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Mutant p53 - heat shock response
oncogenic cooperation: a new
mechanism of cancer cell survival

Evguenia M. Alexandrova and Natalia D. Marchenko™

Department of Pathology, Stony Brook University, Stony Brook, NY, USA

The main tumor suppressor function of p53 as a “guardian of the genome” is to respond
to cellular stress by transcriptional activation of apoptosis, growth arrest, or senescence in
damaged cells. Not surprisingly, mutations in the p53 gene are the most frequent genetic
alteration in human cancers. Importantly, mutant p53 (mutp53) proteins not only lose their
wild-type tumor suppressor activity but also can actively promote tumor development.
Two main mechanisms accounting for mutp53 proto-oncogenic activity are inhibition
of the wild-type p53 in a dominant-negative fashion and gain of additional oncogenic
activities known as gain-of-function (GOF). Here, we discuss a novel mechanism of
mutp53 GOF, which relies on its oncogenic cooperation with the heat shock machinery.
This coordinated adaptive mechanism renders cancer cells more resistant to proteotoxic
stress and provides both, a strong survival advantage to cancer cells and a promising
means for therapeutic intervention.
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Oncogenic Functions of Mutant p53

Mutations in the p53 tumor suppressor gene are the most frequent tumor-associated genetic alter-
ations throughout the entire spectrum of human cancers (1). In contrast to other tumor suppressors
that are commonly inactivated by frameshift and nonsense mutations resulting in loss-of-function,
the majority of p53 alterations are missense mutations clustered in six “hot-spots” of the DNA-
binding domain of p53 (2). Numerous mouse models, in vitro and clinical studies have demonstrated
that in addition to simple loss of the tumor suppressor function of p53, many mutant p53 (mutp53)
proteins gain neomorphic oncogenic activities, termed as gain-of-function (GOF) (2, 3). These
GOF activities contribute to malignant transformation by enhancing cells proliferation, invasion,
metastatic ability, and chemoresistance (2, 3). The concept of mutp53 GOF is strongly supported by
human clinical studies on Li-Fraumeni syndrome (LFS) patients carrying germline p53 mutations
and by GOF mouse models (4-7). Thus, several studies have found that the median age of cancer
onset in LFS patients with mutp53 missense mutations is 9-20 years earlier than in LFS patients with
loss of p53 expression (8, 9). Moreover, clinical evaluation of 1,794 breast cancer patients revealed
that somatic p53 mutations are also associated with a shorter overall survival, independently of
stage, grade, and hormone receptors status (10), similarly to other cancer types harboring mutp53
(1). This is fully confirmed by mouse mutp53 knock-in models, manifesting GOF by increased

Abbreviations: EGFR, epidermal growth factor receptor; GOF, gain-of-function; HSE, heat shock elements; HSF1, heat shock
factor 1; HSP, heat shock protein; LFS, Li-Fraumeni syndrome; mutp53, mutant p53; NF1, neurofibromatosis type 1; PDGEFR,
platelet-derived growth factor receptor.
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metastases, broader tumor spectrum, more invasive tumor fronts,
more malignant histology, and higher tumor bulk compared to
p53-null tumors (4-7).

A broad spectrum of GOF activities has been described for
mutp53 [reviewed in Ref. (2, 3)]. Among the most prominent
ones is the ability of mutp53 to promote cells proliferation, inva-
sion, and motility by stimulating signal transduction pathways
downstream of growth factor receptors, such as TGFf receptor
(11), EGFR (4, 12, 13), MET (14), PDGFR (15), as well as
ErbB2/Her2 (4, 13) discussed below. Also, a number of in vitro
and in vivo studies have described a critical role of mutp53 in
tumor initiation via enhanced generation and expansion of cell
populations with stem cell/cancer stem cell properties (4, 5, 16,
17). In addition, recent reports indicate that mutp53 promotes the
inflammatory response and inflammation-associated cancers by
stimulating NF-xB activation (18, 19). Finally, a novel intriguing
mutp53 GOF activity has been described in tumor-associated
fibroblasts (20, 21), suggesting that mutp53 can play oncogenic
roles not only in cancer cells but also in the tumor stromal
cells.

