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The brain is composed of neurons and non-neuronal cells, with the latter encompassing
glial, ependymal and endothelial cells, as well as pericytes and progenitor cells. Studies
aimed at understanding how the brain operates have traditionally focused on neurons, but
the importance of non-neuronal cells has become increasingly evident. Once relegated
to supporting roles, it is now indubitable that these diverse cell types are fundamental
for brain development and function, including that of metabolic circuits, and they may
play a significant role in obesity onset and complications. They participate in processes
of neurogenesis, synaptogenesis, and synaptic plasticity of metabolic circuits both during
development and in adulthood. Some glial cells, such as tanycytes and astrocytes, trans-
port circulating nutrients and metabolic factors that are fundamental for neuronal viability
and activity into and within the hypothalamus. All of these cell types express receptors
for a variety of metabolic factors and hormones, suggesting that they participate in meta-
bolic function. They are the first line of defense against any assault to neurons. Indeed,
microglia and astrocytes participate in the hypothalamic inflammatory response to high fat
diet (HFD)-induced obesity, with this process contributing to inflammatory-related insulin
and leptin resistance. Moreover, HFD-induced obesity and hyperleptinemia modify hypo-
thalamic astroglial morphology, which is associated with changes in the synaptic inputs to
neuronal metabolic circuits. Astrocytic contact with the microvasculature is increased by
HFD intake and this could modify nutrient/hormonal uptake into the brain. In addition, prog-
enitor cells in the hypothalamus are now known to have the capacity to renew metabolic
circuits, and this can be affected by HFD intake and obesity. Here, we discuss our current
understanding of how non-neuronal cells participate in physiological and physiopathological
metabolic control.
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INTRODUCTION
Non-neuronal cells, which include glia, ependymal and epithelial
cells, and pericytes, outnumber neurons in the central nervous
system (CNS); however, their functions have been less well stud-
ied. It has become increasingly clear during the past two decades
that these diverse cells are not only vital for neuronal support
and survival, but that they are also active participants in brain
development and function (1–4). Increasing our knowledge of
how non-neuronal cells function will not only lead to a better
understanding of normal brain physiology, but it could also shed
light on specific physiopathological processes and result in the
identification of new therapeutic targets.

During the past decade, the interest in how non-neuronal cells
participate in the neuroendocrine control of metabolism has esca-
lated. This increased attention is due, at least in part, to studies
demonstrating that glial cells are intimately involved in produc-
ing the hypothalamic inflammation that results from high fat diet
(HFD)-induced obesity, and that is linked to increased insulin
resistance (5–8). Indeed, glial cells are now known to participate

in diverse pathological processes associated to excess weight gain
(6, 9–12). In addition to being involved in the physiopathological
responses to poor dietary habits and obesity, non-neuronal cells
also play a comprehensive role in the physiological neuroendocrine
control of metabolism.

Glial cells are generally classified into microglia and macroglia,
with the latter including astrocytes, tanycytes, oligodendrocytes,
and ependymal cells. In order to understand how these cells can
affect metabolic circuits, it is important to have a basic under-
standing of their known functions in the CNS. In addition, new
functions of epithelial cells and progenitor cells in the renova-
tion of metabolic circuits have been uncovered in recent years.
Here, we briefly review the general functions attributed to these
cells and then what is currently known regarding their interac-
tion with central metabolic circuits. Special emphasis is placed
on glial interactions with hypothalamic neuropeptide Y (NPY)
and proopiomelanocortin (POMC) neurons, as these neuronal
populations are fundamental for the control of appetite and
satiety.
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MICROGLIA
Microglia are the primary immunological cells of the CNS. Unlike
other glial cells, which are derived from the neuroectoderm,
microglia are of mesodermal origin, and unlike other immuno-
logical cells, microglial populations are normally maintained by
self-renewal and do not depend on myeloid progenitors (13).
Although this self-renewal hypothesis is generally accepted, in
some cases monocytes are reported to contribute to modifications
in microglial populations (14).

Three subtypes of microglia can be distinguished accord-
ing to their morphology: (1) Amoeboid microglia, which are a
transitory form linked to development that disappears in the
early postnatal period; (2) Ramified or resting microglia; and
(3) Reactive microglia (15, 16). Although each microglial subset
is thought to perform specific functions, these morphological/
functional relationships have not been thoroughly characterized

(17). Moreover, the concept of resting versus reactive microglia is
now being challenged, as microglial activation appears to be a con-
tinuous spectrum of phenotypes and functional states that range
from protective to harmful.

MICROGLIA IN HEALTH AND DISEASE
Microglial cells participate in a number of fundamental processes
both during development and in adulthood (Figure 1). Microglia
are continuously changing their shape and sending-out processes.
This allows them to move about and examine their surroundings
in order to spot irregularities and deviations from homeostasis, to
which they can then respond accordingly. One important function
is the phagocytosis of cellular debris, damaged cells, plaques, and
foreign matter (18). Some microglial subtypes are able to release
nerve growth factors, neurotrophins, and other neurotrophic fac-
tors to provide support to neurons (19). Microglia colocalize with

FIGURE 1 | Schematic representation of microglial cells in a resting state
and in an activated state. In a resting state, microglia are constantly
patrolling the local environment to detect abnormalities or invading
substances. They clean-up cellular debris, modulate synapses, and produce
diverse substances including cytokines. As microglia become activated their
morphology changes, with their projections becoming shorter and thicker. In
response to a HFD or obesity, diverse factors reach the central nervous

system through the circulation and can activate microglia. These cells produce
diverse factors, including inflammatory cytokines, reactive oxygen species
(ROS), and nitric oxide (NO), which further activates local microglia and can
damage neurons. This process can lead to insulin resistance. Exercise is
known to inhibit this process, although the factors mediating this remain
unknown. NFs, neurotrophic factors; αMSH, α-melanocyte stimulating
hormone; and NPY, neuropeptide Y.
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dying neurons during development (20–24), and this is suggested
to indicate that they are involved in the regulation of neuronal
number and development. These glial cells are also reported to
promote angiogenesis during development and to be activated in
response to damaged vessels (20, 25–27).

