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The p53-related gene p63 is required for epithelial cell establishment and its expression is
often altered in tumor cells. Great strides have been made in understanding the pathways
and mechanisms that regulate p63 levels, such as the Wnt, Hedgehog, Notch, and EGFR
pathways. We discuss here the multiple signaling pathways that control p63 expression
as well as transcription factors and post-transcriptional mechanisms that regulate p63
levels. While a unified picture has not emerged, it is clear that the fine-tuning of p63 has
evolved to carefully control epithelial cell differentiation and fate.
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Introduction

At first glance, the tumor suppressor p53 and its family member p63 seem quite similar in function
and exhibit a high degree of evolutionary conservation. In particular, the DNA-binding domains are
about 60% identical at the amino acid level; however, the adjacent domains and C-termini diverge
drastically (1). While it was first thought that p63 and p53 could regulate similar sets of genes, it has
become clear that these potent transcription factors possess some partially redundant functions, and
some that are entirely unique (2–4).

p63 is also unlike its family member p53 in that it is rarely mutated in human cancers. Instead,
mutations in p63 lead to disorders with ectodermal dysplasia such as ankyloblepharon-ectodermal
dysplasia-clefting (AEC)/Hay–Wells syndrome, which can include symptoms like cleft lip/palate and
skin erosions (5, 6). Other p63 syndromes can include split hand/foot malformation and alopecia,
but cancer predisposition is generally not seen (7–9).

Due to differential promoter usage and splicing, there are at least six common isoforms. There
are two classes that arise from different promoters, one with the N-terminal transactivation domain
(TA), and the other set lacking the N-terminal transactivation domain (∆N).While the ∆N form can
be dominant negative to the TA isoforms (2), the ∆Np63α isoform has been shown to contain an
alternate transcriptional activation domain, suggesting it can also directly activate target genes (3,
10). Alternative splicing of the 3′ endof theTAand∆Np63mRNAsproduces theα,β, and γ isoforms,
although only the α isoforms contain the sterile-α motif (SAM) domain and the transcription-
inhibitory (TI) domain. Mutations in these domains can disrupt binding to the target Apobec-1-
binding protein-1 (ABBP1), and deletion of both domains led to increased p21Waf1/Cip1 signaling,
indicating that these domains can modulate target gene specificity (11, 12).

As to the specific functions of these isoforms, mouse models have been instrumental in providing
us with clues. Two groups reported that p63−/− mice were found to have severe limb and epithelial
defects, including partial or missing epithelial stratification, and truncated forelimbs (13, 14). More
recently, both the whole animal- and epidermal-specific deletion of ∆Np63α in mice led to skin
erosions and impaired terminal differentiation of keratinocytes, demonstrating the importance
of this isoform in the epithelial stratification process (15–17). It is possible that deregulation
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of p63 targets linked to cell–matrix adhesion and epithelial mor-
phogenesis causes these skin abnormalities (18–20).

Furthermore, loss of epithelial cells in ∆Np63-null mice sug-
gested that this isoform is essential for the establishment of epi-
dermal progenitor cells (13). Pellegrini et al. (21) suggested that
p63 is found in the stem cells of the proliferative compartment,
but not in the transit amplifying keratinocytes that have exited the
compartment. When it comes to the caudal endoderm, Pignon
et al. (22) revealed that the p63-expressing cells are capable of
differentiating into prostate, bladder, and colorectal epithelia.
Another report found p63 to be essential for the proliferative
ability and differentiation of the epidermis; however, in a thymic
model, p63 was only required for clonogenicity but not for lineage
commitment or differentiation (23, 24). Intriguingly, depletion of
∆Np63 or its target DGCR8, anmiRNA processing factor, allowed
keratinocytes to enter amultipotent stem cell state, suggesting that
∆Np63 is needed tomaintain the keratinocyte differentiation state
(25). Finally, an AEC-like mutation in p63 led to reduced prolif-
erative and clonogenic potential in epithelial cells (26). Together
these studies make a compelling case for p63 in the maintenance
and regulation of epithelial stem cells.

Meanwhile, TAp63 ablation demonstrated that this isoform
monitors the integrity of the germline after cellular stresses (27,
28). In particular, γ-irradiation was shown to induce tetrameriza-
tion of TAp63α from inactive dimers, leading to greatly increased
target binding ability (29), and inducing cell cycle arrest or an
apoptotic response.

