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Modernization of human society parallels an epidemic of metabolic disorders including obe-
sity. Apart from excess caloric intake, a 24/7 lifestyle poses another important challenge to
our metabolic health. Recent research under both laboratory and epidemiological settings
has indicated that abnormal temporal organization of sleep and wakeful activities including
food intake is a significant risk factor for metabolic disease. The circadian clock system
is our intrinsic biological timer that regulates internal rhythms such as the sleep/wake
cycle and also responses to external stimuli including light and food. Initially thought to
be mainly involved in the timing of sleep, the clock, and/or clock genes may also play a
role in sleep architecture and homeostasis. Importantly, an extensive body of evidence has
firmly established a master regulatory role of the clock in energy balance.Together, a close
relationship between well-timed circadian/sleep cycles and metabolic health is emerg-
ing. Exploiting this functional connection, an important holistic strategy toward curbing
the epidemic of metabolic disorders (e.g., obesity) involves corrective measures on the
circadian clock and sleep. In addition to behavioral and environmental interventions includ-
ing meal timing and light control, pharmacological agents targeting sleep and circadian
clocks promise convenient and effective applications. Recent studies, for example, have
reported small molecules targeting specific clock components and displaying robust bene-
ficial effects on sleep and metabolism. Furthermore, a group of clock-amplitude-enhancing
small molecules (CEMs) identified via high-throughput chemical screens are of particular
interest for future in vivo studies of their metabolic and sleep efficacies. Elucidating the
functional relationship between clock, sleep, and metabolism will also have far-reaching
implications for various chronic human diseases and aging.

Keywords: sleep, circadian clock, metabolic disease, obesity, intervention, small molecules

INTRODUCTION
Our bodily functions are temporally coordinated to achieve opti-
mal fitness by an intrinsic biological timer called the circadian
clock (1). The clock has evolved in response to the daily rotation
of Earth, functioning to drive cycles of metabolism, physiology,
and behavior. Among the most fundamental biological cycles is
the sleep/wake cycle, in part characterized by profound meta-
bolic changes and alternating energy flux between sleep/fasting
and wakefulness/feeding (2, 3). Epidemiological studies of shift
workers have provided initial evidence for a greater risk of meta-
bolic disorders correlated with circadian/sleep disruption (4, 5).
Furthermore, during natural aging, reduced energy metabolism
is accompanied by sleep fragmentation and dampened circadian
rhythms in hormone secretion, body temperature, and circadian
gene expression (6–8). Such associative evidence strongly suggests
a close, reciprocal relationship among the circadian clock, sleep,
and metabolism.

Outstanding questions remain concerning the integration of
the clock, sleep, and metabolic health. Whereas increasing evidence
has demonstrated a complex interplay of molecular mechanisms
that the circadian clock employs to regulate metabolic processes
(9, 10), the role of sleep in circadian metabolic regulation is

less clear (11, 12). Specifically, how sleep disturbances influence
energy balance is not well-understood at the molecular level.
From the translational perspective, much work is required to fully
exploit clock and sleep based interventions against metabolic dis-
orders. In the current review, we will describe temporal control of
energy metabolism under both physiological and pathological set-
tings and discuss behavioral, environmental, and pharmacological
strategies of targeting circadian/sleep cycles as preventive or thera-
peutic measures against metabolic disease (Figure 1). We primarily
limit our discussion to mammalian species unless otherwise noted.

SLEEP, CIRCADIAN CLOCK, AND METABOLISM
SLEEP AND CIRCADIAN CYCLES
Sleep is essential for health and survival (13). Sleep deprivation,
depending on duration and severity, can lead to acute impairment
of cognitive and physiological functions, increased risks of chronic
diseases such as cardiovascular and metabolic diseases, and ulti-
mately fatality (14–17). Despite potentially life-threatening conse-
quences for animals in their natural habitats, sleep clearly serves a
vital, evolutionarily conserved function. Mammalian sleep archi-
tecture has been characterized in detail by electroencephalograms
(EEGs), consisting of rapid eye movement (REM) and non-REM
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FIGURE 1 | Biological rhythms-based intervention for metabolic
benefits. Energy metabolism is regulated by both sleep and circadian
cycles. Phasic misalignment (e.g., shift work) and/or dampened
amplitude of daily behavior (e.g., sleep, food intake) can profoundly
impair metabolic homeostasis. Therefore, as opposed to direct
manipulation of metabolic regulators, interventional strategies can aim to
restore normal phase and amplitude of these biological cycles in order to

improve metabolic health. Such interventions may involve behavioral
(e.g., meal timing) and environmental (e.g., lighting) means as well as
pharmacological agents capable of correcting cycle phase and/or
amplitude (e.g., clock-enhancing small molecules, or CEMs). Such
rhythm-based interventions may in turn lead to metabolic improvement
including favorable energy balance, reduced body weight, and enhanced
insulin sensitivity.

