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It has been well established that, in the human adrenal gland, cortisol secretion is not only
controlled by circulating corticotropin but is also influenced by a wide variety of bioactive
signals, including conventional neurotransmitters and neuropeptides, released within the
cortex by various cell types such as chromaffin cells, neurons, cells of the immune sys-
tem, adipocytes, and endothelial cells.These different types of cells are present in bilateral
macronodular adrenal hyperplasia (BMAH), a rare etiology of primary adrenal Cushing’s
syndrome, where they appear intermingled with adrenocortical cells in the hyperplastic
cortex. In addition, the genetic events, which cause the disease, favor abnormal adrenal
differentiation that results in illicit expression of paracrine regulatory factors and their recep-
tors in adrenocortical cells. All these defects constitute the molecular basis for aberrant
autocrine/paracrine regulatory mechanisms, which are likely to play a role in the patho-
physiology of BMAH-associated hypercortisolism. The present review summarizes the
current knowledge on this topic as well as the therapeutic perspectives offered by this
new pathophysiological concept.
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INTRODUCTION
Chronic hypercortisolism results in a series of symptoms, includ-
ing central obesity, skin changes, and arterial hypertension, known
as Cushing’s syndrome. In 15–20% of cases, Cushing’s syndrome
is the consequence of primary adrenal cortisol hypersecretion by
bilateral adrenal hyperplasias or unilateral adrenocortical tumors.
Bilateral macronodular adrenal hyperplasia (BMAH) is a rare
cause of primary adrenal hypercortisolism representing <1% of
all cases of Cushing’s syndrome (1). In this condition, cortisol
hypersecretion by the enlarged adrenal glands leads to suppression
of pituitary ACTH secretion. Consequently, the disease has long
been named ACTH-independent macronodular adrenal hyperpla-
sia (AIMAH). BMAH appears to be more frequent in women and
hypercortisolism is usually diagnosed during the fifth and sixth
decades (2, 3). In most patients with BMAH, hypercortisolism is
moderate, contrasting with the important adrenal hypertrophy.
The great majority of the published cases are sporadic but famil-
ial cases of the disease have also been reported (4). It should also
be noticed that the extensive use of abdominal imaging, includ-
ing computerized tomography (CT) scan and magnetic resonance
imaging (MRI), has led to a marked increase in incidentally discov-
ered BMAH (5). In this situation, BMAH is frequently associated
with subclinical hypercortisolism (6).

At pathological examination, BMAH is characterized by an
important increase in adrenal mass, which can reach 10–100
times the normal weight of the glands (7). The adrenal cortex is

disorganized by the presence of large lipid-rich macronodules (8).
There is no internodular atrophy and the nodules are usually not
pigmented (9). At the microscopic level, the macronodules appear
to be composed of two types of steroidogenic cells, i.e., large lipid-
loaded cells, which are called spongiocytes, and small compact
cells (7). Interestingly, these cell types display marked differences
in steroidogenic enzyme expression. In fact, 17-hydroxylase is pri-
marily detected in compact cells whereas 3β-hydroxysteroid dehy-
drogenase is principally expressed by spongiocyte cells (7, 10). This
unequal repartition of steroidogenic enzymes among adrenocor-
tical cells may result in relatively inefficient steroidogenesis, likely
explaining the discrepancy between the major enlargement of the
adrenal glands and the moderate intensity of hypercortisolism
generally observed in patients with BMAH.

The pathophysiology of BMAH has long remained unknown.
The bilaterality of the adrenal lesions suggested the occurrence
of a pathogenic event affecting adrenal gland development dur-
ing early embryogenesis. In fact, it is now known that BMAH is
a genetically determined disease. Various mutational events can
favor the development of the disease. The affected genes include
the multiple endocrine neoplasia type 1 (MEN1), familial ade-
nomatous polyposis (APC), phosphodiesterase 11A (PDE11A),
G-protein αS subunit (GNAS), melanocortin type 2 receptor
(MC2R), fumarate hydratase (FH ), type A endothelin receptor
(EDNRA), and protein kinase A catalytic subunit alpha (PRKACA)
genes (6, 11–13). More recently, it has been shown that more than
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50% of patients with BMAH carry mutations of the ARMC5 gene,
which behave as a tumor suppressor gene in the adrenal glands
(14). In addition, ARMC5 mutations may promote the develop-
ment of a new multiple neoplasia syndrome associating BMAH
and meningiomas (15).