Microglia can modulate neuronal activity through the promo-
tion of synaptic plasticity and the release of neurotrophic factors
and anti-inflammatory cytokines (28–30). They also take part in
“synaptic stripping” or the removal of branches from damaged
neurons (31–33). A quad-partite synapse model, where microglia
play a dynamic role in neural communication in association with
astrocytes, has recently been proposed (34), but further study is
necessary to consolidate this concept. When performing these
physiological functions, microglia may exhibit a morphology that
is classically characterized as activated; however, their functional
aim cannot be classified as a pro-inflammatory response. Thus,
microglial function is not always implied by their phenotype.

When microglia are activated in response to brain injury or for-
eign substances, they release cytotoxic factors in order to destroy
or neutralize the invading pathogen or toxin. They can also par-
ticipate in the presentation of antigens to T-cells during active
infections (18). Moreover, it is now known that these glial cells
can be activated in response to specific nutrients, such as saturated
fatty acids (FAs) (35).

MICROGLIA IN METABOLIC CONTROL
Reactive microgliosis is triggered by an initial assault or neuronal
damage. This process is then propelled due to the release of sub-
stances, both by reactive microglia and damaged neurons, which
activate more microglia, with this gliosis ultimately resulting in
neurotoxicity (36). HFD-induced obesity induces chronic low-
grade hypothalamic inflammation that involves activation of both
microglia and astrocytes. This inflammatory process eventually
leads to neuronal injury, with POMC neurons being especially
vulnerable (8). As POMC neurons stimulate energy expenditure
and reduce appetite, long-term microgliosis could possibly per-
petuate weight gain through inflammation-induced damage to
these anorexigenic neurons. Microgliosis can be found in appetite-
regulating areas of the hypothalamus in response to HFD intake,
even without significant weight gain (8), suggesting a direct effect
of the diet itself. Indeed, as mentioned above, saturated FAs can
trigger reactive microgliosis (35). Moreover, the inflammatory
effect of FAs is specific as saturated FAs activate microglia, while
monounsaturated FAs do not (35). The microglial response to
saturated FAs is also anatomically specific, being found in the
hypothalamus, but not in other brain areas (8, 35), which could
be related to this region’s role in FA metabolism and nutrient
sensing. However, this deserves further study, as the microglial
response has not been analyzed in all areas involved in metabolic
control. Some neuropeptides involved in metabolic control, such
as NPY and α-melanocyte stimulating hormone (αMSH), which
is released from POMC neurons, can directly modulate the pro-
duction of cytokines and nitric oxide (NO) by microglia (37–39),
indicating a direct link between these neurons and microglia that
could also contribute to inflammatory processes.

Circulating metabolic hormones are also involved in obesity-
induced microglial activation. Leptin increases in proportion to

fat mass and can directly activate microglia (6, 40), suggesting that
this hormone mediates some of the effects of increased adipos-
ity on these glial cells. In support of this, Gao et al. (41) recently
revealed that increased body weight, diet, and leptin levels interact
to determine microglial activity. They reported that ob/ob mice,
which are very obese due to the lack of leptin and its anorexigenic
effects, have lower levels of hypothalamic microglial activation
than control mice. Although HFD intake increases hypothalamic
microglial activation in these mice, this activation does not reach
control levels. Leptin treatment increases microglia number and
ramification in ob/ob mice, even when associated with weight loss
(41). This reinforces the concept that it is not body weight itself,
but the interaction of hormones and dietary signals that control
hypothalamic microglial activity during obesity.

Central inflammation is linked to the pathogenesis of insulin
resistance and type 2 diabetes (42). Microglial activation results
in the release of pro-inflammatory cytokines that can activate
the intracellular signaling pathways that lead to insulin resis-
tance and ultimately to type 2 diabetes (5). Central inhibition of
the inflammatory pathways C-Jun N-terminal kinase and nuclear
factor-kappaB improves insulin resistance in obese animals, with
inhibition of inflammatory signaling specifically in AgRP neurons
protecting against obesity and glucose intolerance (42, 43). Inter-
estingly, exercise reduces microglial activation caused by HFD,
and this also results in improved glucose tolerance (44). This
suggests that exercise is beneficial not only because it provokes
increased energy expenditure but also because it improves central
inflammatory processes. Thus, microglial activation and hypothal-
amic inflammation appear to be of great importance in both the
perpetuation of weight gain and the development of secondary
pathologies associated with obesity.

MICROGLIA IN THE LONG-TERM METABOLIC EFFECTS OF
THE EARLY NUTRITIONAL ENVIRONMENT
The nutritional environment during early life can modulate the
propensity to gain weight and develop secondary pathologies
in later life, and it also influences the maturation of immune
cells. Indeed, the type of nutrition during early life is suggested
to have lasting effects on the response to subsequent neuroim-
mune challenges (45, 46). Microglia present a prolonged “primed”
or sensitized status when their normal pattern of maturation is
disrupted, and this affects later central immune function (47, 48).