sleep (18). The latter is further divided into stages 1–3, with the
deepest slow-wave sleep occurring during stage 3. Sleep is tradi-
tionally considered to be regulated by two overlapping processes,
the sleep drive (homeostasis, process S) and the circadian timing
of sleep (rhythmic sleep propensity, process C) (2, 19). Paradox-
ically, very little is known about the molecular function of sleep
and genetic regulation of sleep homeostasis, which is typically
measured by the delta power of slow-wave sleep. Sleep has been
proposed to play a role in memory consolidation and metabolic
homeostasis involving removal of deleterious byproducts and/or
restoration of essential metabolites (3, 18, 20). Interestingly, a
recent study demonstrated β-amyloid (Aβ), a neurotoxic pep-
tide accumulated in Alzheimer’s disease, was actively cleared from
sleeping brain, highlighting a critical function of the sleep/wake
cycle for metabolic detoxification (21).

Timing of the sleep/wake cycle, as well as numerous other
physiological processes, is known to be regulated by the circa-
dian clock, our intrinsic biological timer (22–24). The clock is
self-sustained, but subjected to resetting by external cues includ-
ing light and food (25). In mammals, light is transmitted through
the retinohypothalamic tract (RHT) to the suprachiasmatic nuclei
(SCN), the master pacemaker of the clock system. Through neu-
ronal and hormonal signals such as TGF-α and prokinectin-2, the
SCN synchronizes and orchestrates peripheral clocks in individ-
ual tissues throughout the body (26). The basic clock unit is the
molecular oscillator, ubiquitously present in almost every cell in
our body (1). The oscillator is composed of interlocked feedback
loops. In the core loop, positive factors (CLOCK/NPAS2, BMAL1)
drive the transcription of genes encoding the negative components

CRYs and PERs (CRYPTOCHROME1/2, PERIOD1/2), which in
turn heterodimerize to inhibit their own transcription. Bmal1
transcription is further regulated by competing nuclear hormone
receptors including retinoid-related orphan receptors (RORs) as
positive regulators and reverse-ErbA (REV-ERBs) as negative reg-
ulators in the secondary stabilization loop, ultimately generat-
ing 24-h molecular oscillation. The molecular oscillator drives
expression of the so-called clock-controlled genes (CCGs) in a
tissue-dependent manner, which subsequently controls metabolic,
physiological, and behavioral outputs (27). Genetic studies in
recent years have also provided evidence for important roles of
clock genes in sleep homeostasis (22) (see below), indicating a
possible interdependence of processes S and C via clock genes.

Melatonin is a pineal gland-derived hormone playing an impor-
tant role at the interface of the sleep/wake cycle and the circadian
clock (28). Melatonin levels display a clear circadian pattern, peak-
ing at night to promote sleep and reaching the trough in the
morning and remaining low during the day (29). In accordance,
the melatonin biosynthesis pathway, including the key enzyme
aralkylamine N -acetyltransferase (AANAT), has been shown to
be subjected to clock control (30). Furthermore, light exposure
also suppresses melatonin synthesis and secretion, mediated by
the superior cervical ganglion through the SCN (31). In blind sub-
jects devoid of light perception and exhibiting longer free-running
rhythms with an average of 24.5 h, rhythmic melatonin treatment
was able to entrain them to approximately 24.0-h periods and con-
comitantly improve their sleep amount and quality (32). These
studies strongly suggest the importance of melatonin for both
circadian periodicity and sleep timing, amount, and quality.
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TEMPORAL CONTROL OF ENERGY METABOLISM
The necessity to temporally coordinate metabolic events is most
apparent in photosynthetic organisms such as cyanobacteria and
plants where oxygen-generating photosynthesis must be segre-
gated from oxygen-sensitive nitrogen fixation (33). In fact, redox
cycles have recently been shown to operate in diverse phylogenetic
branches, presumably evolved following the great oxygenation
event (GOE) approximately 2.5 billion years ago (34–36). Partic-
ularly, much evidence has recently emerged concerning temporal
control of energy metabolism in mammals (37). Epidemiologi-
cal studies have shown increased risk of weight gain and insulin
resistance in shift workers (4, 5, 38). In accordance, human sub-
jects placed under controlled quasi-circadian schedules (28-h days;
sleep:wake = 1:2) in a laboratory setting also suffered metabolic
deficits characteristic of a prediabetic state within only 10 days
of exposure (39), providing a dramatic example of acute influ-
ence of misaligned circadian cycles on metabolic well-being. In
mice, disruption of circadian cycles, via either genetic or environ-
mental means, has been shown to elicit metabolic disorders (9).
For example, Clock∆19/∆19 mutant mice were hyperglycemic and
prone to body weight gain either under high-fat diet challenge
or later in life (40). Importantly, these mice also displayed dis-
rupted circadian rhythms in eating and activity, concordant with
the compromising effects of the mutation on the circadian oscil-
lator (41). Furthermore, Bmal1-null mice were also found to be
obesity prone when fed with high-fat diet at a young age before
confounding phenotypes emerged (42). Consistent with these
genetic mutation phenotypes, mice that were artificially subjected
to lighting conditions designed to cause misalignment and/or
amplitude dampening exhibited body weight gain and other meta-
bolic consequences (43). Together, these studies strongly indicate a
close correlation between circadian cycle disruption and metabolic
disorders including obesity.