Yet, p63 levels are sometimes altered in tumors. Many groups
have reported increased expression in cancers, especially in
head and neck squamous cell carcinomas (HNSCC) (30, 31).
Indeed, amplification or overexpression of p63 has frequently
been observed in lung cancers, and more rarely in HNSCC (32–
34). However, p63 expression is lost in more invasive prostate and
breast cancers, and this loss is associated with worse prognosis in
some cases (35, 36). It has been theorized that the tissue context, as
well as the balance between TA and ∆N isoforms, could partially
explain this dichotomy.

So how does p63 impact cancer formation? The last decade
has seen a preponderance of direct targets unearthed, including

adhesion-related β4 integrin, the tissue integrity factor Perp, the
Notch ligands Jagged1 and Jagged2, keratins 5 and 14, and EGF
receptor (18, 19, 37–41). Cancer-related targets like N-cadherin,
Id3, MMP13, and Wnt-4 can be activated by p63; however, p63
can also induce Sharp1 and Cyclin G2 expression, which have
been shown to be suppressors of breast cancer metastasis (42–
45). Additionally, phosphorylated ∆Np63α was found to associate
with components of the splicing machinery, as well as transcrip-
tion factors SREBP1 and E2F1, in regulation of metabolic and cell
cycle-related processes (46).

p63 is also known to regulate a diverse set of microR-
NAs. A prominent target is miR-205, a repressor of epithe-
lial–mesenchymal transition (EMT) andmetastasis in bladder and
pancreatic cancers (36, 47, 48). In contrast to the role of miR-
205, members of the miR-17 family (miR-17, miR-20b, and miR-
106a) are regulated by p63 and Myc, and were found to target
Rb, p21, and JNK2, suggesting that they are oncomirs (49–51).
Additionally, p63 can repress the prominent cell cycle regulators
miR-34a and miR-34c, thereby affecting cellular progression in a
p53-independent manner (52).

A data mining approach also identified p63 and the p53-related
p73 gene as key regulators of microRNAs differentially expressed
in ovarian carcinomas, including miR-200a, miR-200b, and miR-
429 (53). Similarly, mir-193a was repressed by both p63 and p73,
although its induction leads to p73 inhibition (54). For more on
p63 regulation of microRNAs, see the review by Candi et al. (55).

Taken together, p63, like p53 and p73, can regulate a host of
processes, some of which are known regulators for or against
tumor growth. As suggested by the opposite expression of p63
in different tumor types, the context of the cell type appears to
be critical to which p63 targets have the dominant effects in each
cell. Whether targets are differentially expressed or have different
activities in different cell types needs to be investigated further.

As ∆Np63 is required for the formation of stratified epithelial
layers and is the primary isoform expressed in the basal layer of
epithelial tissues, it is subject to multiple modes of tissue-specific
regulation (13, 14). As described below, a number of signaling
pathways and transcription factors have been identified that affect
p63 expression in epithelial cells (Figure 1).

FIGURE 1 | Signaling pathway regulation of ∆Np63. Signaling pathways
reported to regulate ∆Np63 levels are indicated. The thick, blue arrow indicates
autoregulation. *Note that the Hedgehog and NF-κB pathways repress ∆Np63

levels while simultaneously activating expression from the TAp63 promoter. See
text for feedback regulation where p63 regulates multiple components of these
pathways (not shown here).
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Notch Signaling

One prominent pathway is Notch, which can control epidermal
differentiation as well as other developmental pathways (56, 57).
Notch activation was found to suppress p63 expression in ker-
atinocytes, ectodermal progenitor cells, and mammary epithelial
cells (58–60). The repression in keratinocytes was dependent on
the IRF3 and IRF7 transcription factors (59). In mouse mammary
epithelial cells, the Notch-mediated repression of p63 functions
through the CBF1/RBP-Jk transcription factor (60). In addition
to these cases, there has been a report of Notch activation of
p63 in fibroblasts (61), suggesting differing cell-specific modes of
regulation.

The Notch-to-p63 pathway is subject to feedback regulation
by ∆Np63, as it can activate Notch pathway gene expression
(58, 60, 62). This loop could delineate the boundary between
basal and luminal mammary cells as well as allow for ectodermal
specification during development (58, 60).

