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Pheochromocytomas (PCCs) are rare neuroendocrine tumors that arise from the medulla
of the adrenal gland or the sympathetic ganglia and are characterized by the secretion of
catecholamines. In 30-40% of patients, PCCs are genetically determined by susceptibility
genes as various as RET, VHL, and NF1. We have analyzed the Ras-association domain
family members (RASSFs) in PCCs regarding their inactivating promoter hypermethylation
status. Previously, we reported a promoter methylation in PCC for the first family mem-
ber RASSF1A. Promoter hypermethylation of CpG islands leads to the silencing of the
according transcript and is a common mechanism for inactivation of tumor suppressors. In
this study, we observed inactivating DNA modifications for the RASSF members RASSF2,
RASSF5A, RASSF9, and RASSF10, but not for the members RASSF3, RASSF4, RASSF&C,
RASSF6, RASSF7 and RASSF8.The degree of promoter methylation was 19% for RASSF2,
67% for RASSF5A, 18% for RASSF9, and 74% for RASSF10. Interestingly, the degree of
hypermethylation for RASSF10 in hereditary PCCs was 89 vs. 60% in sporadic PCCs. A
similar but less dramatic effect was observed in RASSF5A and RASSF9. Including all RASSF
members, we found that of 25 PCCs, 92% show promoter methylation in at least in one
RASSF member. In 75% of the hereditary PCC samples, we found two or more methy-
lated RASSF promoters, whereas in sporadic PCCs only 46% were observed. In summary,
we could show that in PCC several RASSF members are strongly hypermethylated in their
promoter regions and methylation of more than one RASSF member occurs in the majority
of PCCs. This adds the inactivation of genes of the RASSF tumor suppressor family to the

already known deregulated genes of PCC.
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INTRODUCTION

Pheochromocytomas (PCCs) are rare catecholamine-secreting
tumors derived from chromaffin cells and 10% of PCCs are malig-
nant. Tumors are malign when the capsule is invaded or metastases
occur. The hormone imbalance affects the cardiovascular system
leading to hypertension and other metabolic processes. PCC treat-
ment involves treatment of hypertension and surgical removal of
the tumor. (1, 2) The occurrence peaks between the ages of 20—
40 and up to 30-40% occur due to germline mutations of 11
known susceptibility genes like HIF2A (hypoxia-inducible fac-
tor 2a) or SDH (succinate dehydrogenase) (3). The syndromes
familial multiple endocrine neoplasia (MEN) type 2A/2B, von
Hippel-Lindau disease, and neurofibromatosis are also associ-
ated with PCC development (4). Regarding RASSF1A, which
is frequently inactivated in different tumor entities (5, 6), we
have reported its inactivation in the tumor entity of PCC (7).
Tumor suppressors act antiproliferatively and are known to be
negatively regulated by their CpG island promoter hypermethy-
lation, leading to the inactivation of the according transcript in

Abbreviations: COBRA, combined bisulfite restriction analysis; PCC, pheochro-
mocytoma; RASSE, Ras-association domain family; TSG, tumor suppressor gene.

neoplasia (8). Our focus lies on the tumor suppressors of the
Ras-association domain family (RASSF) containing 10 members
(RASSF1A to RASSF10), which are frequently inactivated via the
methylation of their CpG island promoter (9). The RASSFs were
first described in 2000, by the characterization of the first family
member RASSF1A (10). The family members are characterized
by the presence of the Ras-association domain (C-terminus or
N-terminus) and additional protein—protein interaction domains
[SARAH (11) or coiled-coil domains]. Their functions range from
microtubule network interaction, RAS interaction, Hippo path-
way involvement, cell cycle regulation to apoptosis induction (9,
12). Interestingly, mice studies exist for several RASSFs and sug-
gest an involvement in tissue or organ size control (13—17). Due
to our earlier studies of RASSFIA inactivation in PCC (7) and
the known contribution of tumor suppressor inactivation to can-
cer development (8), we were interested in the possibility that
inactivation of more than one RASSF member occurs in PCC.
Their inactivation could contribute to tumor formation of PCC
and we therefore used the combined bisulfite restriction analysis
(COBRA) methylation analysis to study the promoter methyla-
tion status of the RASSF members RASSF2, RASSF3, RASSF4,
RASSF5A, RASSF5C, RASSF6, RASSF7, RASSF8, RASSF9, and
RASSF10.
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EXPERIMENTAL

