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Insulin-like peptides, such as insulin-like growth factors (IGFs) and insulin, induce a
variety of bioactivities, such as growth, differentiation, survival, increased anabolism,
and decreased catabolism in many cell types and in vivo. In general, IGFs or insulin
bind to IGF-I receptor (IGF-IR) or insulin receptor (IR), activating the receptor tyrosine
kinase. Insulin receptor substrates (IRSs) are known to be major substrates of receptor
kinases, mediating IGF/insulin signals to direct bioactivities. Recently, we discovered that
IRSs form high-molecular-mass complexes (referred to here as IRSomes) even without
IGF/insulin stimulation. These complexes contain proteins (referred to here as IRSAPs;
IRS-associated proteins), which modulate tyrosine phosphorylation of IRSs by receptor
kinases, control IRS stability, and determine intracellular localization of IRSs. In addition,
in these complexes, we found not only proteins that are involved in RNA metabolism but
also RNAs themselves. Thus, IRSAPs possibly contribute to modulation of IGF/insulin
bioactivities. Since it is established that disorder of modulation of insulin-like activities
causes various age-related diseases including cancer, we could propose that the IRSome
is an important target for treatment of these diseases.

Keywords: insulin-like growth factor, insulin, insulin receptor substrate, IRS-associated protein, IRSome, cancer

Abbreviations: BN-PAGE, blue native-polyacrylamide gel electrophoresis; CLIP, UV cross-linking and immunoprecipitation;
IGF-IR, IGF-I receptor; IGFs, insulin-like growth factors; IR, insulin receptor; IRES, internal ribosome entry site; IRSAPs,
IRS-associated proteins; IRSome, high-molecular-mass complexes containing IRSs; IRSs, insulin receptor substrates; mRNP,
messenger ribonucleoprotein; PH, pleckstrin homology; PI3K, phosphoinositide 3-kinase; PTB, phosphotyrosine binding;
rRNA, ribosomal RNA; SH, Src-homology; snoRNA, small nucleolar RNA; TNF, tumor necrosis factor; TSH, thyrotropin.
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Introduction

Bioactivities of Insulin-Like Peptides
Insulin-like peptides, such as insulin-like growth factors (IGF-
I and IGF-II) and insulin, are a family of peptide hormones
that are highly homologous in structure and function. Both IGFs
and insulin exert a variety of bioactivities that mainly increase
anabolism and decrease catabolism.

Insulin-like growth factor-I is produced in a wide range of
tissues including liver, a major IGF-producing tissue. Throughout
life, IGF-I levels are positively regulated by growth hormone and
insulin and negatively controlled by glucocorticoid and malnutri-
tion (1). Meanwhile, IGF-II exhibits its highest levels in the fetal
stage declining after birth. Both IGFs are constitutively secreted
and thus do not show apparent diurnal variation. IGFs exert
biological effects onmost cell types [except for liver and fat tissues,
in which IGF-I receptor (IGF-IR) declines after birth]. Therefore,
IGFs can act by autocrine and paracrine mechanisms as well as by
endocrine mechanisms. Many studies have analyzed bioactivities
of IGFs using a variety of cell types including primary cultured
cells and established cell lines, and have revealed that IGFs exert
relatively chronic effects including induction of cell proliferation,
differentiation, survival and migration, and maintenance of cell
functions (2). Together with other reports (3), IGFs are believed
to be indispensable for growth and development.

One of the characteristics of insulin is that this hormone plays
a major role in metabolic actions (4–6). In response to elevated
blood glucose levels, insulin is transiently secreted from pancre-
atic β cells, and it promotes glucose uptake and glycogen synthesis
and inhibits glycogenolysis and gluconeogenesis in the target tis-
sues such asmuscle, adipose, and liver. In addition to these actions
involved in glucose homeostasis, insulin also promotes uptake of
amino acids, protein synthesis, and lipid metabolism.

These insulin-like activities are well regulated by a variety of
hormones, growth factors, and cytokines under various physio-
logical conditions (7–10). The fine regulation makes normal folli-
cle development, implantation, development, growth, maturation,
metabolic control, and aging possible (3, 11). Whenever dysreg-
ulation of insulin-like activities is induced, growth disorders and
many types of age-related diseases including diabetes, cancer, neu-
rodegenerative disease, arteriosclerosis, and osteoporosis develop
(12–14). Especially, in the past several decades, evidence has
accumulated that deregulation of insulin-like activities is involved
in diseases including cancer. Using many types of cancer cells and
genetically engineered mice, it has been demonstrated that IGFs
and insulin promote cancer cell proliferation, motility, invasion,
and survival, and augmentation of these activities is proposed
as a mechanism for cancer development, growth, and metastasis
(15–17).

Signal Transduction of Insulin-Like Peptides
Insulin-like peptides transduce signals by binding to IGF-IR and
insulin receptors (IR) on the plasma membrane of target cells.
IGF-IR and IR are similar to each other and belong to the
receptor tyrosine kinase family. These receptors form disulfide-
linked hetero-tetramers composed of two α-subunits and two
β-subunits, which possess extracellular domains interacting with

hormones and intracellular domains with tyrosine kinase activity.
IGFs bind to IGF-IR with high affinity, but to IR with low affinity.
In the samemanner, insulin binds to IRwith high affinity, whereas
to IGF-IRwith low affinity.Moreover, IGF-IR forms hybrid recep-
tors with IR in cells that equally express both IGF-IR and IR.
These hybrid receptors are shown to possess high affinity for IGF-
I (18). IR exists as two isoforms, IR-A and IR-B, which result from
alternative splicing of IR pre-mRNA. IR-B mRNA includes exon
11, whereas IR-AmRNA lacks exon 11 that encodes the 12 amino-
acid region of the C-terminus of the α-subunit. IR-B binds to
insulin, whereas IR-A binds to not only insulin but also IGF-II.
Because IR-A binds to IGF-II and is highly expressed in several
cancer cells and tissues, it is likely to be involved in oncogenic
transformation (19).