Mechanistically, although the majority of mutp53 missense
mutations map to its DNA-binding domain, mutp53 GOF activ-
ities are still largely attributed to transcriptional regulation of
specific target genes, which differ from typical wild-type p53
targets [reviewed in Ref. (2)]. While mutp53-specific DNA con-
sensus sites have not been identified, it appears that mutp53 is a
potent modulator of other transcription factors and co-factors, via
regulation of their DNA binding and transcriptional properties,
such as p63 (11, 12, 22, 23), p73 (22), SP1 (24), SREBP (25), and
others [reviewed in Ref. (2, 3)] including the master heat shock
regulator HSF1 (13), discussed below.

A critical feature of most mutp53-harboring tumors is signifi-
cantly increased mutp53 protein stability, manifested by massive
mutp53 accumulation in tumors, but not in normal tissues (6,
26). We and others showed that cancer-specific accumulation of
mutp53 is crucial for many aspects of tumorigenesis and is the
key determinant of mutp53 GOF in vitro and in vivo (7, 11,27, 28).
Thus, acute downregulation of stabilized mutp53 by RNA interfer-
ence (RNAI) strongly inhibits malignant phenotypes (11, 27, 28).
For example, we found that stable and Tet-inducible knockdown
of endogenous mutp53 in breast (MDA231) and colon (SW480)
cancer cells by p53 RNAi dramatically inhibits growth of these
human cancer cells in vitro and in xenografts and their invasive
properties (28). These data are consistent with other reports show-
ing that mutp53 downregulation by RNAi suppresses invasion (11,
28), restores normal mammary architecture in 3D culture of breast
cancer cell lines (25), and inhibits metastasis in vivo (11, 15). Thus,
cancer cells appear to be addicted to high levels of mutp53 for their
survival and oncogenic properties.

Addiction of cancer cells to stabilized mutp53 underscores the
translational significance of mutp53 as a promising therapeutic
target. However, targeting mutp53 by conventional modalities
is a very challenging task, since mutp53 is neither an enzyme
nor a cell surface protein. Therefore, one promising alternative
for abolishing mutp53 GOF in mutp53-harboring cancers could
be its depletion/destabilization. We recently proposed that this
could be achieved by exploiting mutp53 interdependence with

the heat shock response machinery (13, 28, 29). Thus, we showed
that mutp53 has a novel GOF activity as an essential regulator of
protein homeostasis in cancer. Specifically, it augments the pro-
survival heat shock response machinery via activating the master
transcriptional regulator heat shock factor 1 (HSF1), which in a
positive feed-forward loop further stabilizes mutp53 itself, along
with other tumor-promoting clients (13). This novel oncogenic
GOF activity of mutp53 may represent a unique adaptive mech-
anism for superior survival of mutp53-harboring cancer cells in
the hostile tumor environment.

Mutant p53 and the Heat Shock Response

Inherent to malignant transformation is the constant proteotoxic
stress due to aneuploidy, accumulation of reactive oxygen species
(ROS), hypoxia, acidosis, and accumulation of mutated, confor-
mationally aberrant proteins (30-32). To overcome these poten-
tially deadly conditions for their survival, cancer cells heavily
depend on molecular chaperones, heat shock proteins (HSPs),
whose induction in cancer constitutes the powerful adaptive pro-
survival mechanism known as the heat shock response (32).
Under proteotoxic stress, induction of HSPs restores protein
homeostasis by repairing and proper folding of damaged and
mutated proteins with aberrant conformation. HSPs induction in
cancer cells is triggered by the transcription factor HSF1 that binds
to unique DNA sequence motifs known as heat shock elements
(HSEs) in the promoters of HSPs, inducing their transcription
(33). In unstressed cells, HSF1 is sequestered by HSP90 predomi-
nantly in the cytoplasm (30). However, proteotoxic stress induces
HSF1 phosphorylation, liberation from the HSP90 inhibitory
complex, trimerization, and translocation to the nucleus to acti-
vate HSPs expression (34). It has been shown that phospho-
rylation of HSF1 at serine 326 (pSer326) is pivotal to render
HSF1 transcriptionally competent (30, 34). Also, HSF1 stabiliza-
tion and activation may be induced by genetic changes such as
loss of the neurofibromatosis type 1 (NF1) tumor suppressor
gene (35).