Consistent with the above loss-of-function evidence indicat-
ing a temporal regulation of metabolism, profiling studies have
supplied high-resolution views of a prevalent circadian oscilla-
tion of mRNA, protein, and metabolites in various tissues (27,
44–47). One important finding is that the clock controls meta-
bolic pathways by selectively targeting key steps and components
(48). Numerous mechanistic studies since have provided mole-
cular evidence for this mode of “rate-limiting step” regulation.
For example, levels of NAD+, an important metabolite for redox
balance and a key cofactor for metabolic regulators including
SIRT1 and Poly(ADP-ribose) polymerase 1, oscillate in a circa-
dian manner (49). Molecular analysis subsequently showed that
the promoter of the gene encoding nicotinamide phosphoribo-
syltransferase (NAMPT), the rate-limiting enzyme catalyzing the
formation of nicotinamide mononucleotide from nicotinamide
and 5′-phosphoribosyl-pyrophosphate during NAD+ biosynthe-
sis, contains a canonical E-box recognized by CLOCK/BMAL1 and
thus tightly controlled by the circadian clock (50–52). Interest-
ingly, NAD+ rhythms have been shown to control mitochondrial
oxidative metabolism such as fatty acid oxidation, in part through
deacetylation of oxidative enzymes by SIRT3 (52).

The circadian metabolic regulation also involves systemic con-
trol by the central nervous system including the hypothalamus and
the brainstem (25, 53). In the hypothalamus, multiple cell bodies

have been shown to play an important role in endocrine regulation
and energy homeostasis, including arcuate nucleus (ARC), par-
aventricular nucleus (PVN), lateral hypothalamic area (LHA),
and dorsomedial hypothalamus (DMH) (54, 55). Importantly, the
SCN master pacemaker interacts with these extra-SCN energy cen-
ters to exert central control over circadian metabolism. For exam-
ple, SCN neurons form reciprocal connections with ARC neu-
rons expressing orexigenic neuropeptide Y/Agouti-related protein
(NPY/AgRP) and anorexignenic pro-opiomelanocortin/cocaine
and amphetamine-regulated transcript (POMC/CART) peptides
(56, 57). Furthermore, SCN neurons and nutrient-sensing neu-
rons in the ARC and ventromedial hypothalamus (VMH) project
to DMH either directly or indirectly, and employ the melanocortin
system to regulate thermogenesis, sleep, corticosteroid secretion,
wakefulness, and feeding (53, 55). In addition, SCN neurons also
innervate the LHA where orexin (ORX, also known as hypocretin)
neurons are located (53). ORX is a neuropeptide hormone which
stimulates arousal and energy expenditure (37, 58). In particular,
the ORX signaling pathway serves a pivotal function in the balanc-
ing action of the ventrolateral preoptic nucleus (VLPO)/extended
VLPO (eVLPO) of the hypothalamus and the tuberomammillary
nucleus (TMN)/raphe/locus coeruleus (LC) in the hypothala-
mus and the brainstem (55). ORX-deficient mice suffered from
narcolepsy, and interestingly also became obese due to reduced
energy expenditure despite a concomitant impairment in food
intake (59).

SLEEP RESTRICTION AS A RISK FACTOR FOR OBESITY AND ENERGY
IMBALANCE
A growing body of evidence supports a functional correlation
between sleep restriction (shorter duration and/or poor quality)
and metabolic disorders, particularly obesity and insulin resis-
tance (4, 38, 60, 61). As mentioned above, epidemiological studies
have unveiled an increased prevalence of metabolic syndrome in
night/shift workers who stay up at night and sleep during the
day (4). For example, among female nurses studied, rotating shift-
work duration positively correlated with a trend of increase in body
mass index (BMI) (62) and development of type 2 diabetes (63).
Under laboratory conditions, partial or total sleep deprivation over
a short time period was found to increase energy expenditure (64,
65); however, insufficient sleep provoked hyperphagia to override
the enhanced energy need and thus increase the risk of exaggerated
body weight gain and obesity (65).

An important physiological substrate mediating sleep regula-
tion of energy balance is the neuroendocrine system (55). For
example, during slow-wave sleep, brain glucose metabolism is
diminished, which tightly correlates with a reduction in the whole
body glucose metabolism (66). This in turn corresponds to atten-
uated sympathetic nervous activity and reciprocally augmented
secretion of growth hormones. Conversely, deprivation of noctur-
nal sleep in normal humans led to lower post-sleep/-bed time
increase of insulin secretion rate (ISR) and also reduction in
growth hormone secretion relative to subjects with normal sleep
(67). A similar decrease of ISR was also observed during daytime
recovery sleep compared with nocturnal sleep (67), suggesting
poor sleep quality associated with abnormal timing (diurnal sleep)
can negatively impact hormonal regulation of energy homeostasis
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(68). Furthermore, sleep time restriction has also been shown to
have deleterious effects on glucose homeostasis (64, 67). For exam-
ple, sleep limitation at 4-h time-in-bed (TIB) for six nights was
found to compromise glucose tolerance (12, 61). Interestingly,
even two nights of 4-h TIB was sufficient to cause significantly
elevated ghrelin:leptin ratio (by approximately 70%), indicating
a strong propensity for greater food intake (69). Despite cer-
tain experimental incongruence (64), a general role of sleep in
neuroendocrine regulation of energy metabolism is well accepted.