Binding of ligands to their receptors (IGF-IR and IR) on the
plasma membrane activates their receptor tyrosine kinase activ-
ities. The activated receptors tyrosine-phosphorylate themselves
(auto-phosphorylation) and their specific substrates, some of
which are insulin receptor substrate (IRS) proteins (Figure 1A).
Tyrosine-phosphorylated IRSs are recognized by Src-homology
(SH) 2-containing proteins (Figure 1B), one of which is phospho-
inositide 3-kinase (PI3K). Phosphorylation of phosphoinositide
in membranes by PI3K results in activation of serine/threonine
kinase Akt. The activated Akt phosphorylates many substrates to
promote various bioactivities. The other signaling molecule rec-
ognizing tyrosine-phosphorylated IRSs is Grb2. Grb2 is reported
to form a complex with SOS to activate small GTPase Ras. The
activated Ras induces the MAPK/ERK pathway leading to mito-
genic activities (20). IRSs are associated with other proteins even
without their tyrosine phosphorylation (Figure 1C), as described
in detail below.

Insulin-Like Peptides and Cancer
Accumulated evidence suggests that excess IGF/insulin activity
contributes to cancer development (Figure 2). IGFs are often
produced in cancer cells and/or the surrounding stromal cells.
IGF-IR (21, 22) and IR (especially IR-A) (22–25) are also over-
expressed in many cancer cells. In cell cultures, IGF/insulin pro-
motes proliferation, survival, and migration of various cancer
cells. IGF is also known to mediate the transforming action of
many oncogenes (26). Recently, IGF/insulin is proposed to play
roles in the maintenance of cancer cell stemness (27) as well as
cancer metabolism (28).

Genetic and pharmacological manipulation clearly shows
important roles of IGF/insulin and their receptors not only in
cultured cancer cells but also in mouse tumor models. For exam-
ple, injection of neutralizing antibody against IGF-I and IGF-
II into mice suppressed the development of bone tumors (29,
30) and liver metastasis of colorectal cancers (31). Liver-specific
IGF-I knockout mice showed delayed-onset of chemically and
genetically inducedmammary tumors (32), and neutralizing anti-
body against IGF-IR and IGF-IR kinase inhibitor showed anti-
tumor effects in mouse xenograft models (33–35). These stud-
ies demonstrate roles of IGFs and IGF-IR in tumorigenesis and
following studies show roles of insulin and IR. IR knockdown
inhibited breast cancer cell proliferation, angiogenesis, andmetas-
tasis in nudemice (36), and pancreatic β cell-specific IR knockout
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FIGURE 1 | Phosphotyrosine-dependent and -independent association
of IRS with other proteins. (A) Schematic illustration of IRS-1, IRS-2, IRS-3,
and IRS-4. (B) Canonical IGF/insulin signaling pathways. IRSs are
tyrosine-phosphorylated by IGF-IR/IR tyrosine kinase, and then they are

associated with downstream signaling molecules in a phosphotyrosine
(pY)-dependent manner. (C) IRSs are associated with other proteins (IRSAPs)
even without their tyrosine phosphorylation, and this interaction can be changed
by extracellular stimuli in addition to IGF/insulin stimulation.

impaired tumorigenesis in genetic mouse models with pancreatic
neuroendocrine tumor (37). Moreover, combined action of IGF-
IR/IR was also investigated. Pharmacological inhibition of both
IGF-IR/IR kinases inhibited the growth of tumors transplanted
from constitutively active IGF-IR-transgenic mice (38). The dual
inhibitor also reversed tumor-promoting effects of type-2 diabetes
in breast cancer mouse models (39). An antibody with neu-
tralizing activity against both IGF-IR and IGF-I/insulin-hybrid
receptors showed more potent anti-tumor effects than antibod-
ies targeting only the IGF-IR or hybrid receptors in xenograft
models (40). The combination of IR gene deficiency and IGF-
IR-neutralizing antibody treatment suppresses tumor growth in
a transgenic mouse model of pancreatic neuroendocrine car-
cinogenesis. However, the IGF-IR antibody does not significantly
impair tumor growth in the model with the intact IR gene (37).

In humans, population-based studies show that high circulating
IGF-I levels are associated with the risk of cancer development
(41), and hyperinsulinemia is related to poor cancer prognosis (42,
43). Recently, a potential clinical benefit of IGF-IR-neutralizing
antibodies was reported, but it was limited to a small subset of
cancers [Ewing’s sarcoma (44), non-small cell lung carcinoma
(45), and some other chemotherapy-resistant solid tumors (46)].
The failure of IGF-IR-targeted therapy in many other studies
points out the putative importance of combinatory target therapy
toward IGF-IR and IR (47).

Insulin Receptor Substrates

Characteristics and Physiological Significance
of IRSs
The genes encoding IRS proteins are evolutionarily conserved
through the animal kingdom, from worm to human, and a single
or multiple IRS paralogous genes are found within a species. In
vertebrates, three to four types of genes encoding structurally
related IRS proteins (IRS-1, -2, -3, and -4) have been found
in many species (48, 49). From previous reports and current
genome database analyses, the human genome harbors IRS-1,
-2, and -4 genes, but it apparently lost the IRS-3 gene during
evolution though the mouse genome contains all four IRS genes.
It is noteworthy that the most analyzable vertebrate genomes
from fish to primates contain both IRS-1 and -2 genes (http:
//www.ensembl.org/index.html), implying roles for these genes
in the regulation of fundamental physiological events conserved
throughout chordate evolution. In invertebrate model species, the
chico in fly and the ist-1 in worm are known as functional IRS
orthologous genes (50, 51).

Common structural features of IRS proteins are the pleckstrin
homology (PH) and phosphotyrosine binding (PTB) domains
in the amino-terminal region (Figure 1A). Since IRSs lack any
enzymatic activities in their primary sequences, they are regarded
as adaptor or docking proteins that mediate signaling. As we
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explained above, the IRSs interact with tyrosine-phosphorylated
IGF-IR/IR through the PTB domains, and the tyrosine residues
in IRSs are subsequently phosphorylated via the receptor tyrosine
kinases. IRS-2, which has a unique structural feature, also interacts
with the tyrosine kinase domain of IRs through its specific region
called as KRLB region (52, 53). The tyrosine-phosphorylated IRS
recruits major IGF/insulin signaling molecules to the membrane
through its binding to membrane with its PH domain, which
leads to the activation of PI3K–Akt and/or Ras–MAPK signaling
cascades. Consequently, IRS serves a major branching node of
IGF/insulin signaling (Figure 1B).