The essential role of HSF1 in malignant transformation and
progression is well documented in literature. Specifically, HSF1
induces a diverse array of HSP-mediated pro-survival mecha-
nisms, including stabilization of oncogenic clients, altered glu-
cose metabolism and signal transduction, and upregulation of
protein translation (4, 32, 35, 36). Interestingly, a recent study
by the Linquist group has shown that HSF1 has both distinct
and overlapping activities in the maintenance of normal pro-
tein homeostasis vs. tumorigenesis (36). In cancer HSF1 orches-
trates, a wide range of fundamental cellular processes that are
not related to heat shock response but are critical for malig-
nant transformation and maintenance, including cell-cycle con-
trol, ribosomal biogenesis, protein translation, and inhibition of
apoptosis (36). Importantly, cancer-specific HSF1-bound genes
(“HSF1 cancer signature”) were found enriched in the biopsies
of human breast, colon, and lung tumors and strongly corre-
lated with poor patient outcomes underscoring the critical role
of HSF1 in tumorigenesis (36). In agreement, another clinical
study found HSF1 upregulation in 80% of breast cancers, which
was also associated with high histologic grade and increased
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mortality (37). Finally, the pivotal role of HSFI in tumorigenesis
is demonstrated in various animal cancer models. For example,
genetic deficiency of HSF1 dramatically reduces mammary tumor
formation in the Her2/Neu mouse model (38), tumorigenesis in
the DMBA-induced skin carcinogenesis and in the mutp53 mouse
models (31).

The connection between mutp53 and heat shock response has
been known for nearly two decades (39). Thus, mutp53 and
HSP90 (one of the most explored HSF1 transcription targets) were
shown to physically interact, which was linked to cancer-specific
mutp53 stabilization (28, 29, 39, 40). We and others subsequently
demonstrated that pharmacological or RNAi-mediated inhibition
of HSP90 leads to ubiquitination and proteasomal degradation of
mutp53, mediated by the E3 ubiquitin ligases MDM?2 and CHIP
(28, 29, 40, 41). Moreover, it is likely that other E3 ligases might
be involved as well. Thus, a recent report suggests that arsenic
trioxide, a drug used to treat acute promyelocytic leukemia, coop-
erates with HSP90 inhibitors and promotes mutp53 degradation
in tumor cells by the Pirh2 ubiquitin ligase (42). It would be inter-
esting to see whether Pirh2 is inhibited by HSPs during malignant
transformation similarly to MDM2 and CHIP (29, 40), leading
to mutp53 aberrant stabilization, and fueling of its oncogenic
properties.