Many important questions remain to be further investigated.
For example, we still lack mechanistic understanding at the mol-
ecular or cellular level. In particular, little is known with regard
to the relationship between sleep restriction and circadian disrup-
tion in the context of metabolic disease. Specific manipulation in
the circadian clockwork can lead to defined circadian phenotypes,
and consequently a clear causal relationship between circadian
cycle and sleep (see below). However, due to limited molecular
understanding of the sleep circuit, sleep restriction by behavioral
and environmental means is invariably accompanied with altered
circadian rhythms, precluding an unequivocal delineation of func-
tional causality. Furthermore, the functional consequence specific
for sleep shortening or impairment is not always clear, especially
in epidemiological studies (12).

CORE CLOCK GENES IN THE REGULATION OF SLEEP AND METABOLISM
Molecular, genetic, and physiological characterization of core
clock genes have revealed profound influence of circadian timing
on both sleep and metabolism (22, 23, 53). An elegant example
of circadian gene function in sleep disorder was illustrated by
studies of familial advanced sleep phase disorder (FASPD, pre-
viously called FASP syndrome) (23). Affected individuals display
Mendelian circadian rhythm and sleep phenotypes characterized
by excessive phase advances in sleep/wake cycles (e.g., going to
bed at 7:30 p.m.). Two mutations have been identified as genetic
basis for FASPD, including a serine-to-glycine mutation in human
PER2 (70, 71) and a threonine to alanine mutation in casein
kinase Iδ (CKIδ), a kinase known to phosphorylate PER2 prior
to ubiquitin-mediated PER2 degradation (72–74). Interestingly,
the Per2 mutation site serine, S662, was the first serine in a five-
serine phospho-cluster, and appeared not to be a substrate site
for CKI kinases. More recent work on Drosophila PER protein, to
which PER2 is most homologous, identified NEMO as the priming
kinase for dPER, functioning to promote subsequent phosphoryla-
tion events by the Drosophila casein kinase double-time (DBT) and
ultimately proteasomal degradation (75). Together, these genetic
and molecular studies highlight a key role of Per2 in the regulation
of sleep phase. Interestingly, the mammalian Per3 gene, homolo-
gous to Per2 (76), has also been shown to play a role in sleep
phase and homeostasis control in mouse knockout and human
polymorphism studies (77, 78).

More recently, familial natural short sleepers (FNSS) were
found to harbor a mutation in the gene encoding the circadian
transcriptional repressor DEC2 (79). DEC2 and its homolog DEC1
were initially found to regulate Per1 gene transcription (80), and
mouse studies have provided evidence for their role in circadian
phase, resetting in response to light pulses (80–82). The P385R
DEC2 mutation identified in FNSS was shown to diminish its

transcriptional repression in reporter assays. Importantly, whereas
FASPD patients do not exhibit deficits in sleep homeostasis (83),
FNSS suffers clear sleep deprivation (79), suggesting a role of circa-
dian genes in sleep homeostasis. This study thus adds to a growing
body of genetic evidence implicating various clock genes in the
regulation of the homeostatic process of sleep (22, 84, 85).

Pioneering studies showed that SCN lesion led to sleep frag-
mentation, consistent with a role of the clock in sleep timing and
architecture (86). However, the homeostatic recovery subsequent
to sleep deprivation appeared not to be affected, suggesting that
clock gene expression in the SCN may not affect sleep homeosta-
sis. Considering the close relationship of both sleep and peripheral
(non-SCN) clocks with metabolic well-being, it has been pos-
tulated that metabolism may form the physiological basis for
peripheral clock regulation of sleep homeostasis (22, 53). In other
words, whereas the circadian clock can directly govern sleep timing
(Process C), the homeostatic control (Process S) may be reg-
ulated by the clock indirectly via circadian metabolic pathways
(10). Alternatively, it is also possible that different clock genes may
in fact serve distinct non-clock functions to regulate sleep. This
notion is supported by divergent phenotypes in circadian mouse
models that are not easily compatible in the strict context of the
clock. One notable case is the severe phenotype observed in Bmal1
knockout mice (87). In addition to a loss of circadian rhythmicity,
the mice displayed profound developmental, metabolic, and pre-
mature aging phenotypes not characteristic of other arrhythmic
mouse models (76, 88–90).

