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Skeletal mass is regulated by two key
activities: bone removal (resorption) by
hematopoietic lineage osteoclasts and bone
matrix formation by mesenchymal lineage
osteoblasts. During adult life, these activi-
ties occur sequentially on the same surface:
a process termed as remodeling. Tiny pack-
ets of bone are removed by osteoclasts and
replaced by new bone matrix produced by
osteoblasts. This continual renewal process
allows repair of mechanical imperfections
and calcium homeostasis.

The group of cells responsible for
remodeling is termed as the basic mul-
ticellular unit (BMU) (1). To maintain
bone mass at the same level during adult-
hood, the bone formed in each BMU must
replace precisely the amount removed by
resorption within that BMU. This stimula-
tion of osteoblast activity in response to
resorption is termed “coupling” (2), and
it has long been of interest to understand
how these two distinct cell types, on the
same bone surface but at different times,
could be linked so their activities are equal.
The BMU and coupling concepts originally
included only osteoclasts and osteoblasts,
but over recent years, as more cellu-
lar contributors to remodeling have been
identified (such as T-cells, macrophages,
osteocytes, and precursor populations of
osteoblasts and osteoclasts), the number
of cells in the BMU has expanded (3–5).
So too, more signaling pathways within
the BMU have been identified (6, 7). All
these signals converge on two cell types:
the osteoclast and osteoblast, for only those
cells are able of bone resorption and bone
formation, respectively.

Osteoclasts and osteoblasts are not
present on the bone surface simultane-
ously; the BMU exists, in different forms,
at the same location over approximately
6 months in human bone. Early studies
using undecalcified bone histology and
timed fluorochrome labeling identified
that bone resorption in iliac crest trabec-
ular BMUs of adult human bone takes
approximately 3 weeks (8), the formation
response 3–4 months (9), and between the
two activities there is a poorly under-
stood “reversal phase” (10) of approxi-
mately 5 weeks (8). In rodents, the dura-
tion of this sequence is compressed, but
a time delay between resorption and for-
mation still exists: in rat alveolar bone,
the reversal phase lasts for approximately
3.5 days (11). These numbers vary also with
site, skeletal health, and treatment (12) and
in some conditions, including osteoporo-
sis there is an increased duration, or even
arrest, of the reversal phase (13, 14). This
review will explore mechanisms by which
coupling signals may overcome the time
delay between bone resorption and bone
formation.

THE MAIN CLASSES OF COUPLING
FACTORS
There are four main classes of osteoclast-
derived signals that may promote bone for-
mation in the BMU: (1) matrix-derived
signals released during bone resorption,
(2) factors synthesized and secreted by the
mature osteoclast, (3) factors expressed on
the osteoclast cell membrane, and (4) topo-
graphical changes effected by the osteoclast
on the bone surface. We have reviewed

these different proposed signals extensively
elsewhere (6, 7), but will here focus on
how each type of signal might influence
bone formation after the reversal phase.
As it has been noted in economics, there
tends to be a proliferation of putative fac-
tors that determine process outcomes until
they resemble a “zoo of factors,” with only
a proportion of them being reliably repro-
duced in later research (15, 16). Since many
coupling factors have only been identified
in the past 10 years, most require valida-
tion by independent groups of researchers,
working in multiple systems. This is par-
ticularly true of those factors identified
in co-culture studies that disregard the
time delay between bone resorption and
formation.

MATRIX-DERIVED FACTORS
The bone matrix contains a store of
latent growth factors, including transform-
ing growth factor β (TGF-β), bone mor-
phogenetic protein 2 (BMP-2), platelet-
derived growth factor (PDGF), and the
insulin-like growth factors (IGFs) (17–
21). All are deposited by osteoblasts dur-
ing matrix production then released by
osteoclastic activity on the bone surface
(20), as well as via plasminogen activators
(22, 23) and matrix-metalloproteinases
(24). These factors, once released from
the matrix, are unlikely to remain within
the bone microenvironment for some 5–
8 weeks during the reversal phase until
they can influence mature osteoblasts upon
their arrival at the bone surface. Rather,
their main influences would be to stimu-
late osteoblast progenitors, including their
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recruitment (25–27), migration (26, 28–
30), and differentiation (29, 31, 32).

OSTEOCLAST-SECRETED FACTORS
Osteoclasts also secrete products to pro-
mote osteoblast precursor recruitment
and differentiation and thereby promote
bone formation in the BMU (3). Many
such “osteoclast-derived coupling factors”
have been identified, and some were val-
idated by studies of genetically altered
mice: cardiotrophin-1 (33), sphingosine-
1-phosphate, Wnt 10b, BMP-6 (34),
CTHRC1 (35), and complement factor 3a
(C3a) (36). We have described each of
these in detail elsewhere (7); importantly,
none are produced exclusively by osteo-
clasts, and many are also produced by
other cell types in the vicinity of the BMU.
Both active and inactive osteoclasts pro-
duce osteoclast-derived coupling factors
(37). This concept is clinically important,
since anti-resorptive inhibitors of osteo-
clast activity rather than osteoclast gener-
ation, such as cathepsin K inhibitors, may
reduce bone resorption without blocking
bone formation, leading potentially to an
anabolic effect (38). Considering the time
delay between bone resorption and forma-
tion, these factors cannot be expected to
exist in a stable form at the BMU through-
out the reversal phase. These factors stim-
ulate not only the differentiated osteoblast
but also, in the case of sphingosine-1-
phosphate and cardiotrophin-1, stimulate
precursor commitment to the osteoblast
lineage (33, 34).