CpG ISLAND PREDICTION, PCR PRODUCT SIZE, AND DIGESTION
PRODUCTS

Promoter regions of RASSF2, RASSF3, RASSF4, RASSF5A,
RASSF5C, RASSF6, RASSF7, RASSF8, RASSF9, and RASSF10 were
analyzed for their CpG islands by CpG plot http://www.ebi.ac.uk/
Tools/ seqstats/ emboss_cpgplot/ and ucsc genome browser https:
//genome.ucsc.edu/. Except for RASSF6 and RASSF9, all members
show prominent CpG islands. Primers for COBRA methylation
analysis were designed to frame at least one restriction site for
Tagl enzyme on bisulfite treated and therefore fully converted
DNA (unmethylated cytosine to uracil). The resulting PCR prod-
ucts lengths, digestion products, and PCR conditions are listed in
Table S1 in Supplementary Material.

PHEOCHROMOCYTOMA AND CONTROLS

Primary tissues were previously published (7). All patients signed
informed consent at initial clinical investigation. The study was
approved by a local ethic committee (Martin-Luther University,
Halle, Germany).

METHYLATION ANALYSIS BY COBRA

DNA was isolated by phenol-chloroform extraction. Two micro-
grams of genomic DNA from PCC was bisulfite treated (12 pl of
0.1 M hydroquinone, 208 pl of 1.9 M sodium metabisulfite, and
pH 5.5 with NaOH) and incubated over night at 50°C. Then DNA

was purified using MSB Spin PCRapace (STRATEC Molecular,
Berlin, Germany), eluted in 50 ul H,O and followed by 10 min
incubation with 5l of 3M NaOH at 37°C. DNA was then pre-
cipitated with 100% ethanol and 7.5M ammonium acetate and
resolved in 1x TE buffer. Two hundred nanograms were subse-
quently used for 25 pul PCR reaction with COBRA primers. The
PCR product was either mock digested or digested with 0.5l
of Taql (Fermentas GmbH, St.Leon-Rot, Germany) 1h at 65°C
and resolved on 2% TBE gel together with mock control (18,
19). Digestion of the PCR product indicates an underlying CpG
methylation at the analyzed restriction site. We used an in vitro
methylated (ivm) DNA as a positive control for COBRA. For
in vitro methylation of genomic DNA, we used M.SssI methylase
(NEB, Frankfurt, Germany) (20). Human fibroblasts (HF) were
used as a normal unmethylated control cell line.

RESULTS

In the current study, we have analyzed a total of 25 PCC
patient samples of which 13 were sporadic and 12 hereditary
(Table 1). We have studied the promoter methylation status
of RASSF2, RASSF3, RASSF4, RASSF5A, RASSF5C, RASSF6,
RASSF7, RASSF8, RASSF9, and RASSF10. DNA promoter methy-
lation is an indicator of epigenetic inactivation of tumor suppres-
sor genes (TSGs) (8). The CpG island sizes are 1.1 kb for RASSF2,
1.1 kb for RASSF3, 0.5 kb for RASSF4, 1.2 kb for RASSF5A, 0.5 kb
for RASSF5C, 0.2kb for RASSF6, 1kb for RASSF7, 1.2kb for

Table 1 | RASSF promoter methylation in sporadic (SP) and hereditary (MP) pheochromocytoma.