Genetic background and the nature of the genetic mutation
should also be taken into account when considering the role of
clock genes in sleep. CLOCK and NPAS2 are paralogous basic
helix–loop–helix PAS domain-containing transcription factors
(88, 91). The classical Clock∆19/∆19 mutant mice, expressing a
dominant negative version of CLOCK deficient in transactivation
yet still able to interact with its heterodimeric partner BMAL1, dis-
played severely compromised circadian rhythms and suffered from
hyperphagia and defective glucose and lipid homeostasis (40).
Interestingly, these mice also exhibited altered sleep homeosta-
sis under both baseline conditions and sleep recovery following
deprivation; in particular, REM sleep rebound over 24 h following
sleep deprivation was reduced by half in Clock∆19/∆19 mice (92).
When compared with wild-type (WT) mice, Clock∆19/∆19 mice
showed normal or even accelerated food anticipatory activities
(FAA) in response to restricted feeding (93) (Figure 2A), and time-
course analysis of core clock gene expression under the restricted
feeding condition revealed concordantly accelerated phase shift
(Figure 2B). In comparison, Npas2-deficient mice were largely
normal in circadian behavioral rhythmicity (90). However, these
mice showed a unique phenotype wherein the siesta sleep in the
second half of the active period was largely absent as indicated
by actogram recording (90). Detailed analysis further revealed
a role of Npas2 in maintaining normal NREM sleep time (94).
In accordance with an important metabolic sensing function of
NPAS2 (10), Npas2-deficient mice were ill-adaptive to restricted
feeding, as indicated by a delayed FAA response (90). It remains
unclear whether CLOCK possesses a metabolic sensing function
similar to that of NPAS2 or whether the distinct FAA responses in
Clock∆19/∆19 and Npas2-deficient mice were due to differences in
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FIGURE 2 | Behavioral and molecular responses of Clock∆19/∆19 to
restricted feeding. (A) Double-plotted actograms of C57B/6 wild-type (WT)
and Clock∆19/∆19 mice under 12L:12D conditions as denoted in the bars at the
top. Ad lib food availability is indicated by the gray shading. Step-wise food
restriction was carried out from 12 to 8 h (indicated by yellow shading), and
the food anticipatory activities (FAA) were detected just prior to food
availability (marked by red bars). Two representative actograms are shown for

each genotype. (B) Mice were sacrificed on the indicated days of restricted
feeding as in (A). Liver samples were collected from three mice per genotype
on each of the indicated six time points, every 4 h across the circadian cycle
starting from ZT0 (light on). Total RNAs were extracted from these samples
and expression of circadian core clock genes are quantified by real-time qPCR
analysis. Asterisks indicate the time when circadian phase was reversed by
restricted feeding.

circadian rhythmicity or other gene-specific effects such as target
gene expression (95). Overall, future research is needed to delin-
eate the roles of specific clock genes in sleep regulation, particularly
in the context of metabolic function of the clock.

MODULATING SLEEP AND CIRCADIAN CYCLES FOR
METABOLIC BENEFITS
BEHAVIORAL AND ENVIRONMENTAL INTERVENTIONS
Dieting and physical exercise are common interventions to restore
energy balance favoring expenditure over intake, thereby guarding
against obesity and other metabolic disorders (96). Importantly,
meal timing is increasingly appreciated as an important temporal
parameter for hormonal balance and energy expenditure. In shift
workers, sustained disruption of the intrinsic/environmental syn-
chrony leads to abnormally timed meals. Although the total daily
caloric intake remained constant, glucose and lipid homeostasis
was disrupted, correlated with increased risks of obesity in shift
workers (97). Furthermore, in night-eating syndrome (NES), late
night eating, and consequently significant nighttime calorie intake
leads to disruption of the sleep/wake cycle; importantly, patients
are also prone to developing obesity (98). Laboratory rodent stud-
ies have also provided experimental evidence in support of a key
role of meal timing and metabolic health. For example, daytime-
limited feeding in nocturnal mice resulted in greater body weight
gain compared with normal nighttime feeding (99).

More recent mouse studies further underscore an interven-
tional role of meal timing. In one study, time-restricted feeding
(TRF) of high-fat diet for 8 h daily during the dark phase was
compared with ad lib conditions (100). Although the calorie intake
was comparable, the TRF regimen conferred a striking protective
function against metabolic disorders including obesity and hyper-
insulinemia. Importantly, TRF was found to enhance nutrient
mobilization and energy expenditure, consistent with the notion
that the obesity risk associated with abnormal meal timing may
result from the inability for efficient and timely energy expendi-
ture. The authors further explored the metabolic efficacy of TRF
using mice fed with different obesogenic diets, including high-fat,
high-fructose, and high-fat/high-sucrose diets (101). Remarkably,
in both preventive and therapeutic experimental designs, TRF
demonstrated robust efficacy in reducing body weight gain and
generally protecting mice from potential or existing metabolic
disorders. Several important questions remain to be answered,
including the underlying mechanisms likely involving diet-specific
circadian pathways, the efficacy in humans and importantly the
effects on sleep and other behavioral rhythms. Regardless, these
studies highlight a simple behavioral intervention potentially
applicable to a diverse array of metabolic challenges.