As with p63 mutations, alterations in interferon regulatory
factor 6 (IRF6) are associated with craniofacial abnormalities like
cleft lip and/or palate (63, 64). Both IRF6 and p63 are required for
normal palate development, so the finding that ∆Np63 induces
IRF6 expression is logical, but surprisingly, IRF6 in turn causes
proteasomal degradation of ∆Np63 (65, 66). Notch has also
been found to activate IRF6 expression in keratinocytes (67).
Together, these results suggest a Notch/p63/IRF6 axis regulates
genes involved in epithelial development. Importantly, Notch,
p63, and IRF6 genes were foundmutated in about 30% of HNSCC
cases, suggesting that this developmental pathway can be hijacked
to promote tumor growth (68).

Hedgehog Signaling

Hedgehog is another essential pathway for development (69, 70),
and it is reported to regulate p63 expression. Hedgehog activation
is seen in various cancers including lung, prostate, and breast (71,
72). Hedgehog ligands including IndianHedgehog (IHH) can lead
to activation of the Gli3 transcription factor, while absence of
these ligands leads to a repressive form of the Gli3 transcription
factor, termed Gli3R (73, 74). This balance of Gli3 forms can
control p63 isoform formation, as IHH induction of Gli3 actually
upregulates TAp63 expression while reducing ∆Np63 promoter
usage (75). Again, there is a regulatory loop here since TAp63
expression can increase IHH expression. Similarly, both TA and
∆Np63 β and γ isoforms can activate Sonic Hedgehog (SHH)
expression and recently ∆Np63 was found to induce expression of
Gli2 and the Hedgehog receptor Ptch1, affecting mammary stem
cell renewal (76, 77). In addition, it was posited that some of the
developmental defects observed in the p63−/− mice may occur
due to subsequent repression of SHH and other Hedgehog path-
way genes (76).Other connections between the p63 andHedgehog
pathways include ∆Np63 activation of Gli2 and Gli3 as well as
suppressor of fused (SUFU) (78–80). As SUFU is an inhibitor of
the Gli proteins, these contrasting effects show the complexity of
this signaling system. Nevertheless, together these results suggest
a strong connection between the Hedgehog and p63 signaling
pathways that could control normal epithelial differentiation or
cancer progression.

Wnt Signaling

Strikingly, mutations in the WNT genes also cause similar cranio-
facial abnormalities as p63 and IRF6 mutations (81, 82). More-
over, mutations in the Pbx genes in mice resulted in a similar
phenotype and perturbed Wnt signaling (82). Further analysis
demonstrated a Pbx-Wnt9b/Wnt3-p63-IRF6 signaling axis con-
trolling development of the midfacial ectoderm (82). Chromatin
immunoprecipitation and reporter genes suggested that p63 is
directly regulated by theWnt pathway through binding of Lef1/Tcf
with β-catenin to a region between the TA and ∆Np63 promoters
(82), although another report identified a β-catenin responsive
site within the proximal ∆Np63 promoter (83). Recently, the
Hedgehog pathwaywas also shown to be connected to craniofacial
defects (84). Compound mutations in the Hedgehog pathway
genes Hedgehog acyltransferase (Hhat) and Patched 1 (Ptch1)
led to a cleft lip-like phenotype and these acted through reduced
Wnt-p63-IRF6 signaling.

Analysis of keratinocyte differentiation has led to a different
characterization of the p63, Wnt, and Notch signaling pathways.
Knockdown of p63 caused reduced Wnt and Notch signaling (50,
51), suggesting that they lie downstream of p63 in contrast to
the models of craniofacial development. This could be reconciled
as part of a feedback regulation pathway as described above for
Notch and p63. Additionally, the activation of Wnt and Notch by
p63 may be dependent upon the availability of other transcription
factors. For instance, the depletion of p63 led to reducedMyc gene
expression via lowered Wnt/β-catenin and Notch signaling, and
this is consistent with the requirement of both p63 and Myc for
keratinocyte proliferation (50, 51). p63 was also found to regulate
the expression of Myc and β-catenin in esophageal squamous
cell carcinomas, suggesting the general functioning of a p63/β-
catenin/Myc pathway in tumorigenesis (85). Finally, ∆Np63 was
shown to upregulate the Wnt receptor Fzd7, leading to enhanced
mammary stem cell formation and clonogenic potential (86).

