). The latter finding suggests that although certain V1a
genotypes may predispose an individual to developing a disor-
der related to social behavior, exposure to environmental stressors

also plays a role in the manifestation of the disorder. Therefore,
it is possible that early social experiences may create life-long
changes in the way that an individual perceives sensory cues in
the surrounding world.
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