For IGF/insulin-dependent PI3K–Akt activation, several spe-
cific tyrosine residues in the binding motif of the SH2 domains of
class I PI3K p85 regulatory subunit (YxxM; where X is any amino
acid) are typically important. The phosphotyrosine residues at
608, 628, 658, and 939 in IRS-1 (54–56) and at 649, 671, 734,
and 814 in IRS-2 were demonstrated to be involved in PI3K
p85 binding (57). The tyrosine 891 in IRS-1 is known to be the
Grb2-binding site phosphorylated by IGF/insulin-stimuli, which
is involved in Ras–MAPK cascade activation (58). In addition,
the serine/threonine phosphorylation and the post-translational
modifications of lysine residues in IRS also play major roles in
fine tuning the IGF/insulin signaling. S6K phosphorylates ser-
ine/threonine residues of IRS, which in turn leads to the degra-
dation of IRS protein and attenuation of IGF/insulin signaling
(20, 59). It has been reported that S6K directly phosphorylates
IRS-1 on multiple serine residues including IRS-1 serine 307 to
inhibit insulin signaling, and these serine phosphorylations were
increased in adipose tissues in obese mice (60). By contrast, a
recent study shows that IRS-1 serine 307 phosphorylation pro-
motes insulin sensitivity (61). The serine/threonine phospho-
rylation of IRSs could be complex but an important clue for

deciphering the pathology of IGF/insulin signaling. The ubiquiti-
nation on lysine residues in IRS causes degradation of the IRSs (59,
62, 63). Also, the IRS-2 acetylation on its lysine residue decreases
IGF-induced MAPK signaling in neuron and protects neurons
from oxidative damage induced cell death (64).

The physiological significance of IRS proteins has been studied
by using gene knockout mice (65–80). The study using the Irs-
1 gene null mice or using the cells from the knockout animal
have established the notion that Irs-1 plays crucial roles in growth
and development while Irs-2 is indispensable for maintaining sys-
temic glucose metabolism rather than mediating signals for body
growth (65, 75). The physiological roles of IRSs are not limited
to glucose metabolism and growth (50, 69, 72, 73, 78, 81–87).
IRS-1 maintains vascular health, and IRS-1 and IRS-2 governed
bone turnover and adipocyte differentiation (72, 78). The mas-
sive increase in hepatic IRS-2 under protein malnutrition condi-
tion suggests that IRS-2 coordinates liver function with changing
amino-acid nutrition in vivo (83). It is also noteworthy that loss of
the Irs gene in both rodent and fly models resulted in extended
lifespan (50, 85–87). Intriguingly, it has been recently reported
that IRS-1 interacts with RNA molecules (88, 89). These facts
underscore the multifunctional characteristics of IRS proteins in
various pathophysiological contexts.

IRSs and Cancer
IRSs contribute to in cancer development (Figure 2). High expres-
sion levels of IRS-1/2 are reported in various types of cancer cells
(90). In addition, intense tyrosine phosphorylation of IRS-1 is
found in a variety of solid tumors (91). Exceptionally, downreg-
ulation of IRS-1 is found in advanced breast cancer (92) and non-
small cell lung cancer (93). From the clinical point of view, it
should be noted that IRSs are often increased by the treatment of
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IRS-1/2↑ 
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IRS
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IRS IRS
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FIGURE 2 | Insulin-like activities and cancer. In general, cancer cells produce or are exposed to high levels of insulin-like peptides and/or IGF/insulin signals are
enhanced in these cells, resulting in maintenance of cancer phenotypes.
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cancer cells with anti-cancer drugs targeting signaling pathways
downstream of IRSs (94, 95). The possible underlying mech-
anism is that the drug-induced inhibition of the downstream
signaling suppresses the negative feedback regulation that reduces
IRS levels, thereby increasing IRS levels (96). This phenomenon
may decrease the anti-cancer activity of the drugs. Interestingly,
treatment of mice with novel compounds that promote IRS degra-
dation significantly inhibited the growth of melanoma, ovarian,
and prostate cancers (95).

Many studies have shown roles for IRS-1/2 in cancer develop-
ment. In various cancer cells, overexpression/knockdown exper-
iments indicate that IRS-1/2 promotes cell proliferation, sur-
vival, migration, and/or transformation (90, 94, 97–103). Trans-
genic mice with tissue-specific IRS-1/2 overexpression showed
increased tumorigenesis and metastasis (104, 105). Knockout
mice studies also reveal that IRS-1 deficiency decreases inci-
dence and growth of several tumors (106, 107). IRS-2 deficiency
suppresses metastasis (108, 109). Taken together, many stud-
ies indicate that IRS-1 and IRS-2 play redundant roles in can-
cer development, but some reports clearly show their distinct
roles: IRS-1 tends to promote cancer proliferation whereas IRS-
2 preferentially promotes cell migration (104). Moreover, in some
cases, IRS-1 unexpectedly functions as a negative factor in cancer
development (110–113). Roles of IRS-1/2 in cancer development
may be dependent on tissues, oncogenic stimulations, and/or
environmental factors.

Mechanistically, it is widely accepted that IRSs can regulate
proliferation, survival, and migration of cancer cells through the
activation of the downstream PI3K pathway and MAPK path-
way. One of the still unsolved issues is how IRS-1 and IRS-2
play distinct roles in some models. Another issue is the molecu-
lar mechanism underlying IRS-promoted cell transformation. In
addition, recent studies highlight nuclear IRSs observed in cancer,
and their interaction with several nuclear proteins (114). In order
to reveal mechanisms of IRS-driven cancer development, it is
becomingmore important to study proteins that interactwith IRSs
in isoform-specific and context-dependent manners.