Nr Age Sex Status R1A R2 R3 R4 R5A R5C R6 R7 R8 R9 R10
1 SP17 49 f b n.a. 0 0 0 0 0 n.a. n.a. n.a. n.a.
2 SP2 36 f b 0 0 0 0 0 0 0 0 n.a.
3 SP1 72 m b 0 0 0 0 0 0 0 [ |
4 SP25 54 m m . 0 0 0 0 0 0 0 0
5 SP4 49 m b n.a. n.a. n.a. n.a. 0 n.a. 0 0 0 n.a.
6 SP11 52 f m 0 0 0 0 0 0 0 0 0 0 0
7 SP6 34 m m 0 0 0 0 0 0 0 0 0 0
8 SP13 44 m b 0 n.a. n.a. n.a. 0 n.a. 0 0 -
9 SP15 20 f b 0 0 n.a. n.a. 0 n.a. 0 0 . 0
10 SP5 42 f b 0 0 0 0 0 0 0 0 0 0
" SP22 44 m b 0 0 0 0 0 0 0 0 0 0
12 SP26 64 f b 0 n.a 0 0 n.a. n.a. 0 0 0 0
13 SP14 75 f b 0 0 0 o Pl o 0 0 0 0
14 MP19 38 f b || 0 0 0 0 0 0
15 MP24 31 m b 0 na. na. [N 0 na. 0 0 .
16 MP18 22 f b n.a. 0 0 0 0 0 0 0 0
17 MP8 45 m b na. 0 o N 0 0 0 0 0
18 MP23 31 f b 0 0 0 0 0 0 0 0 0 n.a.
19 MP21 29 f b 0 0 0 0 0 0 0 0 n.a.
20 MP10 47 f b 0 0 0 0 0 0 0 0 0
21 MP16 36 m b 0 0 0 0 0 0 0 0 o N
22 MP3 23 m b 0 n.a. n.a. n.a. n.a n.a. n.a. 0 0 0 n.a.
23 MP9 20 f b 0 0 0 o N 0 0 0 0 0
24 MP12 18 f b 0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
25 MP20 51 m b 0 n.a. n.a. 0 - 0 0 n.a. n.a. n.a.

f, female; m, male; b, benign, m, malign; 1(gray), methylated promoter; 0, unmethylated promoter; n.a., not analyzed.
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RASSF8, not predicted for RASSF9, and 2.3kb for RASSF10.
We used the COBRA method for promoter methylation analy-
sis, which is based on bisulfite treatment of genomic DNA for
conversion of unmethylated cytosines to uracils. The following
PCR amplifies the defined region and is followed by digestion
with Tagl restriction enzyme (Figure 1). PCR fragments still
containing restriction sites (methylated and therefore unchanged
CpG) are digested and fragments no longer containing restriction
sites (earlier unmethylated CpG) remain undigested. Therefore,
a digestion of the PCR product indicates a methylation of the

according genomic CpGs that were analyzed. Localization of
COBRA primers within the analyzed CpG promoter region, tran-
scription start site, CpG enrichment, restriction site in PCR prod-
uct, and PCR product size are shown for each analyzed family
member (Figure 1). Apparently, RASSF6 and RASSF9 show little
CpG island presence, but were analyzed as well.

Our results show promoter methylation for RASSF2, RASSF5A,
RASSF9, and RASSF10, but not for any of the other analyzed
members of the family (Figure 2). RASSF2 shows in 3 of 16 sam-
ples (19%), a methylation, RASSF5A in 14 of 21 samples (67%),
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FIGURE 1 | Genomic RASSF promoter regions. RASSF family members
RASSF2, RASSF3, RASSF4, RASSF5A, RASSF5C, RASSF6, RASSF7,
RASSF8, RASSF9, and RASSF10 are shown with their promoter region.
Single CpGs are represented as vertical black lines, restriction enzyme Taql
recognition sites are marked with T, and bent arrows indicate
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transcriptional start sites. Horizontal arrows mark the COBRA PCR
products obtained after bisulfite treatment of DNA and according PCR
fragment size. Hundred base pair standard is shown below each promoter
region. Graphics were generated with the python.vs.cobra program
(https://launchpad.net/python.vs.cobra).
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FIGURE 2 | Methylation analyses by COBRA for RASSF2, -3, —4, —-5A,
—5C, —6, —7, -8, —9, and —10. Methylation analysis by COBRA method for
RASSF2, -3, —4, —bA, —5C, —6, —7, —8, —9, and —10 was performed and
PCR product sizes are shown. PCR products were digested with Tagl enzyme
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(+) or mock digested (—). Sporadic (SP) and hereditary (MP) PCCs are
exemplarily shown for each RASSF together with in vitro methylated (ivm)
positive control sample and human fibroblasts (HF) as normal cell control.
Methylated samples are marked (m) below each gel.
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RASSF9in 4 out of 22 samples (18%),and RASSF10 in 14 out of 19
samples (74%). For RASSF3 0/17, RASSF4 0/19, RASSF5C 0/22,
RASSF6 0/19, RASSF7 0/22, and RASSF8 0/22 and therefore no
samples showed methylation of their promoter region (Tables 1
and 2). For COBRA analysis, we used ivin DNA as a positive control
for methylation detection after bisulfite treatment. In this study,
HF serve as a negative control for promoter methylation analysis.
This non-cancerous cell line reaches senescence after few passages
like normal tissues (21).