In a primate model of HFD intake during gestation, the release
of cytokines by activated hypothalamic microglia was shown to
influence the development of hypothalamic melanocortin circuits
in the fetus (49). In the offspring of HFD-fed rodent mothers,
an increase in hippocampal microglial activation at birth and in
microglial density in adulthood has been reported (48). Rats with
neonatal overnutrition due to being raised in small litters are over-
weight in adult life even when they receive a regular chow diet
(11). These rats have increased microglial activation in specific
hypothalamic nuclei (11) and other brain regions (11, 50) and
increased expression of inflammatory genes in the adult hypo-
thalamus (51). In addition, their microglial response to subsequent
stresses, such as lipopolysaccharide endotoxins, is enhanced (50,
51). The activated microglial profile of neonatally overfed rats may
also affect neurogenesis, cognitive function, and behavior (52).
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Although there are significant sex differences in microglial number
and morphology in various brain regions (53), neonatal overnu-
trition is reported to induce similar changes in microglia in the
hypothalamic paraventricular nucleus (PVN) of both males and
females (51). Thus, poor dietary habits during early life can have
long-term effects on both the central immune system and the neu-
roendocrine control of metabolism, with the interaction of these
two processes most likely attributing to the increased sensitivity to
obesity-associated pathologies.

ASTROCYTES
Astrocytes are the most abundant and diverse non-neuronal cell
type in the CNS. There are approximately five times more astroglia
than neurons, although this proportion varies from one area of
the brain to another (54). These macroglial cells originate from
ectoderm (55) and are known as “the star-shaped cells” due to
their appearance when visualized by conventional immunolabel-
ing techniques. They have a privileged location throughout the
brain as they form part of the blood–brain barrier (BBB) and
are in intimate contact with both vascular and synaptic elements
(56, 57), making them essential components in the communi-
cation between the CNS and periphery (58). One important
function of these glial cells is to provide blood-borne nutri-
ents and other essential substances to neurons, thus promoting
neuronal survival and contributing to the maintenance of CNS
homeostasis. The astrocytic endfeet that surround blood vessels
express specific membrane proteins, such as glucose transporters
(GLUTs), in order to transport energy substrates from the cir-
culation into the brain (59), and they also secrete substances
that can modulate local blood flow (60, 61). In conjunction with
pericytes, these astrocytes contribute to the maintenance of BBB
homeostasis (62–64).

One of the classical roles attributed to astrocytes is to pro-
vide anatomical support for neurons. They also regulate neuronal
differentiation, proliferation, and synaptogenesis during develop-
ment (2,65). Astrocytes occupy specific non-overlapping domains,
with each glial cell contacting various neurons and thousands of
synapses (66–68). Moreover, they form a syncytium that allows
them to regulate neuronal and synaptic function over long dis-
tances (69, 70) by communicating with each other via a network
of gap junctions (71, 72).

Astrocytes modulate synaptic transmission in various ways,
including the re-uptake of glutamate from the synaptic cleft, which
terminates excitatory transmission and protects against excitotox-
icity, and by participating in synaptic reorganization (1, 2, 73, 74).
They also actively participate in tripartite synapses by secreting
gliotransmitters, such as adenosine, ATP, D-serine, glutamate, and
TNFα, to modulate synaptic efficacy (75–82).

Like microglia, astrocytes take part in central immune
responses by becoming activated and producing cytokines in
response to infections, foreign substances, and CNS injuries
(83–86). This protective response can vary widely, spanning from
acute activation that involves changes in astrocyte morphology
and proliferation to scar tissue formation associated with secre-
tion of inflammatory cytokines, which can then activate the NFκβ

pathway and stimulate further inflammatory cytokine release (87).
Depending on the type of stimulus, its intensity, and the time

of exposure, the cytokines secreted by astrocytes can have either
beneficial neuromodulatory effects or detrimental inflammatory
effects.

Due to their wide array of functions, astrocytes are fundamen-
tal for neuronal survival throughout the entire brain; however,
these glial cells are heterogeneous with their morphology, density,
and activational responses differing from one anatomical area to
another (88, 89). Moreover, astrocytes differ between males and
females, with this sexual dimorphism being partially due to differ-
ences in neonatal levels of sex steroids, in addition to postpubertal
hormones (86, 90–93).

Astrocyte morphology is generally classified as either proto-
plasmic or fibrous. Protoplasmic astrocytes have short divided
projections and are predominately found in the gray matter, close
to neuronal synapses and blood vessels. In contrast, fibrous astro-
cytes are located within the white matter, and their processes are
long and relatively unbranched (94, 95). The diversity of astrocyte
morphology was appreciated for the first time in the drawings by
Cajal (96). In order to detect and identify astrocytes, the intermedi-
ate filament protein glial fibrillary acidic protein (GFAP) has been
extensively used (54, 97, 98). However, many astrocytes are not
GFAP positive, which is an important limitation for their study.
The search for both global and functional markers of astrocytes is
ongoing, and the future use of these new tools will most likely lead
to the discovery of additional astrocytic functions.

It should be noted that even within the hypothalamus, astro-
cytes are regionally quite distinct, although there is still little
information regarding the functional significance of these differ-
ences (99). Neuroendocrine functions of hypothalamic astrocytes
were described more than three decades ago (100); however, analy-
sis of their role in systemic metabolic control is more recent. The
rapid rise in obesity and its comorbidities has contributed to the
increased drive to understand the neuroendocrine mechanisms
controlling metabolism. As a result, the contribution of astroctyes
to the physiological and pathophysiological control of metabolism
has come to the forefront. Their participation in diverse processes
related to metabolic control is represented in Figure 2.

ASTROCYTES IN GLUCOSE AND FATTY ACID SENSING
Glucose is the major energy source for the mammalian brain, and
astrocytes are not only involved in actively transporting glucose
from the circulation into the brain, but they are also in charge of
its storage. The astrocytic endfeet that enclose capillaries express
GLUT-1 in order to transport glucose into the CNS (59, 101, 102).
This glucose is then either stored inside astrocytes as glycogen or
metabolized. Astrocytes can metabolize glucose to lactate, which
is then shuttled to neurons to be used as an energy source, with
studies showing that increased glucose transport/metabolism is
coupled to increased neuronal activity (103).