For millennia, human daily life was dictated by the “natural”
light and dark cycles. However, technological and social modern-
ization over the past century drastically altered our lifestyle, and
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one of the most profound consequences is constant exposure to
artificial bright light. On the one hand, bright light therapy is
widely used to guard against mood disorders (102). On the other,
light can entrain not only the central circadian pacemaker but
also peripheral clocks via the sympathetic nervous system (103).
Therefore, light exposure in the evening can result in misalignment
between the sleep/wake cycle and the intrinsic circadian rhythms in
night/shift workers (104), which may in turn increase the incidence
rate of the metabolic syndrome. Interestingly, even dim light expo-
sure at night for nocturnal rodents was found to carry significant
metabolic consequences (105). Specifically, male mice exposed to
dim light at night (LAN) displayed altered meal timing over the cir-
cadian cycle, consuming significantly elevated calories during the
daytime. These mice consequently showed greater body weight
gain, an effect reversible by restricted feeding during the active
phase under the LAN conditions (43, 106). In addition to circa-
dian timing, light wavelength is also important; for example, the
circadian rhythm of melatonin is more sensitive to photic reset-
ting at a short wavelength of 460 nm compared with 555 nm (107).
These studies together suggest that an optimal lighting condition

(source and timing) may play an important role in behavioral
circadian rhythms and concomitantly prevent metabolic disease.

METABOLIC EFFECTS OF COMMON HYPNOTICS
Although behavioral interventions are usually relatively inexpen-
sive and easy to implement, the outcome requires high patient
compliance. Specifically, for metabolic disease, lifestyle changes
focusing on improving dietary quality, physical activity, and sleep
habits can serve as a first-line treatment but are often unsuc-
cessful clinically due to poor compliance (108). Therefore, it is
important to develop pharmacological agents, which normally do
not require drastic and prolonged lifestyle modification and thus
promise greater patient motivation (109).

Table 1 lists several major classes of sleep medicine and their
reported metabolic effects. Besides playing an important role for
circadian/sleep cycles, melatonin is also a key metabolic regulator,
previously shown to regulate pancreatic insulin secretion and glu-
cose transport (110). In accordance, human studies have provided
association evidence supporting a direct relationship between
melatonin levels and the risk of developing type 2 diabetes (111),

Table 1 | Metabolic effects of commonly used hypnotic drugs.

Hypnotics Metabolic effects

GABAA receptor agonists Olanzapine (2-methyl-4-(4-methyl-1-piperazinyl)-10H-thieno [2, 3-b][1, 5]benzodiazepine)

Benzodiazepine Overweight, hyperglycemia, hyperinsulinemia, dyslipidemia, ketoacidosis, and visceral fat accumulation (119, 120)

Non-benzodiazepine

barbiturate

Increased plasma TG, HDL-cholesterol levels, higher cholesterol/HDL-cholesterol ratios, hyperinsulinaemia (118)

Zolpidem (N,N -dimethyl-2-(6-methyl-2-p-tolylimidazo[1,2-a]pyridin-3-yl)acetamide)

Increased body weight, decreased locomotor activity, and food intake (121)

H1 receptor antagonists Prescription H1 antihistamines

Increased body weight, BMI, waist circumference and serum insulin levels (122), exacerbated high-fat diet-induced

hepetic steatosis (123)

Antihistamines Olanzapine

Increased body weight, food intake, fat mass, and fat cell number (124)

Melatonin and melatonin

receptor agonists

Melatonin (N-acetyl-5-methoxytryptamine)

Reduced fat mass, body weight, and improve insulin sensitivity (125, 126)

Improved BMI, blood pressure, and lipid profile (127)

Resistance to diet-induced obesity with time dependent (116)

Rozerem (S-N -[2-(1,6,7,8-tetrahydro-2H -indeno-[5,4-b] furan-8yl) ethyl]propionamide)

Improved age-associated hypertension and weight gain (128)

Piromelatine (Neu-P11; N-(2-(5-methoxy-1H-indol-3-yl)ethyl)-4-oxo-4H-pyran-2-carboxamide)

Reduced body weight gain, improved insulin sensitivity under DIO (114)

Improved insulin sensitivity under chronic sleep restriction (115)

Serotonin (5HT) receptor

antagonists

m-chlorophenylpiperazine (mCPP) (1-(3-chlorophenyl)piperazine hydrochloride)

Improved glucose tolerance and insulin sensitivity (129)

Lorcaserin (1R-8-chloro-1-methyl-2,3,4,5-tetrahydro-1H -3-benzazepine)

Reduced of body weight, improve blood lipid profile, improved blood pressure (130)

Orexin receptor antagonists SB-334867 (1-(2-methylbenzoxazol-6-yl)-3-[1,5]napthydrin-4-yl urea hydrochloride)

Reduced food intake, fat mass, body weight, and increased energy expenditure (131)

ACT 335827 (αR,1S-1-[(3,4-Dimethoxyphenyl)methyl]-3,4-dihydro-6,7-dimethoxy-N-(1-methylethyl)-α-phenyl-2(1H)-

isoquinolineacetamide)