High-Molecular-Mass Complexes
Containing IRSs

As described above, tyrosine phosphorylation of IRSs are impor-
tant for transmission of IGF/insulin signals (Figure 1B). However,
recently, we have reported that IRSs interact with various proteins
even without IRS tyrosine phosphorylation (Figure 1C). Such
IRS-associated proteins were referred to here as IRSAPs and their
function of IRSAPs were reviewed below.

Roles of Proteins Co-Immunoprecipitated with
IRSs in Modulation of Tyrosine
Phosphorylation-Dependent Signals of
Insulin-Like Peptides
We had previously reported that pretreatment of FRTL-5 thyro-
cytes with thyrotropin (TSH) or other cAMP-generating agents
potentiated IGF-dependent tyrosine phosphorylation of IRS-2,
leading to enhancement of cell proliferation in response to IGF-
I (115). To investigate the mechanisms in the potentiation of

tyrosine phosphorylation of IRS-2, we performed in vitro tyro-
sine phosphorylation assays. IRS-2 was prepared by immuno-
precipitation using anti-IRS-2 antibody from cells treated with
or without dibutyryl cAMP, and subjected to in vitro tyrosine
phosphorylation assay using IGF-IR as the tyrosine kinase. Tyro-
sine phosphorylation by the IGF-IR of IRS-2 prepared from
FRTL-5 cells treated with dibutyryl cAMP was higher than IRS-
2 prepared from control cells (116), suggesting that long-term
cAMP stimulus increased the availability of IRS-2 as a sub-
strate to be phosphorylated more intensely by IGF-IR kinase.
In addition, when the immunoprecipitated IRS-2 was washed
with a high-salt buffer solution to dissociate protein components
prior to performing the phosphorylation reaction, the cAMP-
induced potentiation of tyrosine phosphorylation of IRS-2 was
abolished (116). These results indicated that protein components
co-immunoprecipitated with IRS-2 are necessary for the poten-
tiation of tyrosine phosphorylation of IRS-2 by IGF-IR kinase
in FRTL-5 cells. We also observed that the IRS-1 immunopre-
cipitated from tumor necrosis factor (TNF)-α-treated cells was
little phosphorylated by IR tyrosine kinase in vitro and pro-
tein components co-immunoprecipitated with IRS-1 are neces-
sary for TNF-α-induced decreases in the availability of IRS-1 to
receptor tyrosine kinase (116). Based on these results, we con-
cluded that proteins associated with IRSs play important roles
in the modulation of IRS tyrosine phosphorylation by IGF-
IR or IR.

Forming High-Molecular-Mass Complex
Containing IRSs
We then analyzed the molecular mass of complexes containing
IRSs in several types of cells without IGF-I/insulin stimulation.
Blue native-polyacrylamide gel electrophoresis (BN-PAGE) in
which protein complexes are separated under native conditions
was used, followed by immunoblotting with anti-IRS-1 anti-
body. In 3T3-L1 adipocytes, IRS-1 was detected at approximately
400–1,300 kDa (mainly 400 kDa) (116). In MCF-7 breast can-
cer cells, IRS-1 was detected at 400 and 1,300 kDa (88). We
also analyzed the molecular mass of complexes containing IRS-
2. In FRTL-5 thyroid cells, IRS-2 was detected at 400 kDa, and
in MCF-7 cells IRS-2 was detected at 500, 800, and 1,300 kDa
(88, 116). Given that IRS-1 and IRS-2 are usually detected at
150–180 kDa in SDS-PAGE, these results suggest that IRSs form
high-molecular-mass complexes even without IGF/insulin stimu-
lation. Themolecular mass of the complexes differs with cell types
and IRS isoforms.

Interestingly, the molecular mass changes not only with
IGF-I/insulin stimulation but also with stimulation by other
cytokines/hormones that modulate IGF-I/insulin signaling
(Figure 1C). For example, stimulation of FRTL-5 cells with TSH
or other cAMP-generating agents potentiates IGF-I-dependent
IRS-2 tyrosine phosphorylation and cell proliferation (115), and
cAMP stimulation increases the molecular mass of complexes
containing IRS-2 from 400 kDa up to 800 kDa (116). It is
possible that some molecules that modulate IRS-mediated
signaling associate/dissociate with the complexes in response to
stimulation by various cytokines/hormones, as described below.
These complexes were referred to here as IRSome.
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Functions of Proteins in the IRSome
There are a few papers reporting that IRSs are associated with
various proteins. We have identified the proteins in IRSomes by
yeast two-hybrid screening using IRSs as baits and LC-MS/MS
analysis of proteins co-immunoprecipitated with IRSs. We suc-
ceeded in identifying at least 50 proteins that associate with IRSs
in a tyrosine phosphorylation-independent manner. These com-
plexes contain proteins modulating tyrosine phosphorylation of
IRSs by receptor kinase, proteins controlling stability of IRSs, pro-
teins determining intracellular localization of IRSs, and proteins
mediating insulin-like activities. In addition, we found not only
proteins that are involved in RNA metabolism but also RNAs
themselves in these complexes (Figure 3).

Control of IRS Tyrosine Phosphorylation and Binding
to PI3K
IRS-associated proteins can modulate IGF/insulin signal intensity
through various mechanisms (Table 1; Figure 3A). One impor-
tant role of IRS-associated proteins is to regulate the intensity of
IGF/insulin signaling. IRSs are tyrosine-phosphorylated by the
IGF-IR, IR, and other tyrosine kinases (117–123), resulting in acti-
vation of downstream signaling. Several tyrosine phosphatases are
shown to dephosphorylate IRSs (124–128). The IRS dephosphory-
lation reaction can bemodulated by other IRS-associated proteins.
The mediator of ErbB2-driven cell motility 1 (MEMO1) binds
to IRS-1 and competes with SH-PTP2 tyrosine phosphatase for
IRS-1 interaction, thereby preventing IRS-1 dephosphorylation
(129). SH2B1, a SH2 domain-containing adaptor protein, binds

to IRS-1/2 and enhances insulin signaling by inhibiting tyrosine
dephosphorylation of IRS-1/2 (130).