The mechanisms involved in the pathogenesis of BMAH-
associated cortisol hypersecretion are also better understood. It
is indeed well established that, in BMAH tissues, cortisol secre-
tion is stimulated by abnormally expressed membrane receptors,
called illicit or illegitimate receptors, which supply the absence of
pituitary ACTH (16). Several of these receptors are activated by
circulating hormones, such as glucose-dependent insulinotropic
peptide (GIP), luteinizing hormone (LH), and glucagon, while
others bind paracrine regulatory signals released in the adrenal
gland (16–21). More recently, it has been shown that, in addi-
tion to membrane G-protein-coupled receptors, BMAH tissues
can abnormally express paracrine factors leading to formation
of abnormal intraadrenal stimulatory loops, which seem to play
an important role in cortisol hypersecretion (22–24). These illicit
regulatory processes, which can be regarded as a pathological
amplification of the paracrine systems physiologically occurring in
the normal adrenal gland. In fact, it has been well established that
the secretory activity of the normal adrenal cortex is influenced
by various bioactive signals released in the vicinity of adreno-
cortical cells by chromaffin cells, neurons, cells of the immune
system, adipocytes, and endothelial cells (25–27). The present
review summarizes the current knowledge on the paracrine reg-
ulation of cortisol secretion in BMAHs from which emerges the
new pathophysiological concept of paracrinopathy.

SEROTONERGIC PATHWAYS IN BMAH
In the normal adrenal gland, serotonin (5-hydroxytryptamine,
5-HT) is produced by perivascular mast cells (MC), which are
primarily located in the subcapsular region of the cortex (28).
The regulation of 5-HT release in the adrenal tissue is unknown
but it is possible that 5-HT may be secreted in response to acti-
vation of the sympathetic system since adrenal MC have been
shown to establish connections with cortical nerve endings (29).
After its release, 5-HT is able to stimulate corticosteroid secre-
tion through activation of 5-HT4 receptors positively coupled to
adenylyl cyclase and calcium influx (28, 30, 31). It is not excluded
that 5-HT may also influence corticosteroidogenesis through indi-
rect mechanisms such as modulation of adrenal blood flow and/or
production of cytokines by adrenocortical cells, as observed in rat
(32, 33). In vitro studies have shown that adrenal 5-HT efficiently
stimulates aldosterone secretion but only weakly activates cortisol
production (31, 34). These differential actions on mineralo- and
glucocorticoid synthesis likely result from the following obser-
vations: 5-HT is released by MC in the immediate vicinity of
aldosterone-producing cells, and the 5-HT4 receptor is intensely
expressed in zona glomerulosa but much more modestly in zona
fasciculata (35, 36). In addition to its effect on the secretory activity
of adrenocortical cells, adrenal 5-HT can be locally metabolized
into inactive compounds such as 5-hydroxyindolacetic acid and
5-hydroxytryptophol (28, 34). This catabolic process is catalyzed
by monoamine oxidase type A, which is mainly expressed by
chromaffin cells (34).

In agreement with the data obtained in vitro, clinical stud-
ies have shown that administration of 5-HT4 receptor agonists,
like zacopride and cisapride, to healthy volunteers induces a sig-
nificant increase in plasma aldosterone levels without affecting
plasma cortisol concentrations (30, 37–40). Interestingly, the stim-
ulatory action of cisapride on aldosterone secretion was found to
be additive with that of angiotensin II (38).