Increase water intake and HDL in DIO mice (132)

SB-408124 (1-(6,8-difluoro-2-methyl-quinolin-4-γl)-3-(4-dimethylamino-phenyl)-urea)

Reduced body weight (133)
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suggesting a causal relationship between reduced melatonin lev-
els, either by sleep debt or shift-work, and metabolic disease. As a
result, recent studies using animal models and humans have begun
to explore the therapeutic efficacy of melatonin for the metabolic
syndrome (112, 113). A number of small-molecule agonists for
melatonin receptors have also been identified (114, 115). Interest-
ingly, consistent with the reported suppressive effects of melatonin
on body weight gain, newly identified melatonin agonists were also
found to improve energy metabolism and insulin sensitivity (114–
116). For example, in obese rats fed with high-fat/high-sucrose
diets for 5 months, treatment of NEU-P11 via intra-peritoneal
injection was able to blunt weight gain, reduce abdominal fat,
and improve glucose homeostasis (114, 115) (Table 1). This meta-
bolic efficacy is concordant with a genome-wide association study
(GWAS) of European subjects where a single nucleotide polymor-
phism (SNP) rs1387153, localized near the melatonin receptor
2 (MTNR1B) locus, was identified as a key modulator of fast-
ing blood glucose (117), together suggesting an important role
of melatonin signaling in mediating the metabolic regulation by
the sleep/circadian clock. In comparison, olanzapine, a promis-
cuous ligand for both gamma-aminobutyric acid receptor type
A (GABAA) and histamine H1 receptors, was found to adversely
affect energy metabolism, including body weight gain and altered
plasma glucose and lipid levels (118) (Table 1). Therefore, meta-
bolic efficacy, beneficial, or adverse, of sleep medicines should be
characterized for individual drugs.

A number of endogenous metabolites, including adenosine,
have been shown to induce sleep in rodents (18, 20, 134). More-
over, high-throughput screening using behavioral assays has also
led to identification of novel small-molecule modulators of sleep.
In a fly based sleep screen of 1280 bioactive compounds (135),
reserpine, an inhibitor of the vesicular monoamine transporter
(VMAT) functioning in the formation of monoamine-containing
presynaptic vesicles, displayed a sleep-inducing activity based on
locomoter behavior assays. In accordance, VMAT mutant flies
showed enhanced sleep and arousal threshold levels. Likewise, a
similar rest/wake locomotor behavioral assay in larval zebrafish
was adopted to screen 5648 structurally divergent compounds
(136). Strikingly, approximately 10% of the compounds were
found to impact certain sleep parameters to varying degrees. In
addition to conserved sleep-regulatory targets such as adrenergic
receptors, this study also identified novel molecular targets includ-
ing Ether-a-go-go Related Gene (ERG) potassium channels. Future
studies will be needed to address metabolic functions and adverse
effects of the newly identified sleep modulating compounds. Given
the divergence of sleep between mammalian and non-mammalian
species, it remains to be seen whether the identified novel tar-
gets and/or small-molecule modulators can be extrapolated to
mammals. Ultimately, a direct mammalian sleep screen, albeit
challenging, will likely yield unique insight.

CIRCADIAN CLOCK-MODULATING SMALL MOLECULES
With greater appreciation of a broad and fundamental role of the
circadian clock in various pathophysiologies, several recent studies
have reported identification of clock-modulating small molecules
(1, 137–139). Compared with the traditional chronotherapy where
dosing of drugs is purposely aligned to a certain circadian time

window to maximize the therapeutic index, such small molecules
allow direct molecular manipulation of the circadian clock for
beneficial effects in physiology and behavior.

Clock-modulating small molecules can be developed either by
targeting a defined clock component of interest or via circadian
phenotypic screening (138, 139). Several circadian components
have been exploited for specific ligand development, most notably
CKI and the antagonizing nuclear hormone receptors REV-ERBs
and RORs. A number of CKI inhibitors have previously been char-
acterized, displaying cross-inhibition of multiple CKI isoforms
(e.g., CKIδ and CKIε) (140, 141). Surprisingly, an isoform-specific
inhibitor of CKIε, PF-4800567, was found to exert minimal effects
on circadian periodicity (142, 143), in support of a major role of
CKIδ in clock regulation. These studies serve as proof of principle
to further exploit the CKIε-specific ligand in clock-related phys-
iology, particularly in light of a demonstrated CKIε function in
sleep (144).

A number of ligands for REV-ERBs and RORs have been
reported in recent years (139, 145). A series of studies focused on
SR9011, a REV-ERB agonist developed through targeted chemical
modification (146). SR9011 was found to alter clock gene expres-
sion in metabolically active tissues and transiently repress circa-
dian wheel-running behavior. SR9011 treatment in diet-induced
obese mice led to improved metabolic parameters including body
weight and serum lipid and glucose levels (146). More recent
work further demonstrated that SR9011 regulates sleep, increasing
wakefulness in treated mice and reciprocally suppressing REM and
slow-wave sleep (147). The latter study also reported an anxiolytic
effect of SR9011 in WT but not Rev-erbβ knockout mice. These
findings together highlight a promising potential of REV-ERB
agonists in modulating circadian/sleep-related metabolism and
behavior. Small molecules targeting RORs and other clock com-
ponents such as the melanopsin receptor have also been described
(139, 148).