OSTEOCLAST MEMBRANE-BOUND FACTORS
It has also been suggested that osteoclasts
interact directly via cell surface regulatory
proteins with mature osteoblasts to pro-
mote their activity. Factors proposed to
act in this cell contact-dependent manner
include EphrinB2 (39) and Semaphorin
D (40). While plausible in vitro such cell
contact-dependent mechanisms are prob-
lematic at the BMU because osteoclasts
and osteoblasts are rarely in direct con-
tact during remodeling. If such mecha-
nisms occur, they may exist between osteo-
clasts and osteoblast precursors in the bone
marrow space, or between osteoclasts and
osteoblast-lineage cells in the remodel-
ing canopy (41, 42), an anatomical struc-
ture observed above the BMU in human
samples (43).

WHICH CELL TYPE RESPONDS TO
THESE OSTEOCLAST-DERIVED
MESSAGES?
OSTEOBLAST PRECURSORS
Whether matrix-released, osteoclast-
secreted, or membrane-bound, the
osteoblast precursor seems a more likely
target for coupling factors than the
mature osteoblast. Indeed, mouse genetic
experiments indicate that active TGF-β
release during bone resorption induces
osteoblast precursor migration to prior
resorptive sites (29), thus making them
available within the BMU for additional
differentiation-promoting signals, such
as matrix-derived IGF-1 (27). Osteoblast
differentiation would be determined by
these subsequent events, which are not
well understood and may originate from
a wide range of cells near the remodeling
surface, including macrophages, T-cells,
or the vasculature [reviewed in Ref. (7)].
Indeed, osteoclast-derived coupling factors
are released by these other cell popula-
tions. For example, TGF-β, Semaphorin
4D, Wnt10b, and BMP-2 are released by
T-cells (44–46) and macrophages (47, 48),
while sphingosine-1-phosphate and PDGF
are released by endothelial cells (49, 50).
Nevertheless, the delay between osteoclast-
or matrix-derived coupling factor release
and the arrival of osteoblasts on the bone
surface (5–8 weeks) is much longer than
the time required for osteoblasts to differ-
entiate in vitro. Murine stromal cell lines
in vitro require only 7 days before alka-
line phosphatase production commences
(51) and <21 days until they express the
genes associated with a matrix-embedded
osteocyte (52, 53). Recent lineage tracing
experiments suggest the process is even
faster in vivo, with only 6 days passing
before α-SMA precursors are incorporate
into the bone matrix as osteocytes (54).

Osteoblast precursors, without the aid
of any accessory cell, also sense the size
and shape of pits formed by osteoclasts
and preferentially form bone matrix in
those locations (55). Osteoblast precursors
respond to changes in surface topography,
whether the change is much larger than
the cell itself, as occurs with osteoclastic
activity, or very much smaller than the
cell (56). Altered nanotopography induces
osteoblast filopodia formation followed by
cytoskeletal changes involving cell adhe-
sion and differentiation. However, whether

osteoblasts preferentially form matrix on
disrupted bone because they truly “sense” a
change in physical dimensions of the bone
or because they detect a change in surface
composition is unclear; both scenarios are
plausible. However, it is unlikely that the
existence of a resorbed space provides all
the information required for osteoblasts to
initiate and complete refilling of the space
with no input from other cell types. If that
were true, remodeling would always be
balanced and bone mass constant even in
the presence of alterations in intercellular
signals.

REVERSAL CELLS
Another cell type that may respond to cou-
pling factors are the reversal cells residing
on the bone surface between the bone for-
mation and resorption phases (10). These
may provide both a physical and a temporal
connection between the osteoclast and the
osteoblast. They may respond to osteoclast-
derived coupling factors (57), and pass
the necessary signals to the osteoblast pre-
cursors as they move onto the bone sur-
face. Interrogating this possibility remains
a challenge, since the reversal cells lack
specific identifying features that can be
targeted by genetic or pharmacological
means.