The physiological role of the serotonergic control of corti-
costeroid production remains unknown. However, several studies
have shown that BMAH tissues exhibit several alterations in the
adrenal serotonergic pathway, which tend to reinforce its stimu-
latory action on cortisol secretion. First, whereas MC represent
the unique source of 5-HT in the normal adrenal, immunohis-
tochemical studies have shown abnormal synthesis of 5-HT in a
subpopulation of steroidogenic cells (22). Second, in some patients
with BMAH, administration of the 5-HT4 receptor agonists, cis-
apride and metoclopramide, is followed by an abnormal elevation
of plasma cortisol levels, suggesting an increased sensitivity of the
adrenal hyperplastic tissue to 5-HT and 5-HT4 receptor agonists
(19, 22, 41–44). In agreement with this hypothesis, in vitro stud-
ies conducted on tissue explants derived from BMAH previously
responsive in vivo to 5-HT4 receptor agonists showed an increased
potency and/or efficacy of 5-HT to stimulate cortisol production,
in comparison with normal adrenal samples (22). Collectively,
these data suggest that 5-HT exerts an intraadrenal stimulatory
tone to stimulate cortisol secretion and is thus involved in the
pathogenesis of BMAH-associated hypercortisolism. Consistently,
5-HT4 receptor antagonists were able to decrease cortisol secretion
from perifused BMAH explants (36). Surprisingly, in some BMAH
tissues, 5-HT was found to paradoxically inhibit cortisol secretion
(45). This unexpected effect, which may counteract the influence
of other stimulatory signals and may thus be beneficial by lim-
iting the amplitude of cortisol hypersecretion, could result from
abnormal coupling of eutopic 5-HT4 receptors to transduction
pathways or illicit expression of 5-HT receptors negatively coupled
to adenylyl cyclase such as the 5-HT1 and 5-HT5 types (46).

Clinical studies, by showing illicit cortisol responses to 5-HT4

receptor agonists in patients with BMAH, indicated that the effect
of 5-HT on hyperplastic tissues was, at least in part, mediated by
the eutopic 5-HT4 receptor. As expected, several groups reported
an overexpression of the 5-HT4 receptor mRNA in BMAH tissues
(42, 44, 47). Interestingly, the expression profile of 5-HT4 mRNA
splicing variants seems to be different in BMAH samples from
that observed in the normal adrenal (42). Immunohistochemi-
cal studies showed an ectopic distribution of the 5-HT4 receptor,
which was visualized with high intensity in groups of cells local-
ized in hyperplastic macronodules of the zona fasciculata (36).
This result was consistent with the abnormal response of corti-
sol to 5-HT and 5-HT4 receptor agonists observed both in vivo
and in vitro. However, in some BMAH tissues, the stimulatory
effect of 5-HT on cortisol production was not modified by 5-
HT4 receptor antagonists, indicating that the corticotropic action
of the indolamine was mediated by other receptor types. Consis-
tently, 5-HT was found to exert its biological effect on these tissues
through activation of the 5-HT7 receptor (48). 5-HT7 receptor
immunoreactivity could be visualized at the plasma membrane of
adrenocortical cells throughout BMAH tissues, at variance with
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the normal adrenal gland in which the 5-HT7 receptor is exclu-
sively detected in artery walls (48). Transcriptomic analyses have
also shown an overexpression of the 5-HT2B receptor in BMAH
(49). However, the pathophysiological significance of this obser-
vation remains unclear since it is not known whether the 5-HT2B

receptor is expressed in adrenocortical cells or in blood vessels, as
shown in various tissues (50).

In physiological conditions, 5-HT activates glucocorticoid syn-
thesis through activation of the cAMP/PKA pathway (28, 51, 52).
As expected, the stimulatory action of 5-HT on cortisol secretion
by BMAH tissues was found to be suppressed by the PKA inhibitor
H89 (48). These data are consistent with the observation that both
the eutopic 5-HT4 receptor and the ectopic 5-HT7 receptor, which
mediate the corticotropic effect of 5-HT in BMAHs, are positively
coupled with adenylyl cyclase (46). However, the influence of 5-
HT on steroidogenic enzyme expression in BMAH tissues remains
currently unknown.