An important evidence for mutp53-HSP90 oncogenic coop-
eration comes from the studies showing that HSP90 inhibition
shows preferential cytotoxicity in mutp53 - rather than in wild-
type p53 or p53null - cancer cells and destabilizes mutp53
(28, 29). In vivo studies also provide compelling evidence for
mutp53-heat shock response oncogenic cooperation. Thus, HSF1
genetic deficiency prolonged median overall survival of mutp53
mice (R172H) in a dose-dependent manner, from 427 to 470
to >622days in HSF1™/* vs. HSF1™/~ vs. HSF1~/~ animals,
respectively (31). This strongly suggests that either (i) HSF1/HSPs
directly maintain mutp53 levels/activity or (ii) the oncogenicity
of mutp53 critically depends on HSF1 and/or HSF1-mediated
transcriptional program, or both. Although mutp53 levels were
not examined in this study (31), it is tempting to speculate that
they were reduced in HSF1-deficient tumors as a result of insuffi-
cient transcriptional upregulation of HSP90, leading to restrained
malignant transformation. In support of this idea, we previously
showed that shRNA-mediated knockdown of HSF1 in mutp53
cancer cells induces rapid destabilization of mutp53 and reduces
its half-life, along with reduction of HSP90 levels (29). Further
studies are needed to confirm this idea in vivo and to test the
other possible mechanisms of mutp53-HSF1 oncogenic cooper-
ation. Besides that, it would be interesting to examine whether
other HSFI1 transcriptional chaperone targets besides HSP90,
e.g., HSP70 and HSP27, also can stabilize mutp53 in cancer
cells and via what mechanisms. Interestingly, a novel mechanism
of mutp53 degradation via chaperone-mediated autophagy was
recently reported. It has been shown that heat shock cognate
protein 70 (HSC?70), a constitutive cytosolic protein (not regulated
by HSF1), can target mutp53 to lysosomal degradation, but only in
non-proliferating tumor cells under the condition of proteasomal
and macroautophagy inhibition (43). However, the importance
of this mechanism in proliferating cancer cells remains to be
elucidated.

Mutant p53 Induces HSF1 Transcriptional
Activity via Her2 and EGFR

Although mechanisms regulating the heat shock response in
tumor cells are not fully understood, it is well established that heat
shock response strongly depends on the transcriptional activity
of HSFI. Stress-activated transcriptionally competent form of
HSF1 is a homo-trimer, which can be post-translationally mod-
ified resulting in HSF1 nuclear translocation and binding to
HSP promoters (27, 30). In response to proteotoxic stress, HSF1
becomes phosphorylated at serine 326, which is essential for HSF1
transcriptional activity (27, 31).

A number of studies suggest that the Her2/EGFR2/Neu sig-
naling pathway is an important activator of HSFI, at least in
breast cancer. Thus, Her2 overexpression in MCF7 cells leads
to increased HSF1 levels and its trimerization (44). Also, HSF1
is necessary and sufficient for Her2-induced transformation of
normal breast epithelial cells MCF10A in vitro (45). Finally, HSF1
genetic knockout significantly reduces mammary tumorigenesis
in the ErbB2 transgenic mouse model (38). Clinically, the pres-
ence of high levels of nuclear HSF1 in Her2-positive mammary
tumors correlates with poor patient prognosis (37). Moreover,
recent studies demonstrate existence of a linear signaling pathway
between Her2 and HSF1 in Her2-positive breast cancer, both
in vitro (13, 46, 47) and in vivo (4, 47). Thus, Schulz et al. showed
that Her2 overexpression constitutively activates HSF1, resulting
in stabilization of HSP90 clients, such as MIF, AKT, mutp53,
and HSF1 itself (47). Moreover, pharmacological inhibition of
Her2 strongly suppresses HSF1 activation in vitro and in the
Her2 mouse transgenic model, which correlates with reduced
mammary tumor progression (13, 47). Mechanistically, Her2
signals via the phosphoinositide-3 kinase (PI3K)-AKT axis to
induce pSer326 phosphorylation of HSF1 and its transcriptional
activity (47).

Intriguingly, the Lindquist group found that activation of HSF1
can be triggered not only by environmental and proteotoxic insults
but also by genetic alterations. Thus, loss of the tumor suppres-
sor gene neurofibromatosis type 1 (NF1) increases HSF1 levels
and induces HSF1 phosphorylation at Ser326, which depends
on dysregulated RAS/MAPK signaling, suggesting a key role of
RAS/MAPK pathway in the transcriptional activation of HSF1
(35). Consistently, Stanhill et al. showed that RAS activation
induces HSF1-mediated upregulation of HSP70 (48). These find-
ings are strongly supported by clinical data. Thus, elevated expres-
sion of HSF1 and pSer326-HSF1 was found in surgical specimens
of malignant peripheral nerve sheath tumors driven by loss of NF1
(35). Given the importance of HSF1 in cancer cell physiology (36),
it will be interesting to see whether loss of other tumor suppressor
genes, especially those leading to MAPK/PI3K pathway activa-
tion, could trigger transcriptional activity of HSF1 in different
tumor types.