Many serine/threonine kinases are reported to phosphory-
late IRSs at serine/threonine residues, which suppress IRS tyro-
sine phosphorylation (14). Some IRS-associated proteins mod-
ulate IRS tyrosine phosphorylation through the control of IRS
serine/threonine phosphorylation. It is well known that JNK
can induce IRS-1/2 serine phosphorylation, leading to the sup-
pression of IRS tyrosine phosphorylation and insulin resistance
(150). JIP1/2, JNK-interacting proteins, interact with IRS-1/2,
and JIP deficiency causes increased IRS-1 tyrosine phosphory-
lation and abnormal glucose homeostasis in mice (131, 132),
indicating that JIPs function as a scaffold linking IRSs and JNK.
Calmodulin-dependent kinases (CAMKs) are known to induce
IRS-1/2 serine phosphorylation (150), and the binding protein
calmodulin interacts with IRS-1/2 (133). Calmodulin overexpres-
sion decreased insulin-induced IRS-1 tyrosine phosphorylation
(133), suggesting that calmodulin may function as a scaffold
linking IRSs and CAMKs. Recently, we identified GKAP42, a
cGMP-dependent protein kinase (cGK) anchoring protein, as an
IRS-1-associated protein (134). GKAP42 knockdown suppressed
insulin-induced IRS-1 tyrosine phosphorylation, which was com-
pletely restored by the additional knockdown of cGK-Iα (134),
suggesting that cGK-Iα inhibits IRS-1 tyrosine phosphorylation
and GKAP42 protects the inhibitory effect of cGK-Iα. In some
cases, IRS serine/threonine phosphorylation enhances IRS tyro-
sine phosphorylation. We reported that HSP90 interacts with
IRS-2, and increases IRS-2 tyrosine phosphorylation through
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TABLE 1 | IRS-associated proteins that control IRS tyrosine phosphorylation and binding to PI3K.

IRS-associated protein IRS isoform Function of IRS-associated protein Reference

MEMO1 IRS-1 Inhibition of IRS-1 tyrosine dephosphorylation (129)

SH2B1 IRS-1/IRS-2 Inhibition of IRS-1/2 tyrosine dephosphorylation (130)

JIP1/2 IRS-1/IRS-2 Inhibition of IRS-1 tyrosine phosphorylation through mediating IRS serine/threonine phosphorylation
by JNK

(131, 132)

Calmodulin IRS-1/IRS-2 Inhibition of IRS-1 tyrosine phosphorylation (133)

GKAP42 IRS-1 Enhancement of IRS-1 tyrosine phosphorylation by protecting the inhibitory effect of cGK-Iα (134)

HSP90 IRS-2 Enhancement of IRS-2 tyrosine phosphorylation by mediating IRS-2 serine/threonine
phosphorylation

(135)

HDAC2 IRS-1 Inhibition of IRS-1 tyrosine phosphorylation (136)

Sirt1 IRS-1/IRS-2 Enhancement of IRS-2 tyrosine phosphorylation (64, 137)

Pin1, Par14 IRS-1 Enhancement of IRS-1 tyrosine phosphorylation by IRS-1 proline isomerization (138, 139)

Nedd4 IRS-2 Enhancement of IRS-2 tyrosine phosphorylation by IRS-2 mono-ubiquitination (140)

Epsin1 IRS-2 Enhancement of IRS-2 tyrosine phosphorylation by the interaction of mono-ubiquitinated IRS-2 (140)

PHIP IRS-1 Inhibition of IRS-1 tyrosine phosphorylation (141)

ASPP2 IRS-1 Inhibition of IRS-1 tyrosine phosphorylation (142)

14-3-3 IRS-1/IRS-2 Inhibition of IRS-1 tyrosine phosphorylation (143, 144)
Inhibition of the PI3K activity bound to IRS-1 (145)
Other functions: Promoting of IRS-1 displacement from particular structures, (146)
and stabilization of IRS-2 (147)

Cytohesin-2/3 IRS-1 Enhancement of IRS-1 tyrosine phosphorylation possibly by facilitating the recruitment of IRS-1 to IR (148)

Nexilin IRS-1 Inhibition of IRS-1–PI3K binding (149)

mediating IRS-2 serine/threonine phosphorylation by unknown
kinase(s) in response to the activation of the cAMPpathway (135).

IRS-associated proteins can also affect IRS post-translational
modifications other than serine/threonine phosphorylation. His-
tone deacetylase 2 (HDAC2) interacts with IRS-1, and overex-
pression of this protein suppresses insulin-induced IRS-1 tyro-
sine phosphorylation (136). Another deacetylase Sirt1 interacts
with IRS-1 and IRS-2 (137), and inhibition of Sirt1 activity
prevented deacetylation of IRS-2 and suppressed IRS-2 tyro-
sine phosphorylation (64, 137). Pin1 and Par14, peptidyl-prolyl
cis/trans isomerases, interact with IRS-1 (138, 139). Pin1 enhances
insulin-induced IRS-1 tyrosine phosphorylation through its iso-
merase activity, and Pin1 knockout mice exhibit impaired insulin
signaling with glucose intolerance (138, 139). Similarly, Par14
enhances insulin-induced IRS-1 tyrosine phosphorylation, and
Par14 knockdown exacerbated the glucose intolerance in Pin1
knockout mice (138, 139). Prolyl cis/trans isomerization in IRS-
1 may be critical for efficient IRS-1 tyrosine phosphorylation.
Recently, we found that ubiquitin ligase Nedd4 interacts with
IRS-2 and induces IRS-2 ubiquitination (140). As described
below, many ubiquitin ligases ubiquitinate IRS-1/2 and induce
their proteasomal degradation, resulting in decreased IGF/insulin
signaling. In contrast, Nedd4 increases IGF-I-dependent IRS-2
tyrosine phosphorylation and cell proliferation. Our subsequent
study revealed that Nedd4 monoubiquitinates IRS-2, which pro-
motes its association with Epsin1, a ubiquitin-binding protein
localized at the plasma membrane. Nedd4 recruits IRS-2 to the
plasma membrane, likely through promoting Epsin1 binding,
and enhanced IRS-2 tyrosine phosphorylation by IGF-IR kinase
(Figure 4). Nedd4 overexpression in zebrafish embryo accelerates

the body growth and IRS-2 knockdown suppresses the effects of
Nedd4 overexpression, indicating that Nedd4–IRS-2 complexes
play important roles in body growth.