Due to the privileged location of astroglial cells, they are among
the first cells in the CNS to perceive peripheral glucose concentra-
tions. Hypothalamic astrocytes and neurons act together to sense
circulating levels of glucose in order to “inform” the brain about
the systemic metabolic condition. This glucose sensing process is
important in order to maintain both central and systemic glu-
cose homeostasis and can thus generate modifications in feeding
behavior (104).
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FIGURE 2 | Schematic representation of hypothalamic astrocytes in
a normal physiological state and in a pathological state in response
to exposure to a HFD or obesity. Astrogial cells express receptors for
important metabolic hormones, such as leptin and insulin, and transport
diverse substances, including glucose, from the circulation into the brain.
They can store glucose as glycogen or metabolize it to lactate, which can
be secreted for uptake and usage by neurons. Astrocytes also
metabolize lipids. They participate in normal glucose and lipid sensing to
control energy homeostasis. Astrocytes participate in synaptic
transmission through the uptake of glutamate from the synaptic cleft.
Upon activation by a HFD or obesity, these physiological processes can
be altered by both nutritional signals, such as FAs, and metabolic signals,
such as leptin. Astroglial morphology changes, with these cells

increasing their projection number and size and, increasing the glial
coverage of both POMC and NPY neurons, as well as their contact with
local blood vessels. This results in modifications in synaptic inputs to
these neurons and possible changes in transport of substances from the
circulation. These activated astrocytes also secrete cytokines and other
factors, participating in activation of inflammatory signaling in neurons.
ApoE, apolipoprotein E; BBB, blood-brain barrier; EZ, endozepines; FA,
fatty acids; GLAST, glutamate aspartate transporter; GLUT-1, glucose
transporter 1; GLUT-2, glucose transporter 2; KB, ketone bodies; IL6,
interleukin 6; IL1β, interleukin 1 β; MCT-1, monocarboxylate transporter
1; MCT-4, monocarboxylate transporter 4; NO, nitric oxide; ObR, leptin
receptor; PPARγ, peroxisome proliferator-activated receptor gamma;
TNFα, tumor necrosis factor α.

In brain areas involved in appetite control, astrocytes express
high levels of GLUT-2. This GLUT is essential for glucose sensing
and for the homeostatic control of circulating glucose levels and
food intake (105, 106). Indeed, food consumption is increased
in transgenic mice expressing a form of GLUT-2 that is unable
to detect glucose levels, but maintains its ability to transport
glucose (106). Although expression of GLUT-2 in astrocytes is
fundamental for normal glucose sensing, neuronal glucose sens-
ing is suggested to be mediated through another mechanism (105).
Moreover, astrocytes (and tanycytes) in the arcuate nucleus secrete

endozepines, which not only have strong anorexigenic actions
(107), but also participate in glucose sensing, possibly through the
melanocortin pathway (108). In addition, it was recently shown
that they also participate in the regulation of long-chain fatty acids
(LCFA) metabolism in astrocytes (109).

Energy homeostasis is regulated by the ability of the hypo-
thalamus to correctly sense FA levels and to metabolize this fuel
source (110, 111). Neurons, astrocytes, and oligodendrocytes can
use glucose and ketone bodies as energy substrates, but only astro-
cytes can β-oxidize FAs to produce ketone bodies (112), with
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astrocytes known to be the main source of FA oxidation in the
brain (104, 113). Taïb et al. (114) demonstrated that FA oxida-
tion rates are dependent on glucose concentrations, with glucose
inhibiting this process in hypothalamic astrocytes via activation of
AMPK. Astrocytes also express peroxisome proliferator-activated
receptor gamma (PPARγ), an important sensor of lipids and regu-
lator of metabolism (115, 116), and apolipoprotein E (ApoE), the
major lipid transporter in the CNS (117, 118). ApoE can also act as
a satiety factor, possibly by mediating some of the inhibitory effects
of leptin (119), and may play a protective role against apoptosis of
astrocytes (120).

The ketone bodies produced as a result of FA oxidation by
astrocytes serve as an energy source for neurons, especially when
neuronal activity is intense or in situations of hypoglycemia, such
as in fasting (113, 121, 122). However, ketone bodies are also syn-
thesized by astrocytes during chronic HFD, and this can disrupt
FA signaling mechanisms involved in metabolic control (123). As
astrocytes are fundamental for central FA metabolism, it follows
that these glial cells participate in hypothalamic FA sensing and its
subsequent effects on appetite.

ASTROCYTES EXPRESS RECEPTORS FOR METABOLIC
HORMONES
Astrocytes express receptors for hormones involved in energy
balance, such as leptin, insulin, glucocorticoids, and ghrelin (124–
128), and may mediate some of the metabolic effects of these
hormones at the level of the hypothalamus. How leptin modu-
lates astrocytes has been the subject of diverse studies in recent
years. Hypothalamic astrocytes express different isoforms of the
leptin receptor (ObR), expressing mainly ObRa and ObRb, but
also including ObRc and ObRe (127, 129–132). In the hypothal-
amus of obese rodents, expression of this receptor is increased in
GFAP positive cells (127, 129–132), and its expression in astro-
cytes varies between brain areas, with the highest expression being
found in the hypothalamus (10).