How exactly does mutp53 cooperate with HSF1 in cancer? On
one hand, as mentioned above, HSF1 genetic ablation profoundly
alleviates tumorigenesis driven by mutp53 in vivo (31), which
could be due to insufficient levels of HSP90 to support mutp53
accumulation in tumors (29, 39, 40). On the other hand, our
recent findings demonstrate that mutp53 is also an important
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determinant of HSF1 activity. Thus, overexpression of various
mutp53 alleles in cancer cell lines leads to upregulation of HSF1,
with concurrent increase in heat shock response and prototypical
HSP clients (13). Furthermore, we found that this mutp53-HSF1
positive feed-forward loop depends on growth factor receptor
signaling, specifically EGFR and Her2 pathways, for HSF1 tran-
scriptional activity (4, 13).

Since mutp53 is known to exert its GOF activities via other
growth factor receptor signaling pathways besides Her2 and
EGFR (see above), these pathways could also be involved in
mutp53-HSF1 oncogenic cooperation. Preliminary indirect evi-
dence of this possibility comes from the finding by the Linquist
lab that HSF1 enables cellular transformation of mouse embryo
fibroblasts via PDGFRP signaling (31), which was shown to be
positively regulated by mutp53 as well (15). However, it remains
to be determined whether other growth factor receptor signaling
pathways — besides EGFR and Her2 - can modulate HSF1 activity
in a mutp53-dependent manner.

Recently, we found another, more direct mode of the mutp53-
HSF1 circuit regulation in cancer cells. Thus, upon proteotoxic
stress and nuclear translocation, phospho-activated pSer326-
HSF1 interacts (directly or indirectly) with mutp53. Moreover,
mutp53 facilitates HSF1 recruitment to specific DNA sites (HSEs)
in target gene promoters and augments a broad pro-survival
HSF1-induced transcriptional program, including expression of
HSPs (13).

Finally, as mentioned above, HSF1 transcriptional activity can
be stimulated by genetic alterations in cancer (35). Thus, the
well-known ability of mutp53 to induce genomic instability (49)
could in theory be another mechanism contributing to HSF1
activation in cancer, which remains to be tested.

Based on the described findings, we propose a novel mecha-
nism of mutp53 GOF, via regulation of the heat shock response, as
depicted in Figure 1. We propose that mutp53 through enhanced
recycling (12) and/or stability of EGFR and Her2/ErbB2 - aug-
ments MAPK and PI3K signaling, leading to phospho-activation
of HSF1. Concurrently, mutp53 directly interacts with activated
HSF1 and facilitates its binding to specific promoter elements and
stimulates transcription of HSPs. In turn, HSPs further stabilize
their oncogenic clients, including EGFR, Her2, and mutp53 itself
(via suppression of ubiquitin ligases MDM2, CHIP, etc.), rein-
forcing tumorigenesis (Figure 1). Importantly, this mechanism
has been confirmed by in vivo studies. First, clinical data show
a strong enrichment (83%) of the Her2-positive breast cancer in
LFS women with p53 germline mutations, compared to 20-25%
Her?2 positivity in patients with sporadic breast cancer (50). This
suggests that the presence of mutp53 germline mutations strongly
predisposes Li-Fraumeni women specifically to the initiation of
Her2-driven breast cancer. Second, we found a strong correla-
tion between mutp53 and nuclear pSer326-HSF1 levels only in
strongly Her2-positive (3+), but not in Her2-negative/ER/PR-
positive human breast cancer specimens (13). Finally, we demon-
strated that the Her2/ErbB2 signaling is much more amplified in
mutp53 (R172H) compared to p53null tumor cells in the MMTV-
ErbB2 mouse breast cancer model, leading to a more aggressive
disease (4).