We have analyzed sporadic as well as hereditary PCC samples
and found promoter hypermethylation in both subsets of PCC for
RASSF2,RASSF5A, RASSF9, and RASSF10 (Table 1). Interestingly,
the promoter of RASSF10 showed an increase in methylation from
60% of sporadic samples to 89% of hereditary PCCs. A similar but
less dramatic effect was observed in RASSF5A and RASSF9. Fur-
thermore, correlation analysis neither showed an association of
methylation status of RASSF2, RASSF5A, RASSF9, and RASSF10
with age, sex, bilateral localization, noradrenalin/adrenalin expres-
sion nor the presence of pl6, VHL, MSH2, MLH1 promoter
methylation, which we studied earlier (7). We compared the num-
ber of co-methylated promoters from all RASSFs in the 25 PCCs,
which included RASSF1A (7). We found that only two samples
remained unmethylated for all RASSF promoters (Figure 3). The
other 23 PCC samples showed one up to four methylated RASSF
promoters per sample. In all PCCs, we observed a distribution
of eight samples with one promoter methylation, nine samples
with two methylated promoters, and six samples with three or
four methylated promoters (Figure 3). Six sporadic PCC samples
showed one promoter methylation and six samples had two or
more promoters being methylated. In hereditary PCCs, we found
however only two samples with one promoter methylation vs. nine
samples with two or more methylated promoters (Figure 3).

DISCUSSION

The aim of our study was the comparative analysis of RASSFs
regarding their promoter methylation status in PCC. The tumor
suppressor family RASSF consists of 10 members, with the
first member RASSF1 being the best studied one. Tumor sup-
pressors are known to be inactivated by CpG island pro-
moter hypermethylation (8) and we and others have already
shown the RASSF1A promoter methylation in PCC (7, 22).
A later study even correlated RASSF1A promoter methylation
with PCC malignancy (23). In this study, we analyzed the
family members RASSF2, RASSF3, RASSF4, RASSF5A, RASSF5C,

RASSF6, RASSE7, RASSF8, RASSF9, and RASSF10, of which some
have been characterized as tumor suppressors (9, 12). So far,
no other study analyzed PCC and the promoter methylation of
our studied RASSFs except for one publication showing no pro-
moter methylation for RASSF5A in primary PCCs (23). However,
a significant downregulation of RASSF5A has been reported in
PCC (19), although the relevant mechanism was not identified.
We have studied sporadic and hereditary PCCs regarding their
promoter methylation status of RASSFs. We observed a strong
hypermethylation in PCCs for RASSF2 (19%), RASSF5A (67%),
RASSF9 (18%), and RASSF10 (74%), but not in the other fam-
ily members (Table 2). Interestingly, the degree of methylation
was higher in hereditary PCCs when compared to sporadic PCCs
for RASSF5A (70 vs. 64%) and RASSF10 (89 vs. 60%; Table 1),
which is in accordance with the RASSF1A (58 vs. 38%) methylation
status (7).

Regarding all analyzed PCCs, we found that 92% show pro-
moter methylation of at least one RASSF member. Additionally,
we observed the co-methylation of several RASSF promoters in
the same PCC sample. The comparison of sporadic to heredi-
tary PCCs shows an increase in the number of samples with two
or more methylated RASSF promoters from 46% of sporadic to

10
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(o
E 5
© 4
3
2
18 1=
. ]
0 1 2 3 4
No. of methylated promoters

hereditary PCC  msporadic PCC

FIGURE 3 | Occurrence of co-methylated RASSF promoters in PCCs.
Samples of sporadic (n=13) and hereditary (n=12) PCCs are shown
regarding their number of methylated RASSF promoters for all RASSFs. For
details, see Table 1.