To summarize, in comparison with the normal adrenal gland,
BMAH display molecular and cellular defects, which tend to rein-
force the stimulatory effect of the intraadrenal serotonergic tone
on cortisol production. These pathological findings include illicit
synthesis of 5-HT in adrenocortical cells and aberrant expression
of the 5-HT4 and 5-HT7 receptors. It thus appears likely that the
enhancement of 5-HT paracrine pathways in BMAH tissues is
involved in cortisol hypersecretion.

INTRAADRENAL PRODUCTION OF ACTH
It has been shown in several mammalian species including man,
that adrenomedullary chromaffin cells stimulate the secretory
activity of adrenocortical cells through a paracrine mode of com-
munication involving diverse bioactive signals (53). In particular,
it has been shown that chromaffin cells are able to express the gene
encoding the precursor of ACTH proopiomelanocortin (POMC)
and to synthesize detectable amounts of ACTH (54, 55). The
presence of chromaffin ACTH-producing cells has been observed
in BMAH tissues as early as 2001 (56). A few years later, sev-
eral groups reported illicit expression of POMC and synthesis of
ACTH in adrenocortical cells in isolated cases of BMAH (57–60).
More recently, the presence and role of ACTH was systematically
investigated in a large series of 30 cases of BMAH (24). The tis-
sues were found to express POMC mRNA at variable levels. The
presence of proconvertase 1, a protease involved in the process-
ing of POMC into ACTH, was also detected in a subpopulation
of adrenal cells suggesting that POMC could be converted into
ACTH in the hyperplastic tissues. In fact, immunohistochemical
studies revealed the presence of ACTH immunoreactivity in chro-
maffin cells of the adrenal medulla and, as previously noticed, in
some adrenocortical cells either isolated or arranged in small clus-
ters disseminated in the tissues. Adrenocortical ACTH-positive
cells exhibit the usual characteristics of steroidogenic cells, i.e.,
loaded with numerous lipid inclusions, and express several mark-
ers of steroidogenic differentiation including steroidogenic factor
1 (SF1), the HDL-cholesterol receptor SRB1 (scavenger receptor
B1), and 17-hydroxylase. Thus, they represent a subcategory of
adrenocortical steroidogenic cells that abnormally express ACTH.
The ectopic synthesis of ACTH in these cells is not the consequence
of abnormal corticotropic-like differentiation as indicated by the

lack of significant T-pit [a transduction factor which drives pitu-
itary corticotrophs differentiation (61)] expression in the tissues
(24). The presence of ACTH in adrenocortical cells may rather
be regarded as an additional trait of the previously reported neu-
roendocrine differentiation of the hyperplastic tissues (21, 22, 48).
Interestingly, ACTH-positive cells were also labeled by antibod-
ies directed against the Leydig cell marker insulin-like 3 (INSL3)
indicating that ACTH synthesis may result from illicit gonadal-like
differentiation of some adrenocortical cells (24). This observation
is consistent with the data obtained from older studies showing
that testicular Leydig cells and ovarian granulosa cells are able to
express POMC and synthesize ACTH (62, 63). The expression of
gonadal markers in the adrenal hyperplastic tissues is also reli-
able with previous reports of BMAH-associated with androgens
or estrogens overproduction (8, 64–66). As the adrenal glands and
gonads derive from a same tissue precursor, the adrenogonadal
primordium, it is likely that the presence of gonadal-like cells
in the adrenal tissues may result from abnormal differentiation
and/or separation of the adrenogonadal primordium during early
embryogenesis explaining the bilaterality of the lesions.