FGFR2/EGFR Pathways

Mutations in the FRGR2 gene (also known as KGFR) can also
lead to craniofacial disorders such as cleft lip and Crouzon’s
syndrome (87, 88). The splice variant FGFR2-2b is an epithelial-
specific receptor for ligands like FGF1 and FGF7 (KGF), and is
required for embryogenesis and adult tissue homeostasis (89).
FGFR signaling and ∆Np63 can influence each other, as ∆Np63
activates expression of FGFR2 in thymic epithelial cells (90) and
KGF-induced ∆Np63 expression in limbal epithelial cells (91).
KGF’s effects on ∆Np63 require p38 MAPK, suggesting a novel
pathway for regulation of p63 (91). Furthermore,mutations in p63
that cause AEC syndrome led to impaired FGFR2 gene expression
and increased splicing of themesenchymal FGFR2-2c isoform (11,
26). Together, the combination of FGFR2 activation of ∆Np63
and ∆Np63 induction of specific isoforms of FGFR2 are likely to
lead to increased proliferation of specific epithelial cell types. This
could enhance proliferation of progenitor cells, but might block
progression of specific epithelial cancers.

Interestingly, FGFR2 can induce expression of the epithelial-
specific transcription factor Elf5, and deletion of Elf5 causes
altered expression of ∆Np63 in the luminal compartment of
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mouse mammary tissue (92–94). This suggests a pathway for cell
type-specific expression of ∆Np63 mediated by Elf5.

The tyrosine kinase receptor EGFR has also been found
to induce ∆Np63 expression. In one case, this was through
phosphatidylinositol-3-kinase (PI3K) signaling in keratinocytes
(42), while in two types of carcinomas EGFR activation of ∆Np63
was found to be mediated by STAT3 (95, 96). STAT3 was also
required for ∆Np63 expression in limbal keratinocytes (97). The
inhibition of the STAT3 growth-stimulatory pathway allowed the
concomitant differentiation of the limbal keratinocytes, further
suggesting the importance of ∆Np63 regulation in these and likely
other epithelial cells. The PI3K and STAT3 pathways may be
connected through mTOR signaling, as Ma et al. (62) found that
PI3K activation of mTOR led to mTOR-dependent activation of
the STAT3-p63-Jagged pathway. This highlights the interconnect-
edness of these signaling pathways, and the role of STAT3 as a
key regulator of p63. However, a clear mechanism for how STAT3
directly regulates p63 remains to be determined.

Regulation of ∆Np63 during the Epithelial
to Mesenchymal Transition

Epithelial cells can undergo an EMTduring development and dur-
ing carcinogenesis, progressing to a more invasive and metastatic
phenotype. This differentiation is thought to allow the cancer-
ous cells greater motility and increased metastatic potential [see
reviews by Thiery (98) and Kang and Massagué (99)]. The expres-
sion of ∆Np63 is repressed during this transition (100, 101).
Transcription factors that can induce EMT include Snail, Slug
(also known as Snail2), and Zeb1, and all of these can repress
∆Np63 in epithelial cells (100, 102–104). This inhibition, however,
may be due to a feedback loop, as ∆Np63 expression can inhibit
EMT by activation of miR-205, which suppresses Zeb1 and Zeb2
expression (36, 48).

Other transcription factors involved in control of EMT are
Ovol1 andOvol2 (85, 105). These factors can repress Zeb1 expres-
sion; however, it was also found that ∆Np63 expression increased
in Ovol1- and Ovol2-deficient cells, and that Ovol2 could bind
to several sites within the ∆Np63 promoter (85). Ovol2 may be
upstream of ∆Np63 in an EMT-inducing pathway; alternatively,
there may be feedback of Ovol2 to ∆Np63 (as there is with Zeb1
and ∆Np63) with ∆Np63 being an activator of Ovol2. In general, it
remains to be characterized how ∆Np63 is regulated during EMT
in different epithelial cell types.

Transcription Factor Control

While we have mentioned a number of transcription factors as
regulators of ∆Np63, a clear picture has yet to emerge on which
factors are critical direct regulators of ∆Np63 and through which
sequence elements they act near the ∆Np63 gene.

It is possible that multiple pathways regulate p63 through the
C/EBP family of transcription factors, as they have been repeatedly
found to regulate p63. C/EBPδ was found to bind to multiple
regions of the ∆Np63 gene in human keratinocytes (106, 107).
Antonini et al. (108, 109) assayed all conserved regions through-
out the p63 gene and identified two, termed as C38 and C40, in