It is possible that leptin modulates its own transport into the
CNS, as well as the nutrient supply to neurons, by acting on astro-
cytes (133, 134). Moreover, astrocyte morphology is changed by
leptin (10, 132), and this can affect synaptic inputs to POMC and
NPY neurons, and thus their function (132). Over a decade ago,
leptin and ghrelin were shown to rapidly modulate the number
of synaptic inputs onto hypothalamic POMC and NPY neu-
rons (135–137), and changes in glial morphology are most likely
involved in this process. Indeed, in obese and control animals,
the number of synapses on the soma of hypothalamic POMC
neurons is inversely related to their glial coverage, with increased
glial ensheathment leaving less neuronal membrane available for
synaptic inputs (9). The rapid modifications in synaptic inputs
to metabolic neuronal circuits produced by leptin, as well as in
response to HFD intake, most likely represent an adaptation of
the system to the new metabolic condition (138) and an attempt
to maintain metabolic homeostasis. However, if the exposure to
increased levels of leptin or HFD is prolonged, these responses may
become pathophysiological. Indeed, the glial response to leptin is
time dependent, and prolonged exposure to this hormone stimu-
lates astroglial production of different cytokines (10), as discussed
below.

Astrocytes express high levels of the glutamate transporters
GLT-1 and GLAST (139–141) through which they regulate glu-
tamate levels in the synaptic cleft. This process is essential for
maintenance of appropriate synaptic transmission and for the
prevention of excitotoxicity and cell death. Once glutamate is
taken-up by astrocytes it can be converted to glutamine by
the enzyme glutamine synthetase, which is almost exclusively
expressed in astroglia (142). Glutamine is then shuttled to neu-
rons to produce more glutamate, or GABA, for synaptic release.
Glutamate can also be metabolized in astrocytes and converted to
α-ketoglutarate (143, 144).

There is a tight relationship between glutamate uptake, glycol-
ysis, and lactate production such that when neuronal demand is
higher, glucose transport and utilization by astrocytes increases,
and in consequence, more lactate is produced to be used as an
energy substrate by neurons (145, 146). Leptin modifies the abil-
ity of hypothalamic astrocytes to transport both glutamate and
glucose, with the time of leptin exposure producing different
responses (147). Thus, in addition to promoting morphological
changes in astrocytes that can modify the synaptic connectivity
of metabolic circuits (10), leptin directly affects glutamate uptake
by these glial cells, thus modulating excitatory neurotransmission.
Leptin’s effects on glucose uptake by astrocytes (147) may also
change the local transport of glucose and its metabolites to neu-
rons, which would in turn modify glucose sensing mechanisms
and neuronal control of energy homeostasis.

The physiological importance of the astrocyte-mediated effects
of leptin was recently demonstrated by specific ablation of the
leptin receptor in GFAP positive cells. In these mice, the synaptic
organization of the melanocortin system is affected, as is the sati-
ety response to leptin (132). Loss of the leptin receptor in GFAP
positive cells decreased the number and length of astrocyte pro-
jections in the arcuate nucleus. This was associated with decreased
astrocytic coverage of POMC neurons and an increase in the num-
ber of synaptic inputs to these neurons. Moreover, modifications
in the electrical activity of both POMC and AgRP neurons were
observed. These studies support the hypothesis that leptin’s effects
on astrocytes are fundamental for the normal synaptic organiza-
tion and synaptic transmission of metabolic circuits, as well as for
mediating the physiological effects of this hormone. Furthermore,
not only does loss of the leptin receptor in astrocytes decreases the
physiological response to leptin, but it also increases the responses
to ghrelin and to fasting (132).

Astrocytes express estrogen receptors (ERs) (148–150), andro-
gen receptors, and progesterone receptors (151, 152), with gonadal
steroid modulation of these glial cells possibly participating in the
reported sexual dimorphism in the inflammatory response to HFD
(153, 154). Males and females diverge in the manner that they
store adipose tissue, with males being more prone to accumulate
visceral fat, while females accumulate more subcutaneous fat. In
addition, adipose tissue from males and females can also differ in
its response to metabolic hormones (155, 156). Ingestion of a HFD
increases systemic and hypothalamic palmitic acid levels. This rise
in palmitic acid leads to an increase in the inflammatory cytokines
IL1β, TNFα, and IL6 and a decrease in the anti-inflammatory
cytokine IL10 in the hypothalamus of males, but not of females.
Consequently, glucose tolerance and cardiovascular function are
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more affected in males than in females (154). Expression of ERα

in astrocytes is a key factor in blunting the central inflammatory
response to palmitic acid in females (154).

How other metabolic hormones and dietary components affect
astrocyte functions remains to be demonstrated. For example, glu-
cocorticoids modulate astrocytes in the suprachiasmatic nucleus
(157) and whether this affects circadian rhythms of food intake
remains to be determined. Ghrelin has direct effects on hypothala-
mic astrocytes (158), but how this affects metabolism is unknown.
Fructose can induce astrogliosis (159), but intake of a high sucrose
diet that stimulates adiposity does not induce classical astrogliosis
(160); hence, further information is necessary regarding the effects
of excess carbohydrates on astrocytes.

ASTROCYTES IN DEVELOPMENT OF METABOLIC CIRCUITS
AND CELL TURNOVER
Astrocytes play an essential role in neuronal survival and they
most likely participate in the development of metabolic neuronal
circuits. It is possible that astrocytes also mediate some of the detri-
mental effects of early environmental factors on long-term energy
balance. For example, early neonatal overnutrition results in an
increase in adult body weight, hyperleptinemia, and hyperinsu-
linemia, and these changes are associated with high hypothalamic
GFAP levels (10). The rise in GFAP is at least partially due to
an increase in the number of astrocytes in the arcuate nucleus,
while astrocyte number was not affected in other hypothalamic
areas (147). This suggests that the early nutritional environ-
ment modulates astrocyte development in the hypothalamus in
an anatomically specific manner.