In vitro studies revealed that ACTH is released by BMAH tis-
sues in a pulsatile way, consistently with former clinical studies
showing a pulsatile mode of cortisol secretion in patients with
BMAH (67). The ectopic secretion of ACTH by the adrenal glands
could also be observed in vivo in two patients through adrenal
vein catheterization (24). In fact, adrenal vein sampling demon-
strated a significant ACTH concentration gradient between the
adrenal versus peripheral veins as well as inferior petrosal sinus in
one of the two patients (24, 36). All these results suggested that
ACTH produced by intraadrenal gonadal-like cells may stimulate
cortisol secretion in BMAH tissues, supplying therefore pituitary
ACTH, which is suppressed by cortisol excess. This assumption
could be assessed by the following observations: ACTH and cor-
tisol levels were positively correlated in culture medium during
perifusion of BMAH samples; basal plasma cortisol concentra-
tions measured in the patients were positively correlated with both
the levels of POMC mRNA and the ACTH histological score in the
tissues; the ACTH receptor (MC2R) antagonists corticostatin and
ACTH (7–38) significantly inhibited the production of cortisol
in vitro by BMAH explants (24). Interestingly, MC2R antagonists
also markedly reduced the amplitude of cortisol pulses indicat-
ing that oscillations in glucocorticoid production are determined
by ACTH-secreting cells (Figure 1). Although globally underex-
pressed (47), MC2R was upregulated by ACTH in BMAH tissues,
as previously established in the normal adrenal gland (68). MC2R
mRNA levels were indeed positively correlated with POMC mRNA
rates and MC2R immunoreactivity was primarily observed in the
vicinity of ACTH-positive cells, which were also found to express
the receptor (24). Thus, it seems that intraadrenal ACTH may
exert autocrine actions in BMAH. The regulation of ACTH pro-
duction by BMAHs has also been investigated by using the same
in vitro approach. Dexamethasone and the glucocorticoid recep-
tor antagonist RU486 failed to influence ACTH release indicating
that, at variance with pituitary ACTH, intraadrenal ACTH is not
regulated by cortisol (24). Conversely, it was observed that sev-
eral ligands of illicit membrane receptors, i.e., 5-HT, LH/hCG, and
GIP, stimulate ACTH release from BMAH explants by increasing
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FIGURE 1 | Role of intraadrenal ACTH secretion in the control of
cortisol production by bilateral macronodular adrenal hyperplasia
(BMAH) associated with Cushing’s syndrome. Spontaneous and
ACTH-induced cortisol secretions by perifused BMAH explants were
inhibited by application of the melanocortin type 2 receptor (MC2R)
antagonists corticostatin [2×10−7 M; (A)] and corticotropin (7–38) [10−7 M;
(B)]. Corticostatin and corticotropin (7–38) significantly reduced the
amplitude of cortisol pulses.

pulse amplitude without affecting pulse frequency (24). This unex-
pected finding suggested that activation of membrane receptors
may stimulate cortisol production via two mechanisms including
a direct effect on corticosteroidogenesis, as previously shown in
BMAH cell culture (22), and an indirect action via ACTH secre-
tion (24). In agreement with this hypothesis, it was observed that
MC2R antagonists reduce the amplitude of the cortisol response
to GIP. It seems therefore that intraadrenal ACTH is a common
intermediate and amplifier of the action of several illicit membrane
receptors in BMAH tissues.

CATECHOLAMINERGIC PATHWAY IN BMAH
The catecholamines adrenaline and noradrenaline are secreted
by adrenal chromaffin cells under control of splanchnic nerve
and proinflammatory cytokines. It has been hypothesized that
catecholamines released by chromaffin cells present at the cor-
ticomedullary junction and in the cortex, may influence steroid
production by adrenocortical cells, in particular during stress and
inflammation (25, 27, 69). In support of this hypothesis, in vitro
experiments have demonstrated that adrenaline and noradrena-
line are able to modulate glucocorticoid production in frog and
bovine adrenocortical cells (70, 71). However, there is no clear evi-
dence for catecholamine responsiveness in human adrenal, since
noradrenaline did not affect in vitro cortisol secretion by human
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FIGURE 2 | Catecholaminergic pathway in bilateral macronodular
adrenal hyperplasia (BMAH) associated with Cushing’s syndrome.
(A) Chromogranin A-positive chromaffin cells (arrows), which represent the
main source of catecholamines in the normal adrenal gland, were in close
contact with steroidogenic cells (arrow heads) in BMAH tissue.
(B) Clonidine, an α2 receptor agonist, dose-dependently stimulated cortisol
secretion by cultured adrenocortical cells derived from a BMAH tissue.
Adapted from Ref. (47). (C) The maximum cortisol responses of cultured
BMAH adrenocortical cells to high concentrations of ACTH (10−10 M) and
clonidine (10−6 M) were not additive, suggesting that α2 and MC2R
receptors are coupled to a common transduction pathway.