the second intron of the ∆Np63 gene that affect expression in
mouse keratinocytes. The C40 region was needed for expression
in keratinocytes, while C38 provided repression during calcium-
dependent differentiation. They found that C/EBPα and β bound
to the C38 and C40 regions, and that overexpression of these
factors repressed reporter gene expression. In addition, siRNA
depletion of C/EBPα and β slightly increased p63 mRNA levels
in differentiating cells, suggesting that C/EBPα and β are direct
repressors of p63 expression. Furthermore, these investigators
found AP-2 to be an activator of the C40 region and the POU
domain protein Pou3f1 to be a repressor (108, 109). In contrast
to the repression by C/EBPα and β described above, another
group described a C/EBP site within the proximal human ∆Np63
promoter, which was required for expression in A431 epider-
mal carcinoma cells (100). C/EBPα was also found to positively
activate a site within the mouse ∆Np63 promoter in mouse
keratinocytes (110). Finally, after chemical stress, the cytosolic
NAD(P)H:quinone oxidoreductase 1 (NQO1) was found to bind
to and inhibit C/EBPα, partially accounting for its inhibition of
∆Np63 expression (110, 111). These contrasting effects of C/EBP
may reflect different family members, DNA-binding sites or cell
types used, suggesting that further studies are needed to better
understanding of the roles these factors play in regulating p63.

Other transcription factors have also been found to regulate
the p63 gene. An OCT4 binding site within the TAp63 promoter
activates its expression, suggesting its involvement in stem cell
regulation (112). Another pluripotency factor, Sox2, bound to
p63 protein and localized with it to common gene loci in chro-
matin immunoprecipitation experiments. This binding occurred
in squamous cell carcinoma cells, but not in embryonic stem
cells, suggesting that p63 may co-opt pluripotency factors for
differentiated cell-specific expression (105).

p63 Autoregulation and Interaction with
p53

p63 positively activates its own expression through binding to the
C38 and C40 intronic enhancers as well as to its own proximal
promoter (108, 109, 113). Overexpression of the ∆Np63γ isoform
increased expression of ∆Np63α in HeLa cells, and of a pro-
moter reporter gene in keratinocytes (108, 113). Overexpression
of ∆Np63 was also found to increase expression of endogenous
∆Np63 in a nasopharyngeal carcinoma cell line where activa-
tion was dependent upon the STAT3 transcription factor (95).
Whether binding of p63 to its promoter is direct or through
another transcription factor, the evidence consistently shows that
it positively feeds back to augment its own expression.

Initially, p63 expression was found to be suppressed by stresses,
such as UV irradiation, that stimulate p53 expression (114–116).
Binding of p53 to the ∆Np63 proximal promoter was detected in a
mammary epithelial cell line, suggesting direct regulation by p53
of ∆Np63 expression (116). Mutant p53 proteins could also bind
to the p63 protein in tumor cell lines and inhibit its activity (117),
while in carcinoma cells it was shown that mutant p53 together
with SMADs could sequester p63, resulting in inhibition of p63
and increased metastatic potential (45). While these results sug-
gest that wild-type andmutant p53 can repress p63 expression and
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function, more work is needed to demonstrate the significance of
this effect in human cancers, and exactly how this could contribute
to tumorigenesis.

Post-Transcriptional Regulation

p63 levels are also regulated by miRNA, ubiquitin-dependent
proteasomal degradation, and protein phosphorylation. Notably,
miR-203 can repress p63 expression in supra-basal epithelial cells,
contributing to definition of the border between progenitor and
differentiated epithelial cells (118, 119). In addition, miR-203
expression was activated during luminal mammary epithelial dif-
ferentiation and ectopic expression of miR-203 stimulated EMT
(120). These results suggest that miR-203 is an essential part of
the epithelial differentiation pathway.

OthermiRNAshave also been found to regulate p63 expression.
miR-92 targets ∆Np63α and β in the HaCaT keratinocyte cell
line and in myeloid cells, respectively, and miR-302 suppressed
p63 expression in germ cells (121, 122). The apotosis stimulating
protein of p53 (ASPP) family of p53 coactivators has similarities
with protein phosphatases (123). A related family member iASPP
(also known as PPP1R13L) is an inhibitor of apoptosis and can
also bind to p63 (124). The expression of iASPP in the basal layer
of skin cells is strikingly similar to that of p63, and knockdown of
iASPP promoted epithelial differentiation (125). However, rather
than regulating p63 by protein–protein interaction, Chikh et al.
(125) found that iASPP inhibits the expression of two miRNAs,
miR-574-3p and miR-720, which inhibit p63 expression. There
is an auto-regulatory loop as p63 is needed for expression of
these miRNAs and binds to the promoter of the iASPP gene.
These experiments point to a critical role of iASPP and repression
of its target miRNAs in maintenance of p63 expression and the
epithelial phenotype.