Some IRS-associated proteins can regulate the interaction
between IGF-IR/IR and IRS, resulting in the modulation of IRS
tyrosine phosphorylation. PHIP, a protein with largely unknown
function, interacts with IRS-1 PH domain (141). ASPP2, a p53-
binding protein, also interacts with the IRS-1 PTB domain (142).
Overexpression of these proteins (or truncated proteins con-
taining IRS binding sites) suppresses insulin-induced IRS tyro-
sine phosphorylation (141, 142). These observations support the
hypothesis that these proteins impair the availability of IRSs to
IR by binding to the PH/PTB domain. 14-3-3s interact with
IRS-1/2 (143, 145, 151, 152) and suppress insulin-induced IRS-
1 tyrosine phosphorylation possibly by inhibiting the interaction
of the IRS-1 PTB domain with IR (143). Because 14-3-3–IRS
association is dependent on PI3K pathway activation (145, 152),
14-3-3s may participate in the negative feedback regulation of
IRS tyrosine phosphorylation. Other reports also show that 14-3-
3 binding can modulate IRS-1 tyrosine phosphorylation through
inhibiting the activity of PKCα (144), and can modulate the PI3K
activity bound to IRS-1 (145), IRS-1 localization (146), as well
as IRS-2 stability (147). Cytohesin-2/3, multi-domain proteins
with guanine nucleotide exchange factor activity for ARF family
GTPases, also interacts with IRS-1 and is proposed to facilitate
the recruitment of IRS-1 to IR, thereby enhancing IRS-1 tyrosine
phosphorylation (148).

An IRS-associated protein can modulate insulin signal inten-
sity, not by changing IRS tyrosine phosphorylation but by
affecting the interaction of IRS with the downstream effector.
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Nexilin, an actin binding protein, associates with IRS-1 under
basal conditions, and this complex dissociates in response to
insulin stimulation (149). Nexilin knockdown does not affect
IRS-1 tyrosine phosphorylation but enhances IRS-1–PI3K inter-
action and Akt phosphorylation, whereas Nexilin overexpres-
sion inhibits Akt phosphorylation (149), suggesting that Nexilin
suppresses IRS-1–PI3K interaction and the downstream insulin
signaling.

Control of Stability of IRSs
Recent studies have shown that the stability of IRSs is controlled by
IRS-associated E3 ligases and deubiquitinating enzymes (DUBs)
via the ubiquitin-proteasome pathway (Table 2; Figure 3B). These
E3 ligases andDUBs associate with IRSs under various conditions,
resulting in dramatically changed IRS protein levels and induction
of insulin-like activities according to surrounding environments.

It is well known that ubiquitination and degradation of IRSs
are induced by prolonged IGF/insulin stimulation, which is one of
the important mechanisms for the desensitization of IGF/insulin
signaling (163–166). Several E3 ligases have been reported to
induce the degradation such as cullin7 (Cul7)–Fbxw8 E3 ligase
complex, SCF (Skp1, cullin1 and Rbx1)–Fbxo40 E3 ligase com-
plex, SOCS1 and 3 complexes, and Mdm2 (59, 62, 155, 158). The
degradation mechanisms of these E3 ligases were analyzed by
using downstream pathway inhibitors such as PI3K inhibitor and
ERK inhibitor; however, these results were often different. Some
suggested that Cul7–Fbxw8 ubiquitinated and degraded IRS-1,
but not IRS-2, via phosphorylation of IRS-1 by mTOR/S6K in
MCF-7 cells (59), while ubiquitination by SCF–Fbxo40 required

only direct signaling from IGF-IR in skeletal myotubes (155).
And other reports suggested that activation of PI3K but not
mTOR is required for IRS-1 degradation (167). In addition, it was
reported that expression of Fbxo40 was muscle specific and was
upregulated during differentiation, and the E3 ligases other than
SCF–Fbxo40 did not regulate the IGF-I mediated degradation
of IRS-1 in skeletal myotubes (155). These E3 ligases were also
related to different bioactivities.Whereas embryonic fibroblasts of
Cul7−/− mice showed increased IRS-1 protein levels and activa-
tion of downstream Akt and MEK/ERK pathways, the null cells
showed oncogene-induced senescence (59). And heterozygosity
of either Cul7 or Fbxw8 increased PI3K/Akt activation in skele-
tal muscle tissue upon insulin stimulation, and these mice dis-
played enhanced insulin sensitivity and plasma glucose clearance
(154). Knockdown of Fbxo40 also increased IRS-1 protein levels
and activation of downstream pathways; however, knockdown of
Fbxo40 induced hypertrophy of myofibers and Fbxo40−/− mice
showed enhanced body and muscle size during the growth phase
unlike Cul7 (155). These observations suggested that each E3
ligase ubiquitinated IRSs via different signals and had different
functions in specific tissues.

Other than IGF/insulin stimulation, various stimulation fac-
tors and physiological conditions affect IRS protein levels. So
far, several E3 ligases had been identified as responsible factors
for the degradation of IRS-1/2 under some conditions. Obesity
and inflammatory cytokines secreted from adipose tissues induce
IRS-1/2 degradation in insulin target tissues, which is thought
to be one of the mechanisms for the onset of insulin resistance
and type 2 diabetes. SOCS1/3 and E3 ligase MG53 expression,
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TABLE 2 | IRS-associated proteins that control IRS protein stability.