normal adrenocortical cells (72). By contrast, abnormal cate-
cholaminergic control of steroidogenesis has been documented in
some patients with macronodular adrenal hyperplasia-associated
with Cushing’s syndrome. Indeed, immunohistochemical stud-
ies have revealed the presence of clusters of chromogranin A-
immunopositive chromaffin cells in the vicinity of steroidogenic
cells, indicating paracrine interactions between the two cell types
in hyperplastic tissues (24) (Figure 2A). In addition, abnormal
elevations of plasma cortisol have been detected in patients placed
in physiological conditions associated with increases in endoge-
nous catecholamine, such as upright posture or insulin-induced
hypoglycemia (22, 73). Moreover, increases in circulating cortisol
levels provoked by administration of isoproterenol, a β-adrenergic
receptor agonist, as well as decreases in plasma cortisol concentra-
tions in response to infusion of propranolol, a β blocker, have
given evidence for illicit β-adrenergic control of steroidogenesis
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(73–76). Aberrant expression of β adrenergic receptors in BMAH
tissues has been confirmed by binding, RT-PCR, and functional
in vitro experiments (22, 59, 73, 77). In particular, hypersensitiv-
ities to salbutamol and isoproterenol, two β2 receptor agonists,
have been observed on cultured cells derived from BMAH tissues
(22, 59). Our group has also demonstrated, by using molecular
and cellular biological approaches, the occurrence of illegitimate
α2-adrenergic receptors in BMAHs (47). In particular, in vivo
and in vitro experiments have revealed that administration of
the α2 receptor agonist clonidine stimulated cortisol synthesis in
one BMAH case (47) (Figure 2B). Pharmacological studies have
shown that the positive effect of clonidine on cortisol produc-
tion resulted from activation of α2 receptors positively coupled to
the adenylyl cyclase/PKA pathway (47). The absence of additive
effects of high concentrations of ACTH and clonidine on cortisol
production is consistent with a common transduction pathway
for α2 and MC2R receptors (Figure 2C). Altogether, these data
indicate that, in some BMAH tissues, the presence of chromaffin
cells intermingled with steroidogenic cells expressing illegitimate
β- or α2-adrenergic receptors, give rise to a positive adrenergic
regulatory loop, which likely contributes to the pathogenesis of
hypercortisolism.

VASOPRESSINERGIC PATHWAY IN BMAH
Arginine vasopressin (AVP) is known to activate glucocorticoid
production through a dual action on the hypothalamic–pituitary–
adrenal axis. AVP released by hypothalamic neurons is a potent
stimulator of ACTH production by pituitary corticotrophs via
vasopressin type 1b (V1b) receptors (78, 79). In addition, AVP
can be released by adrenomedullary chromaffin cells and act as a
paracrine modulator of glucocorticoid production through activa-
tion of type 1a receptors (V1a) positively coupled to phospholipase
C (78, 79). However, the physiological role of intraadrenal AVP
is not known and in vivo administration of AVP or its analogs
to dexamethasone-pretreated healthy volunteers has no influence
on plasma cortisol levels (80, 81). Surprisingly, abnormal plasma
cortisol responses to AVP have been observed in patients with
BMAH-associated hypercortisolism. AVP-induced increase in cor-
tisol levels was observed in response to injection of AVP analogs
or hypertonic saline test, which increases endogenous AVP release,
in the absence of any significant variation of plasma ACTH con-
centration (41, 80, 82). The enhanced sensitivity of adrenocortical
cells to AVP has been confirmed in vitro by perifusion and cell
culture experiments (22, 59, 82). RT-PCR and pharmacological
studies have revealed that some BMAH tissues overexpress the
eutopic V1a receptor subtype (23, 83, 84) and/or abnormally syn-
thesize ectopic V1b and V2 receptors (23, 85, 86). Involvement of
AVP and V1a receptors in hypercortisolism has been confirmed
in a patient with an AVP-sensitive BMAH in whom oral admin-
istration of a non-peptidic V1a antagonist significantly decreased
urinary cortisol level (82).