PATHOPHYSIOLOGICAL ROLE OF ASTROCYTES IN
METABOLIC CONTROL
In addition to hypothalamic inflammation, HFD-induced obesity
can also result in hypothalamic astrogliosis (8, 35, 42). Astrogliosis,
or reactive astrocytosis, can be broadly defined as a change in the
number of astrocytes and/or their morphology in response to an
insult that is accompanied by a change in their release of growth
factors, neurotrophic factors, cytokines, or other substances. Ini-
tially, the aim of this reaction is to defend and protect neurons and
to produce modifications in the BBB in order to isolate the injured
site and maintain the extracellular environment.

Activation of hypothalamic astrocytes can be seen as early as
24 h after HFD intake (8, 161). This rapid activation of astrocytes
is most likely a neuroprotective response to the rise in the concen-
tration of FAs reaching the CNS, as FAs cross the BBB by simple
diffusion and in proportion to their plasma concentration (162–
164). This acute astrocytic reaction to HFD intake appears to be
involved in the mechanisms that are triggered in the attempt to
maintain energy homeostasis (161).

Pathophysiological processes become apparent when astrocyte
activation is prolonged and these glial cells begin to release neu-
rotoxic substances and to form scar tissue (165). One situation
that can lead to prolonged astrogliosis is obesity due to the long-
term consumption of a HFD. LCFAs, such as palmitic acid, can
directly induce the release of inflammatory cytokines, while unsat-
urated FAs, like oleic acid, do not appear to induce inflammation.
This inflammatory response is mediated, at least in part, by FA

activation of toll-like receptor 4 (35). Thus, one mechanism by
which saturated FAs potentiate weight gain is through the direct
stimulation of hypothalamic inflammation and the subsequent
reduction in central leptin sensitivity (35).

Excess weight gain can result in an increase in the number
of primary astrocytic processes, as well as in the length of these
processes (10, 147). This increase in astrocytic processes can result
in a more extensive contact between these cells and the local
vasculature (9). These structural changes could thus modify the
ability of astrocytes to transport substances from the circulation
and into the brain. At the same time, increased glial coverage of
hypothalamic neurons will result in less available space for these
neurons to receive synaptic inputs. Indeed, synaptic reorganiza-
tion in response to HFD-induced obesity results in the loss of
synapses on POMC perikarya (9). Rapid synaptic changes may be
involved in the metabolic adaptation to HFD intake (138) and be
an attempt to regain energy homeostasis. In contrast, long-term
changes could possibly contribute to produce a positive energy bal-
ance. Thus, although astrocyte activation in response to acute HFD
may be involved in controlling the initial hyperphagia, long-term
HFD causes increased energy intake and obesity (123).

ASTROCYTOSIS IN THE DEVELOPMENT OF INSULIN AND
LEPTIN RESISTANCE
The inflammatory response of the hypothalamus to HFD-induced
obesity can lead to decreased leptin and/or insulin sensitivity,
which not only results in negative consequences in the regula-
tion of food intake and energy balance, but also leads to secondary
complications, such as type 2 diabetes (42, 166). Astrocytes con-
tribute to this deregulation by not only producing inflammatory
cytokines, but may also do so by modifying leptin and insulin
availability. As stated above, HFD-induced obesity modifies the
contacts between blood vessels and astrocytes (9). How these
structural changes affect the transport of metabolites and hor-
mones remains to be elucidated, but they could participate in
modifications in leptin transport across the BBB (167–169). Cir-
culating levels of leptin increase during obesity but transport into
the brain does not increase proportionally, with the transport sys-
tem becoming saturated (167). Expression of leptin receptors in
astrocytes increases in the hypothalamus of obese rats (127, 130),
but how this affects the output of metabolic circuits is not known
at present.

OLIGODENDROCYTES
Oligodendrocytes are responsible for forming myelin sheaths
around neuronal axons in the CNS. These glial cells have not
been directly implicated in the control of food intake. However,
recent studies have suggested a complex relationship between
oligodendrocytes and other glial types, such as astrocytes (170)
and microglia (171), in addition to their liaison with neurons.
As Peferoen et al. (171) reviewed recently, there is evidence for
an active role of these cells in inflammation. Moreover, an anti-
apoptotic effect of ghrelin on oligodendrocytes during spinal cord
injury has been reported and this may be mediated through inhi-
bition of microglial activation (172, 173). Glucocorticoids can
reduce the proliferation and viability of oligodendrocytes (174),
while NPY and leptin have been shown to affect myelination by
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oligodendrocytes (175, 176). Even though direct involvement of
oligodendrocytes in energy homeostasis has not yet been demon-
strated, the above-mentioned studies suggest possible connections
between these cells and metabolic control.

TANYCYTES
Tanycytes are specialized glial cells whose functions are increas-
ingly linked to neuroendocrine control. They are found lining the
third ventricle and can be classified into α1, α2, β1, and β2 from
dorsal to ventral, with α1-tanycytes being found near the dorso-
medial hypothalamic nuclei, and β2-tanycytes found close to the
median eminence (ME) (177). These cells have long processes that
project into the brain parenchyma or in the case of β2-tanycytes,
processes that directly access the circulation through fenestrations
of the BBB in the ME (177). These glial cells play a fundamental
role in communicating the hypothalamus with systemic factors.