REMODELING CANOPY
The remodeling canopy is another pos-
sible target for coupling factors (57).
This anatomical structure consists of
osteoblast-lineage cells that lift from the
bone surface when osteoclastic resorp-
tion initiates the remodeling cycle (43).
It has been suggested that the canopy is
required for completion of the reversal
phase, since biopsies from postmenopausal
and glucocorticoid-induced osteoporotic
patients exhibit incomplete canopies at
sites of reversal phase arrest (58, 59). The
canopy could also provide a controlled
locale in which osteoblast-lineage cells,
osteoclasts, and other contributing mar-
row cells, may exchange factors and influ-
ence precursors provided by the associated
vasculature (41, 42). The bone remodel-
ing canopy might serve as a way to keep
local coupling factor concentrations suf-
ficiently high to allow mesenchymal stem
cell recruitment and to stimulate bone for-
mation, or may limit the cellular contrib-
utors to the coupling processes. Defining
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FIGURE 1 | Possible coupling mechanisms that overcome the time delay
between bone resorption and formation. (A) Osteoclast-derived factors
(either released from the matrix, secreted from the osteoclast, or expressed
on the osteoclast cell membrane) initiate differentiation of very early
osteoblast progenitors, with the level of osteoblast activity and numbers of
differentiated cells being refined by other factors released by a range of cell
types within the BMU. Osteoclast-derived factors may act directly on cells
that would transmit further signals (dashed lines) to both osteoblast

precursors and mature osteoblasts; these transmitting cells could include
(B) osteoblast-lineage cells in the remodeling canopy, (C) reversal cells on the
bone surface, and (D) osteocytes. Finally, (E) physical changes brought about
by the osteoclast, including the resorptive pit itself, and mechanical strain
detected by the osteocyte network, would provide signals required for
initiation and completion of the correct level of matrix production by mature
osteoblasts on the bone surface. Periods of time required for each step are
based on adult human iliac crest biopsies.

the canopy’s contribution to the coupling
process using genetically altered mouse
models is limited because this anatomi-
cal structure has not been observed in the
mouse, the model used most extensively for
defining intercellular signaling pathways
involved in bone remodeling.

OSTEOCYTES
Is there a role for the osteocyte in trans-
mitting the messages from osteoclast to
osteoblast in the BMU? Osteocytes are
osteoblast-lineage cells trapped in the
bone matrix during bone formation. They
form an extensive interconnected network
within a fluid-filled canalicular system
(60), which may sense and respond to
mechanical strain, as well as paracrine
and endocrine signals (61). Osteocytes
are present within the BMU through-
out remodeling, and may therefore pro-
vide a system to transfer information from
the resorbing osteoclast to bone surface
osteoblasts. While few osteoclast-derived
“coupling factors” have been shown to

directly influence osteocytes, CT-1 reduces
expression of sclerostin (52). CT-1 released
by osteoclasts might therefore enter the
lacunar–canalicular network, and act on
those osteocytes closest to the resorptive
site. When mature osteoblasts arrive on
the bone surface, if sclerostin expression in
the local area is still suppressed, this would
allow bone formation to occur in this area.
The factors that stimulate osteocytes to
promote bone formation at resorbed sites
may not be limited to CT-1. The mechan-
ical disturbance caused by resorption itself
may also “activate” osteocytes, and stimu-
late them to provide messages that promote
bone formation on the same surface. One
key question that remains is whether such
a paracrine signaling mechanism could
overcome the time delay between resorp-
tion and formation. For how long can
osteocytes “retain” such information?

A mechanism that would not require a
delayed communication system involving
osteocytes is their detection and response
to changes in microstrain that would occur

during the remodeling process. Osteocytes
would sense not only the increased strain
resulting from weakening of the bone
as resorption progresses (62) but would
also detect when the strain is relieved as
the bone is rebuilt by osteoblasts. Such a
strain-based model for coupling was pro-
posed some years ago (63) and now that
our understanding of osteocyte signal-
ing has improved, possible mediators are
now coming to light. For example, scle-
rostin may mediate this process: sclerostin
is significantly reduced by mechanical
loading, and increased during unloading
(64). Osteocytes may provide the final
refining control to ensure that sufficient
bone is formed by osteoblasts, generated
in response to messages from osteoclasts
either directly or via other cells within
the BMU.

CONCLUDING COMMENTS
In conclusion, this suggests three mech-
anisms by which osteoclast-derived cou-
pling signals may overcome the time delay
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between bone resorption and formation
at the BMU (Figure 1). Osteoclast-derived
factors (either released from the matrix,
secreted from the osteoclast, or expressed
on the cell membrane) initiate differenti-
ation of very early osteoblast progenitors,
with the level of osteoblast activity and
numbers of differentiated cells being
refined by other factors released by a range
of cell types within the BMU. Second,
osteoclast-derived factors may act directly
on cells that would transmit further signals
to both osteoblast precursors and mature
osteoblasts; these transmitting cells could
include reversal cells, osteoblast-lineage
cells in the remodeling canopy, and osteo-
cytes. Finally, physical changes brought
about by the osteoclast would provide
osteocytic signals required for initiation
and completion of the correct level of
matrix production by mature osteoblasts
on the bone surface.
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