Many physiological consequences can result from the described
mutp53-HSF1 liaison in cancer cells. First, the resulting increased

expression of HSPs endows cancer cells with a superior resistance
to proteotoxic stress caused by harsh tumor environment (13).
Second, it leads to enhanced stabilization of numerous tumor-
promoting HSP oncogenic clients, including Her2, EGFR, and
mutp53 themselves, which cell-autonomously further amplify this
feed-forward circuit and oncogenesis. Third, HSPs have been
shown to inhibit oncogene-induced senescence pathways in can-
cer cells (51). Thus, by enhancing HSP expression at early stages
of tumorigenesis, mutp53 may facilitate disabling of oncogene-
induced senescence and therefore empower tumor progression.
Fourth, we showed that mutp53-HSF1-mediated amplification
of Her2 pathway can promote expansion of mammary stem
cells and induce cancer cell proliferation in vivo (4), which can
enhance tumor initiation and progression. Finally, by augment-
ing the broad HSF1-dependent transcriptional program, mutp53
may promote global cancer-related changes, including cell-cycle
progression, altered signaling pathways, metabolism, adhesion,
protein translation, etc. (36).

In sum, it is evident that the functional oncogenic interaction
between mutp53 and HSFI1 can initiate a wide range of tumori-
genic processes in the complex landscape of mutp53-harboring
cancers.

Summary

While mutations in the p53 gene are prevailing in many types
of cancer, specific therapeutic modalities tailored to mutp53-
harboring cancers have not been developed in clinic. Three poten-
tial mutp53-targeted therapeutic strategies have been recently
proposed: (i) restoration of wild-type p53 activity in mutp53
proteins (3), (ii) inhibition of mutp53-regulated downstream tar-
gets and pathways, e.g., proteins involved in integrin recycling
(12), the mevalonate pathway (25), PDGFRJ signaling (15), etc.
[reviewed in Ref. (3)], and (iii) mutp53 degradation (28, 29,
42). Overall, understanding the mechanisms underlying mutp53
oncogenic activity will no doubt have a profound translational
impact. However, more in-depth studies are needed to establish
whether these approaches will be clinically feasible and whether
pharmacological targeting of relevant pathways will achieve pref-
erential response in the patients with mutp53-harboring tumors.

The herein described novel oncogenic GOF role of mutp53 in
the regulation of heat shock response - via enhanced receptor
tyrosine kinase (Her2, EGFR) signaling and augmented HSF1
transcriptional activity — opens up novel therapeutic opportuni-
ties. We anticipate that the mutp53-HSF1 liaison, due to poten-
tiating Her2 and/or EGFR pathways, sensitizes cancer cells to
ErbB2 and EGEFR targeted therapies. Thus, inhibition of Her2,
EGFR, or their downstream effectors can intercept the sensitive
mutp53-HSF1-Her2/EGFR circuitry and therefore be a potent
approach for the treatment of Her2 (or EGFR) and mutp53
double-positive cancers. Convergence of the mutp53-HSF1 liai-
son on the Her2/EGFR pathways provides a strong rationale
to test the targeted therapies that are currently on the mar-
ket (e.g., Her2-targeted trastuzamab, pertuzumab, T-DM1, and
lapatinib) specifically in mutp53-harboring cancers. The most
promising cancer types expected to specifically respond to these
therapies are Her2/mutp53 double-positive breast cancer [con-
stituting 72% of all sporadic Her2-positive breast cancers (52)],
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FIGURE 1 | Mutp53 potentiates HSF1 activation in an
EGFR/Her2-dependent manner. Mutp53, by enhancing EGFR and Her2
signaling, potentiates HSF1 activity via a feed-forward loop and thereby
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up-regulates HSP9O clients including Her2, EGFR, and mutp53 itself. Thus,
mutp53-HSF1 oncogenic liaison endows cancer cells with superior survival and
chemoresistance, hence supporting cancer progression and maintenance.

pancreatic and non-small-cell lung cancer [both of which have
high prevalence of mutp53 (1) and are commonly treated with
EGEFR inhibitor Erlotinib], and possibly esophageal cancer [43%
mutp53-positive (1), 23% Her2-positive]. Although it remains to
be determined whether the Her2-positive subtype of esophageal
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