TANYCYTES IN SENSING AND SIGNALING
Tanycytes are able to detect changes in glucose levels. They express
essential components of the glucose metabolism system used by
pancreatic β-cells, such as GLUT-1, GLUT-2, glucokinase, and
ATP sensitive K+ channels (178–180). Although this system in
β-cells has a different functional significance (e.g., insulin release),
evidence suggests that there is an ATP receptor-dependent mecha-
nism through which tanycytes respond to changes in glucose levels
(181). Selective destruction of tanycytes impairs the normal feed-
ing response to hypoglycemia, and this is restored when these cells
are regenerated (182), thus highlighting the importance of glucose
metabolism in tanycytes for the control of energy balance.

It is thought that tanycytes detect the composition (i.e., glu-
cose levels) of the CSF, rather than that of the extracellular fluid
in the parenchyma (179, 183). In addition to glucose, these glial
cells respond to non-metabolizable analogs of glucose and several
transmitters, including histamine, acetylcholine, and ATP (184,
185). Like other glial cells, tanycytes produce Ca2+ signals that
can propagate along the layer of these glial cells due to the gap
junctions between them (185). They can release ATP and ADP
and also express purinergic (P2) receptors that are activated in
response to ATP. This increases the possibility of long-range acti-
vation via the release of ATP into the extracellular space, resulting
in the activation of P2 receptors and triggering a new Ca2+ signal
in neighboring tanycytes (181). Tanycytes also release lactate in
response to glucose (186), with the lactate, ATP, and ADP released
by these cells possibly affecting nearby hypothalamic neurons and
modulating metabolism and appetite (180, 187, 188).

TANYCYTES AS GATEKEEPERS
At the level of the ME, β-tanycytes form a blood-CSF barrier.
The tight junctions between these tanycytes prevent the diffusion
of blood-borne molecules into the CSF. As stated above, these
cells have specialized processes that project into the fenestrated
vessels of the ME (177). In a similar manner, α-tanycytes play
an important role in the blood-arcuate nucleus interface, con-
trolling the access of metabolic components to this brain area
(189). In contrast, α-tanycytes do not have barrier properties
(190, 191).Tight junctions at the apical bodies of α-tanycytes
present a different composition and organization from those of

β-tanycytes, preventing the α-tanycytes from forming a barrier
at the level of the ventricular wall. Hence, endothelial cells per-
form the barrier properties at this blood-arcuate nucleus interface
(191). Here, the long processes of the tanycytes are in close asso-
ciation with these vessels, suggesting that endothelial cell/tanycyte
communication is of major importance in the organization of this
interface (192).

Tanycytes express transporters for a variety of molecules, a fact
that has lead researchers to suspect that these cells are involved in
the process of transporting numerous substances into the brain
(193). Balland et al. (194) have recently demonstrated that tany-
cytes act as a gateway for leptin into the brain, with this process
requiring ERK-signaling. After its uptake by tanycytes, leptin then
diffuses into the hypothalamic parenchyma to exert its effects (194)
on neurons in the mediobasal hypothalamus and to reduce food
intake.

Tanycytes also express deiodinase enzyme II (129, 195), which
converts the prohormone T4 to the active hormone T3. They cap-
ture T4 from the circulation and liberate T3 to the surrounding
hypothalamic nuclei, thus acting as gatekeepers for the entry of
thyroid hormone into the hypothalamus (196). In the hypothala-
mus, T3 can regulate the response of NPY/AgRP neurons to fasting
and facilitates rebound feeding (197).

In 2013, Langlet et al. (192) demonstrated that the tany-
cyte barrier is able to adapt to new metabolic conditions. Spe-
cific nutritional changes can modify the permeability of blood-
hypothalamic barriers, allowing direct circulatory access to a sub-
set of arcuate neurons. After 24 h of fasting, a drop in glucose levels,
perceived by tanycytes themselves or possibly by astrocytes (198),
triggers vascular endothelial growth factor (VEGF)-A expression
in tanycytes that leads to the direct exposure, and consequently
enhanced responsiveness, of a subset of neurons in the arcuate
nucleus to peripheral metabolic signals (189). This, however, may
not be a selective mechanism (198), and the possibility of this
type of reorganization occurring in response to other types of
energy imbalances (198) highlights the importance of this area of
research.

These discoveries raise the question as to whether the tany-
cyte barrier is a gateway to the hypothalamus for other hor-
mones and factors involved in energy balance. The ability of the
nutritional environment to induce changes in this barrier is of
great interest in order to further our understanding of long-term
changes in metabolism. In addition, tanycyte-like cells border-
ing the circumventricular organs (CVOs) have been reported to
share some features with ME tanycytes and display barrier proper-
ties. This indicates that tanycyte-like cells may be characteristic of
CVOs (189) and may possibly be involved in other physiological
functions.

Studies in seasonal mammals have increased our understand-
ing of the tight relationship between tanycytes and energy balance.
These animals experience photoperiodic adaptive changes in body
weight and tanycytes express many of the proteins necessary for
these adaptive changes, including the orphan receptor GPR50, the
previously mentioned deiodinase, and a transporter for retinoic
acid (181, 199). It should be noted that most of the above-cited
studies were performed in murine models, and the functions of
tanycytes in human physiology remain to be clearly demonstrated.
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PROGENITOR/STEM CELLS
Even in adults there is a neurogenic niche in the hypothalamus that
is sensitive to metabolic signals. However, the regenerative capac-
ity of the hypothalamic neurogenic niche decreases with age and
could contribute to age-associated weight gain. Different cell types
can act as neural progenitors in this proliferative compartment. In
the mediobasal hypothalamic parenchyma, populations of Sox2+

(200) and NG2+ cells (201) give rise to new neurons during adult-
hood. These new neurons express metabolic neuropeptides, such
as POMC, NPY, AgRP, and orexin, and can respond to leptin and
fasting (202). NG2+ cells are also known to be oligodendrocyte
precursors (203–205) and could be performing this function in
the hypothalamus (206).