It is conceivable that circulating AVP may control cortisol
secretion in patients with BMAH expressing illicit vasopressin
receptors. However, basal plasma AVP levels (around 10−12 M)
are much lower than the minimal effective dose of AVP (around
10−10 M) to stimulate cortisol release by BMAH tissues in vitro
(23). It seems therefore more likely that illegitimate adrenal AVP

receptors are predominantly activated by locally produced AVP
through a paracrine mechanism similar to that observed in the
normal adrenal gland. In this respect, BMAH tissues have been
shown to contain two types of AVP producing cells, identified
as chromaffin and steroidogenic cells, the latter clearly represent-
ing an ectopic source of the nonapeptide (22). Collectively, these
data indicate that a vasopressinergic loop, resulting from aberrant
intraadrenal AVP production and overexpression of functional
V1a/V2 receptors, is involved in the pathophysiology of cortisol
excess in some patients with BMAH.

OTHER PARACRINE REGULATORY MECHANISMS
Like the kidneys, the adrenal gland is surrounded by adipose tis-
sue, which may release numerous bioactive substances capable of
influencing the secretory activity of steroidogenic cells. Among
them, leptin has been shown to dose-dependently inhibit ACTH-
induced cortisol secretion through activation of the leptin receptor
and repression of CYP17 expression in adrenocortical cells (87,
88). Thus, it seems that leptin produced by the periadrenal adipose
tissue may act as a metabolic signal to exert a negative control on
cortisol production. Interestingly, BMAH tissues have been shown
to contain clusters of adipocytes sometimes arranged in lipoma-
tous islets (Figure 3A), suggesting that the paracrine control of
cortisol secretion by leptin could be reinforced in comparison
with the normal adrenal gland (21). However, at variance with
the physiological process, leptin was found to paradoxically stim-
ulate cortisol release in some BMAH tissues and thus participate
in the pathophysiology of hypercortisolism (89) (Figures 3B,C).
This illicit cortisol response to leptin may result from abnormal
coupling of leptin receptors to transduction pathways.

Finally, the adrenal cortex is a richly vascularized organ so that
each adrenocortical cell is in close contact with at least one capil-
lary (90). As expected, endothelin and the endothelin-converting
enzyme were detected at both mRNA and protein levels in the
adrenocortical tissue (91). In addition, adrenocortical cells were
found to express the endothelin types A (ETA) and B (ETB)
receptors and endothelin-1 is able to stimulate both aldosterone
and cortisol production by normal adrenocortical cells (92, 93).
Although several studies indicate that endothelin may play a role
in the pathophysiology of aldosterone-secreting neoplasms, it is
not known whether this peptide may be involved in BMAH-
associated hypercortisolism. However, a mutation of the EDNRA
gene, which encodes the ETA receptor, has been found in a familial
case of BMAH suggesting that a defect in the adrenal endothelin
pathway may favor the development of adrenal hyperplasia and
hypercortisolism (12).