Table 2 | Summary of RASSF promoter methylation.

R1A? R2 R3 R4 R5A R5C R6 R7 R8 R9 R10
Samples 12/25 (48%) 3/16 (19%) 0/17 (0%) 0/19 (0%) 14/21 (67%) 0/22 (0%) 0/19 (0%) 0/22 (0%) 0/22 (0%) 4/22 (18%) 14/19 (74%)
methylated/total
Sporadic samples 5/13 (38%)  2/9(22%) 0/10 (0%) 0/10 (0%) 7/11 (64%) 0/12 (0%) 0/10 (0%) 0/12 (0%) 0/12 (0%) 2/12 (17%) 6/10 (60%)
methylated/total
Hereditary samples  7/12 (68%)  1/7 (14%)  0/7 (0%) 0/9 (0%) 7/10 (70%) 0/10 (0%) 0/9 (0%) 0/10 (0%) 0/10 (0%) 2/10 (20%)  8/9 (89%)

methylated/total

?Dammann et al. (2005).
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75% of hereditary PCCs (Figure 3). In a hereditary PCC back-
ground, an additional RASSF inactivation seems a driver of tumor
formation and underlines the importance of expression regulation
of RASSFs. It would be interesting to analyze this positive associ-
ation in a larger cohort of PCCs. We found an inverse correlation
of RASSF10 methylation with malignancy and infiltration of the
capsule, which very likely must be attributed to the rather small
sample number. Interestingly, we observed a promoter methyla-
tion for RASSF9 despite the absence of a predictable CpG island.
It can be presumed that even the RASSF9 promoter methylation
plays a role in its inactivation.

The family members that showed no methylation in our PCC
analysis were studied earlier in different cancer types with differing
results. Regarding RASSF3 and RASSF4, very little data exist, but
it was reported that RASSF3 is epigenetically inactivated in soma-
totroph adenomas (24) and RASSF4 in human tumor cells (25).
RASSF5C is the 3’ transcript of the RASSF5 locus (26), similar to
the isoforms RASSF1A and C, containing a CpG island, but hardly
ever being methylated and thereby inactivated (18, 26-28). Due
to the small size of the RASSF6 CpG island, an epigenetic regu-
lation is rather unlikely. However, in neuroblastoma, RASSF6 and
RASSF7 showed a promoter methylation and RASSF6 promoter
methylation was correlated with an unfavorable outcome (29).
RASSF8 methylation was reported in a small subset of leukemia
(30). In further studies, we would like to address a larger set of
PCCs regarding promoter methylation of RASSFs and if possi-
ble include normal adrenal gland tissue as well as the PCC cell
line PC12. It will be fascinating to further study the functional
contribution of inactivated RASSFs for PCC development or pro-
gression. It will be especially interesting to dissect why several
RASSF members are inactivated in the same samples and there-
fore presumably missing. This co-inactivation in PCC suggests
distinct and separate pathways through which RASSF1A, RASSF2,
RASSF5A, RASSF9, and RASSF10 function in the normal adrenal
gland. It seems plausible that inactivation of several members of
the RASSF family contributes to tumor formation and progres-
sion. It could also underline that RASSFs are not all redundant and
interchangeable. Knockdown experiments of each of the members
will be of valuable use and studies using the available knockout
mice could indicate the contribution of co-inactivation of the
RASSFs.

CONCLUSION

In our study, we are the first to show the promoter methylation sta-
tus of all RASSFs in sporadic and hereditary PCC. We have found
promoter hypermethylation for the family members RASSFIA,
RASSF2, RASSF5A, RASSF9, and RASSF10, but not for RASSF3,
RASSF4, RASSF5C, RASSF6, RASSF7, or RASSF8. Our observa-
tions show co-appearance of CpG promoter hypermethylation of
several RASSF members in PCC, especially in the hereditary PCCs.
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