Tanycytes also express proteins typically found in precursor
cells (207) and are able to proliferate and differentiate into both
neurons and glia (208). Some controversy exists regarding which
group of tanycytes (α or β) is implicated in the adult hypothalamic
niche. Some authors propose that these two precursor-cell subsets
are functionally different, or that they may act sequentially with
α-tanycytes dividing into β-tanycytes (202, 209–211). However,
the fact that tanycytes are important in this process is now widely
accepted.

In male mice, HFD reduces the constitutive turnover of neu-
rons in the arcuate nucleus (212). This process is reversible by
caloric restriction, which alone exerts the opposite effect (212).
Hypothalamic neuronal precursor cells (NPCs) can be damaged by
HFD-induced inflammation, and upregulation of inflammatory
mediators IKKB/NF-κB inhibits the proliferation and survival of
adult NPCs in the hypothalamus. Furthermore, neurogenesis can
be inhibited and obesity induced by selective over-expression of
IKKB in hypothalamic NPCs in adult male mice on a normal diet
(200). Importantly, it seems that some of the effects of HFD are
sexually dimorphic in the ME, promoting neurogenesis in young
adult female mice but not in males (213). Adult-born neurons
in the ME are in part responsible for weight gain in female mice
(213). Several recent studies also relate HFD or energy balance
alterations to changes in neurogenesis and remodeling of feeding
circuits in the hypothalamus (207, 211, 214), although the specific
involvement of tanycytes or other glial cells was not investigated.

EPENDYMAL CELLS
Ependymal cells or ependymocytes are classified as macroglia and
are derived from the neuroectoderm. The majority of these cells
are born during the embryonic and early postnatal periods in most
species (215, 216). Ependymal cells line the ventricles throughout
the brain, including the dorsal part of the third ventricle next to
the hypothalamus. There is a transitional zone at the middle of the
third ventricle where both ependymal cells and tanycytes can be
found, with only tanycytes existing in the ventral zone of the third
ventricle (217, 218). The morphology of ependymocytes is very
characteristic as they have numerous cilia, although ependymal
cells with a long basal body and only two cilia have been described
in the lateral ventricular zone (217). These cells secrete CSF, with
their numerous cilia participating in the transport of this fluid.

During critical periods of development, third ventricle ependy-
mal cells express receptors for important metabolic hormones
suggesting that they may participate in the transport of metabolites

and signals necessary for correct development. For example,
ependymal cells lining the third ventricle express receptors for
the satiety-inducing peptide cholecystokinin (CCK-1) early in life,
with this expression occurring at critical developmental stages
(219). Expression of the CCK-1 receptor peaks at postnatal day
6 but is undetectable at postnatal day 12. On the contrary, expres-
sion of the CCK-2 receptor in ependymal cells does not appear
to depend on the developmental stage. Expression of the leptin
receptor in ependymal cells of the third ventricle is also transient.
These cells express functional leptin receptors early in life, with the
level of expression increasing at specific times during the develop-
ment of metabolic circuits. These receptors then disappear later in
development, approximately at the same time that the ependymal
layer becomes thinner (220).

Ependymal cells are present in neurogenic regions and have
a key function regarding the formation/genesis and migration of
new neurons and glial cells (217), but it was only recently demon-
strated that neurogenesis in the hypothalamus plays an important
role regulating energy balance(211). As mentioned above, obesity
and HFD intake can decrease neurogenesis in the adult hypo-
thalamus and this leads to deregulation of metabolic control.
In addition to tanycytes, ependymal cells surrounding the third
ventricle form part of the hypothalamic neurogenic niche (207).
However, the neurogenic response of ependymal cells and tany-
cytes may differ, as tanycytes are reported to proliferate in response
to IGF-1, while ependymal cells do not (218).

ENDOTHELIAL CELLS
Endothelial cells are derived from the mesoderm and form the
lining of the brain vasculature and thus comprise an integral
component of the BBB. Endothelial cells of hypothalamic blood
vessels have been demonstrated to participate in metabolic control.
Indeed, changes in hypothalamic vasculature and endothelial cell
morphology have been observed in response to a high fat or a high
sucrose diet (221), not only in rodent models but also in human
patients with type 2 diabetes. Likewise, low glucose levels as a con-
sequence of fasting have been shown to regulate BBB permeability
and tanycyte reorganization (189), with tanycytes and hypothala-
mic microvessels exhibiting an adaptive response to changes in the
general metabolic status and thus, participating in glucosensing.

CONCLUDING REMARKS
Non-neuronal cells are involved in all aspects of brain function.
However, much is yet to be learned as to how these cells are modu-
lated by both central and systemic factors and how their output or
response to these signals affects neighboring neurons. The fact that
HFD-induced obesity was shown to produce some of its adverse
metabolic effects through activation of hypothalamic glial cells has
led to an increased interest in this process. However, in addition to
this pathological function, it is now apparent that non-neural cells
are also fundamental in the physiological control of metabolism.
As we know more about how these cells participate in the control
of food intake, the discovery of new therapeutical approaches to
metabolic diseases, such as diabetes, obesity, or leptin resistance,
looks increasingly plausible. For example, studies demonstrating
that tanycytes are responsible for leptin transport into the brain
suggest that they may be a potential therapeutic target for the
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treatment of leptin resistance in obesity through increasing their
transport of this hormone into the hypothalamus. Discovery of
ways to protect against inflammatory processes that can damage
the hypothalamus, as well as to stimulate progenitor cells in order
to renovate metabolic circuits is of clear interest for the future.
Moreover, it is now clear that all investigators interested in the
cellular mechanisms controlling appetite and metabolism should
understand how glial cells participate in this process.
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