E3 ligase/DUB IRS isoform Stimulation Tissues, cells Mediated function Reference

Cbl-b IRS-1 Unloading stress (denervation
and paceflight)

Skeletal muscles,
C2C12 cells

Muscle atrophy (153)

Cullin7-Fbxw8 IRS-1 (not IRS-2) IGF-I MEF, MCF-7 cells Inhibition of oncogene-
induced senescence

(59)

IRS-1 Insulin MEF, C2C12 cells inhibition of insulin
sensitivity in muscle

(154)

SCF-Fbxo40 IRS-1 IGF-I Skeletal muscles,
C2C12 myotube cells

Inhibition of body and
muscle growth

(155)

Mdm2 IRS-1 Insulin HIRc-B cells (62)

MG53 IRS-1 (not IRS-2) Skeletal myogenesis, obesity Skeletal muscles,
C2C12 myotube cells

Inhibition of skeletal
myogenesis

(156, 157)

SOCS1/3 IRS-1/IRS-2 Insulin, inflammation Liver, 3T3-L1 cells Inflammation-induced
insulin resistance

(156, 158–162)

USP7 IRS-1/IRS-2 IGF-I, insulin FRTL-5, L6, H4IIE cells (63)

also known as TRIM72, were elevated by inflammation and
obesity, which may induce insulin resistance in adipose tissue,
liver, and skeletal muscle (156, 159, 160). Unloading stress such
as denervation and spaceflight induces IRS-1 degradation and
activates the FOXO3-dependent induction of atrogin-1/MAFbx
in muscle, which causes unloading-mediated muscle atrophy.
It was reported that unloading stress activated the E3 ligase
Casitas B cell lymphoma-b (Cbl-b), and Cbl-b ubiquitinated and
degraded IRS-1. And a pentapeptide mimetic of tyrosine 608-
phosphorylated IRS-1 prevented the association with Cbl-b and
IRS-1 and denervation-induced muscle atrophy in mice (153).
Proper IRS-1 expression is important for IGF-inducedmyogenesis
(168). MG53 is increased during myogenesis, and induces IRS-
1 ubiquitination and degradation, thereby negatively regulating
muscle differentiation (157).

Recently, we identified the deubiquitinating enzyme, ubiquitin-
specific protease 7 (USP7) as an IRS-1/2 associated protein and
showed that the deubiquitinase activity of USP7 plays important
roles in IRS-1/2 stabilization through preventing their protea-
somal degradation. In addition, IGF-I/insulin treatment dissoci-
ated USP7 from IRS-1/2 via the PI3K pathway activation (63).
These findings suggested that the dissociation of USP7 from
IRS-1/2 upon IGF/insulin stimulation may be involved in the
feedback inhibitionmechanism of IGF/insulin signaling by allow-
ing the ubiquitination of IRS-1/2. Whereas protein degradation
via the ubiquitin-proteasome pathway is regulated by the balance
between ubiquitination and deubiquitination of target proteins,
the understanding of DUBs remains less clear compared to E3
ligases. To elucidate the stability mechanism of IRSs, it is nec-
essary to reveal not only how E3 ligases ubiquitinate IRSs but
also how DUB(s) deubiquitinate IRSs. Taken together, these pro-
teins controlling stability of IRS may present a novel approach
for the treatment of diseases that are associated with insulin-like
activities.

Control of Intracellular Localization of IRSs
IRS-associated proteins can control IRS intracellular localization
(Table 3; Figure 3C). It has been suggested that tyrosine phos-
phorylation of IRSs occurs at the cell surface because IGF-IR/IR is

activated at the cell surface. Despite this claim, early investigations
using subcellular fractionation revealed that phosphorylated IRS
and its associated PI3K activity are abundant in the intracellular
membrane compartments but less so in the plasma membrane
(169–171). Another observation was that other growth factors
such as platelet-derived growth factor (PDGF) that equally acti-
vate PI3K do not significantly induce glucose uptake. Since PDGF
stimulates PI3K mainly in the plasma membrane (172), the IRS
localization to intracellular membrane compartments is thought
to be an important component of IGF/insulin-specific actions.
However, IRSs are cytosolic proteins without post-translational
modification that target it to the membrane structures. Thus,
they rely instead on interaction withmembrane-associated factors
(Table 3; Figure 3C). Two clathrin adaptor complexes, AP-1 and
AP-3, have been reported to regulate the subcellular localization
of IRS-1 (173, 174). It is well established that clathrin mediates
the intracellular trafficking of cargos between differentmembrane
compartments through the formation of the coated-vesicles (175).
AP complexes are heterotetrameric and function in cargo selec-
tivity and the initiation of clathrin vesicle formation (176). In
particular, AP-1 sorts cargo proteins between endosomes and the
trans-Golgi network, whereas AP-3 is involved in the transport
to lysosomes or related organelles. AP-1 interacts with IRS-1
through its µ1A subunit, which recognizes the YxxΦ-type motifs
in the cargo proteins. While IRS-1 is predominantly localized to
vesicular structures, an IRS-1 mutant lacking the binding sites to
µ1A is mislocalized to the late endosomes that are positive for
cation-independent mannose-6-phosphate receptor, suggesting
that IRS-1 is transported from late endosomes to peripheral vesi-
cles through the interaction with the AP-1 complex. Furthermore,
depletion of AP-1 binding sites in IRS-1 impaired IGF-I-induced
cell proliferation, accompanied by reduced IRS-1–PI3K signaling.
Interestingly, AP-1 binding sites in IRS-1 overlap PI3K binding
sites when phosphorylated by IGF-IR/IR (55, 177). By contrast,
it has been structurally demonstrated that AP-1 cannot bind to
the phosphorylated YxxΦ motif (178). These observations offer a
model in which IRS-1 is sorted by AP-1 and subsequently disso-
ciates from AP-1, and then is targeted for IGF/insulin-mediated
tyrosine phosphorylation and downstream signaling activation
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TABLE 3 | Proteins involved in the subcellular localization of IRS.