INTEGRATIVE PATHOPHYSIOLOGY OF BMAH-ASSOCIATED
HYPERCORTISOLISM
The studies recently published have brought important new
insights into the comprehension of the pathophysiology of BMAH,
which will undoubtedly stimulate the research on the disease
and other adrenal disorders. In particular, it is now unquestion-
able that BMAH is a genetically determined condition, ARMC5
being a major susceptibility gene of the disease. However, the
mechanisms by which ARMC5 favors the development of hyper-
plasia and hypercortisolism are still unknown. In particular, the
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FIGURE 3 | Leptin pathway in bilateral macronodular adrenal
hyperplasia (BMAH) associated with Cushing’s syndrome. (A) Islets of
adipocytes in the vicinity of steroidogenic cells in BMAH tissue.
(B) Abnormal stimulatory effect of leptin (10−7 M) on cortisol secretion by
cultured adrenocortical cells derived from a BMAH tissue in a patient with
Cushing’s syndrome (p=0.06). Adapted from Ref. (89). (C) Leptin reduces
ACTH-induced cortisol secretion by cultured normal adrenocortical cells in a
dose-dependent manner (*p < 0.01; **p < 0.001). Adapted from Ref. (87).

pathophysiological processes linking ARMC5 mutations and the
initiation of illicit paracrine regulatory loops will have to be iden-
tified. However, all the data summarized in the present review
suggest the following sequence of pathogenic events. First, it is
likely that the causative mutations of the disease alter adrenal
embryogenesis leading to the abnormal presence of gonadal-
like cells in the adrenal areas. Progressive expression of POMC
and ACTH by these cells then results in adrenocortical hyper-
plasia and hypercortisolism via activation of the cAMP/pKA
pathway by the MC2R. Illicit expression of some membrane
receptors may be regarded as a witness of the gonadal-like
differentiation of the tissues. This is particularly the case for
the LH, GIP, and 5-HT7 receptors, which are known to be
physiologically expressed in the gonads (94, 95). On the other

FIGURE 4 | Schematic representation of endocrine and paracrine
controls of cortisol secretion in bilateral macronodular adrenal
hyperplasia (BMAH) associated with Cushing’s syndrome. AVP,
vasopressin; 5-HT, serotonin; GIP, glucose-dependent insulinotropic peptide;
LH, luteinizing hormone.

hand, it is conceivable that local production of ACTH may also
result into overexpression of membrane receptors and their lig-
ands. This hypothesis appears particularly relevant for the regu-
lation of BMAH tissues by 5-HT. Indeed, an increase in 5-HT4

mRNA levels has been noticed in adrenal glands removed from
patients with ACTH-dependent (Cushing’s disease) hypercorti-
solism in comparison with normal adrenals (47). Intraadrenal
ACTH may also be responsible for the unusual expression pat-
tern of 5-HT4 isoforms in BMAH tissues since recent studies have
shown that ACTH globally alters mRNA splicing in adrenocor-
tical cells (96). In addition, important insights have been pro-
vided by studies conducted on animal models. In rats, chronic
stress, which stimulates ACTH release by the pituitary corti-
cotrophs, induces a significant increase in the expression of the
eutopic adrenal 5-HT receptor, which is the 5-HT7 receptor, as
well as abnormal synthesis of 5-HT in clusters of adrenocorti-
cal cells (97). The illicit serotonergic loop observed in human
BMAH tissues may therefore be regarded as an abnormal acti-
vation of a physiological mechanism, which is probably aimed at
potentiating the glucocorticoid response to stress. This process
may be driven by intraadrenal ACTH and subsequent activa-
tion of PKA, which can also be stimulated in BMAH tissues
by somatic and/or germline mutations such as those affecting
the PDE11A and PRKACA genes (13, 98) or cAMP-coupled
illicit membrane receptors like the LH, GIP, and 5-HT7 recep-
tors (16, 48). Collectively, these data suggest that intraadrenal
paracrine regulatory loops may be regarded as valuable tar-
gets for new pharmacological treatments of BMAH-associated
hypercortisolism (Figure 4). Especially, inhibition of the action
of locally produced ACTH, which seems to represent a com-
mon intermediate to the influence of several types of abnor-
mally expressed membrane receptors in BMAH tissues, may be
a particularly efficient strategy. MC2R antagonists, which are
currently under clinical development for the treatment of hyper-
cortisolism associated to Cushing’s disease, will have thus to be
evaluated in patients with primary adrenal Cushing’s syndrome
due to BMAH.
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