Small-molecule identification via phenotypic screens entails
high-throughput based circadian reporter assays, most commonly
driven by Per2 and Bmal1 promoters (138, 141, 149). Given the
robust precision in circadian periodicity measurement, a great
majority of clock-modulating small molecules were identified
based on their effects on circadian period length (138). Highlight-
ing a predominant regulatory role of CKI in circadian periodicity,
the most pronounced period-lengthening effects are primarily
associated with CKI inhibitory compounds (140, 141, 150). These
studies complement the molecular genetic finding that PER pro-
tein half-life is a key determinant of the period length (74).
Likewise, CRY proteins, dimerizing with PERs in the negative arm
of the core loop, are also subjected to elaborate protein stability
control, and mutations in two paralogous E3 ligases for CRYs have
been discovered in mouse forward genetic screens to cause period
changes (151). KL001, a period-lengthening compound identified
by unbiased phenotypic screen, was recently shown to directly
interact with CRY proteins and consequently interfere with their
degradation (152).

Recent studies have also revealed a group of clock-amplitude-
enhancing small molecules (CEMs) dubbed (138, 150). For
example, four CEMs were previously found to enhance cellu-
lar and tissue reporter rhythms in both WT and Clock∆19/+
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heterozygous mutant background (150). These molecules were not
able to reinvigorate fully, or at least severely, disrupted rhythms in
Clock∆19/∆19 homozygous or Bmal1-null cells (138). For practical
purposes, however, this is not a major limitation as null clock phe-
notypes are rare in human populations. Interestingly, one of the
CEMs exhibits a unique quality of enhancing SCN rhythms (150),
known to be highly recalcitrant to genetic and environmental per-
turbations due to robust neuronal coupling (153, 154). While acute
jet-lag can be best remedied when the clock is disrupted or with
low amplitude (155), for chronic diseases and aging known to dis-
play dampened circadian rhythms (7, 8, 156–158), it is tantalizing
to speculate that CEMs can help retard or even reverse physiologi-
cal decline and improve metabolic and physiological well-being in
animals and humans. For example, sleep fragmentation is a hall-
mark of aging and also frequently observed in age-related diseases
including Alzheimer’s disease (159). It is characterized by multiple
short periods of sleep during normal sleep timing and sleep dur-
ing usual active phase, thus exemplifying dampened amplitude of
the sleep/wake cycle. It is of great interest to investigate a putative
role of CEMs in sleep and also metabolism. At the mechanistic
level, the molecular basis for clock amplitude, or robustness, is not
as well-understood compared with circadian period and phase
regulation (160). Besides the well-characterized nuclear hormone
receptors in the stabilization loop of the core oscillator (REV-ERBs
and RORs) (25), genomic siRNA screen studies have revealed hun-
dreds of genes that, when knocked down, enhanced or repressed
the oscillatory amplitude of reporter rhythms, indicating a broad
systemic control of clock amplitude (161).

CONCLUDING REMARKS
Exciting advances in the past decade or so have revealed much mol-
ecular insight into the circadian regulatory mechanism of energy
metabolism (10, 37). Existing evidence also supports a causal role
of sleep disruption or restriction in the development of the meta-
bolic syndrome including obesity (12), although the mechanistic
basis is not well-understood. As the research community contin-
ues to decipher genetic and molecular function and mechanism of
sleep, behavioral, environmental, and pharmacological interven-
tion strategies are being actively pursued to manipulate circadian
and sleep rhythms to optimize cellular energetics (Figure 1). This
novel approach exploits the translational potential of biological
rhythms to combat the continuing rise of the global metabolic
disease epidemic in our modern society, complementing the more
“direct” strategy aiming to correct particular metabolic regulators
or pathways.

The metabolic regulation by biological rhythms is important
beyond the realm of the metabolic disease. Other pathologies are
also characterized by strong temporal components and intimately
associated with dysregulated metabolism (1). For example, the
morning surge of blood pressure is a well-documented culprit for
cardiovascular disease related sudden death (162, 163). The circa-
dian/sleep cycles also play an important role in cardiometabolic
function, as illustrated by increased hypertensive risks in circadian
clock mutant mice, forced desynchrony in laboratory studies, as
well as shift workers (163–165). No disease has a greater penetrance
than aging – we all age. In addition to the aforementioned sleep
and circadian deficits, age-associated decline also encompasses

deterioration of energy homeostasis, physical performance and
cognitive function, which may eventually manifest in chronic and
degenerative diseases (6–8, 156, 166). Application of biological
rhythm-based intervention strategies to these disease targets is of
great potential and will likely lead to exciting advances in the near
future.
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