p63 protein stability is also regulated by the ubiqui-
tin–proteasome system, adding another layer of regulation (126).
One example is p53-induced RING-H2 (Pirh2), an E3 ubiquitin
ligase, which can directly bind to p63 and cause its poly ubiquiti-
nation and degradation in keratinocytes (127, 128). Pirh2 was also
a transcriptional target of ∆Np63, establishing an auto-regulatory
loop, and was required for epithelial differentiation. Another E3
ubiquitin ligase, Ring1B, part of the polycomb repressive complex
1 (PRC1), was found to target p63 (129). Ring1b is overexpressed
in breast and pancreatic cancer cells (129, 130), suggesting a
possible mechanism for p63 suppression in these tumors.

While p53 is stabilized by DNA damaging agents, such as
UV irradiation, ∆Np63 is degraded (115, 131, 132). Two mech-
anisms related to the NF-κB pathway have been found to mediate
this degradation. In the first, IKKβ binds to ∆Np63 and phos-
phorylates it to induce ubiquitination and degradation (133). A
second mechanism is direct binding of the p65 subunit of NF-
κB to ∆Np63 in cisplatin-treated cells, leading to proteasomal
degradation of ∆Np63 (134). The reduction of ∆Np63 augmented
activation of p53 target genes and may contribute to cell death
in UV-damaged cells. NF-κB repression of p63 may also have a
role in epithelial cell differentiation, as overexpression of the NF-
κB factor p65 in epithelial cells led to p63 downregulation and
increased EMT (103). ∆Np63 also bound to target genes with

p65, suggesting that these two factors coordinately regulate a gene
program promoting cell survival (135).

NF-κB can also activate the TAp63 promoter, suggesting that
a shift to the TAp63 form could also underlie the DNA damage
response (136). Again, there is an auto-regulatory loop where
TAp63 activates p65 expression as well as stabilizes p65 protein
by direct binding (137, 138).

An alternativemechanism for ∆Np63 degradation as part of the
DNA damage response is phosphorylation on threonine 397 by
the protein kinase HIPK2 (139). HIPK2 has previously been iden-
tified as a DNA damage-induced kinase targeting p53 (140), such
that it provides amechanism to coordinate p63 levels with p53 and
other aspects of the DNA damage response. For more regulators
of p63 protein stability, see the review by Li and Xiao (126).

Conclusion

p63 has been termed as a master regulator of epithelial cells, and
it is often suppressed in order for these cells to differentiate (21,
141, 142). We now understand more about how p63 is regulated,
uncovering a large array of signaling pathways (Figure 1) and
feedback regulation that controls expression of components of
the signaling pathway as well as p63. Besides the processes of
differentiation and development, p63 is also regulated during the
DNA damage response, suggesting that it can mediate the more
immediate fate of cells. The regulation of ∆Np63 expression, the
predominant form in epithelial cells, includes transcriptional and
post-transcriptional components. The relative importance of each
pathway is still unclear and their usage will likely vary in different
cell types and developmental stages. While there are multiple
reports of some pathways and mechanisms, common regulatory
sequence element(s) for control of the p63 gene across systems
have yet to be established.

It will also be important to understand how modulation of p63
levels affects cancer formation. The combination of heterozygous
p63 and p53 genotypes in mice yielded conflicting results, giving
either greater or reduced tumor burdens (143, 144). Additionally,
while ∆Np63 is often highly expressed or amplified in squamous
carcinomas, other tumors such as esophageal adenocarcinomas
and hepatocellular carcinomas generally lack expression (145–
147). Naturally, these cancers arise from diverse tissues, but it is
confounding that p63 can have oncogenic effects in some cases
and tumor suppressive ones in others. As EMT is part ofmetastatic
progression of some carcinomas, it is interesting that repression of
p63 was seen during this differentiation process; is this regulation
critical for progression of tumor cells to a more aggressive state?
Further, which of the pathways described here, if any, are altered
in cancer cells and modulate p63 levels in a critical manner?

Other open questions concern p63 promoter usage and splic-
ing – what factors determine the balance of usage of the TA and
∆N promoters, and what governs the presence of different 3′
splicing isoforms? How does the balance of these 3′ isoforms lead
to differences in development or oncogenesis? Finally, can the
signaling pathways that control p63 levels be controlled to provide
a therapeutic benefit in specific cancers? We can hope that the
following years will bring a greater understanding of this master
regulator of epithelial biology.
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