IRS-associated
protein

IRS
isoform

Function of
IRS-associated protein

Reference

µ1A (AP-1 complex) IRS-1 Sorting IRS-1 to the
intracellular vesicles
through AP-1 complex

(173)

σ3 (AP-3 complex) IRS-1 Translocating IRS-1 to the
membrane fraction in vitro

(174)

APPL1 IRS-1/
IRS-2

Recruitment of IRS-1/
IRS-2 to insulin receptor

(180)

SV40/JCV T-antigen IRS-1 Targeting IRS-1 to nucleus (181, 182)

Importin β IRS-3 Targeting IRS-3 to nucleus (183)

Caveolin-1 IRS-1 Recruitment of IRS-1 to
caveolae (proposed)

(184)

in a spatially compartmentalized manner. IRS-1 also interacts
with σ3 subunit of AP-3 (174). σ3 has been shown to possess
an activity to translocate IRS-1 from the cytosol to membrane
fractions in vitro. From the investigations of other AP complexes,
AP-1 and AP-2, σ3 together with the δ subunit is expected to
recognize the di-leucinemotif (179), implying that the interaction
mode with AP-2 is different from that with AP-1.

Components other than AP-1 and AP-3 complexes have been
reported to regulate the targeting of IRS-1 to the intracellular
membrane compartments (Table 3). Early investigation of the
IRS-1-enriched membrane fraction using electron microscopy
implied that IRS-1 is localized to the intracellular membrane
compartments through the cytoskeletal proteins such as actin
(169, 185). Recently, IRS-1 and IRS-2 have been reported to
interact withAPPL1,which regulates the endocytosis fromplasma
membrane to early endosomes (180). APPL1 also interacts with IR
and deletion of APPL1 reduced the IR-IRS signaling, suggesting
that APPL1 serves as the platform for the interaction between
IRS and the receptor. Given that IRS localized in endosomes is
phosphorylated, IGF-IR/IR should be internalized after ligand
stimulation. In fact, several reports suggest that internalization of
IGF-IR/IR is required for proper signaling (186–189). How the
trafficking of IGF-IR/IR and IRS localization are coordinated to
activate the downstream signaling remains an open question that
needs to be addressed in further studies.

In addition to the targeting to the intracellular membrane
compartment, IRSs have been reported to localize to other sites
in the cells. For example, IRS-1 has been found in nucleus (181,
182, 190).Nuclear targeting of IRS-1 ismediated by the interaction
with viral T-antigens such as SV40 and its human equivalent
(181, 182). Furthermore, nuclear IRS-1 is suggested to function
in ribosomal RNA (rRNA) biosynthesis and the transcription of
cell cycle genes such as c-myc and cyclin D1 (191, 192). Nuclear
IRS-1 is also reported to interact with Yes-associated protein
(YAP1), an oncogenic transcription factor negatively regulated by
the Hippo pathway (193). IRS-3, another IRS family protein, is
also localized to the nucleus (194). IRS-3 interacts with importin
β, which together with importin α mediates the protein import
through the nuclear pore complex (183). In vitro binding analyses
revealed that the PTB domain of IRS-3 interacts with importin
β, contains the sequence required for its nuclear targeting (183,

194), and is not conserved in those of IRS-1 and IRS-2, both of
which are predominantly localized to the cytosolic portion. In
addition, it has been shown using Gal4 chimeric transcription
assay that among IRS proteins, only IRS-3 possesses the tran-
scriptional activity (194). This activity partially accounted for the
evidence that IRS-3 interacts with Bcl-3, which forms a complex
with p50 NF-κB, and enhances NF-κB-dependent anti-apoptotic
gene expression (84).

As mentioned above, there is the possibility that the tyrosine
phosphorylation of IRSs in the plasma membrane does not con-
tribute to the downstream signaling. However, several reports
suggested that IRS localizing at specific regions of the plasma
membrane called caveolae functions in insulin signaling. Cave-
olae are the invaginated microdomains of the plasma membrane
enriched in cholesterol and sphingolipids. Both IR and IRS-1 were
found in caveolae in 3T3-L1 adipocytes (16, 195, 196). Among the
various components of caveolae, IRS-1 has been shown to interact
with caveolin-1 (184). Investigations using electron microscopy
revealed that IR is concentrated in the neck of caveolae in response
to insulin (195, 197), suggesting that the caveolae function as
microdomains for insulin signal transduction. The primary cilium
has been recently shown as another microdomain in the plasma
membrane where a portion of IRS-1 is targeted (198). Phospho-
rylation of a portion of IRS-1 and Akt was found in the cilia,
indicating that the IRS-mediated signaling is activated at the cilia.
Interestingly, HSP90, which is known to interact with IRS-2 (135),
was identified as a chaperone that forms the neck of the cilia,
implying that HSP90 represents IGF/insulin signaling platform in
the cilia.

Control of RNA Metabolism and Translation
In seeking to identify IRS-interacting proteins, we found that
proteins related to RNA translation, such as poly(A) binding
protein (PABP), and eukaryotic initiation factors (eIF) 4E and
4G, associate with IRS-1 in MCF-7 human breast cancer cells
(88) (Table 4; Figure 3D). Moreover, the formation of the high-
molecular-mass complex containing IRS-1 (IRS-1 complex) is
abolished by treatment with RNase but not the IRS-2 complex,
indicating that only the IRS-1 complex contains RNAs. Indeed,
we found that poly(A)+ RNAs are contained in the IRS-1 com-
plex, and the interactions between IRS-1 and PABP/eIF4E/4G
are mediated by RNA (88). Although IGF and insulin have been
shown to activate protein synthesis through the IRS-1–mTORC1
pathway (199), it has not yet been reported that the messen-
ger ribonucleoprotein (mRNP) complex included IRS-1. Notably,
in the absence of growth factors, the IRS-1 complex seems to
associate with monosomes, but in the highly proliferating cells
that are stimulated with serum, IRS-1 complexes increase their
molecular mass associating with polysomes (88). Together, these
findings suggest that RNA-containing IRS-1 complexes have some
function in the cells, which raises a new possibility that IRS-1
plays an unrevealed role as a platform for the translation ofmRNA
species.

In addition, IRS-1 could regulate the translation ofmRNAs sur-
rounding itself; however, themechanism of the activation requires
much additional investigation. Further, the specific mRNA regu-
lated by this complex needs to be established for full appreciation
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TABLE 4 | IRS-associated proteins that are involved in RNA metabolism.

IRS-associated
protein

IRS
isoforms

Functions in the
RNA metabolism

Reference

eIF4E IRS-1 Involved in directing ribosomes
to the cap structure of mRNAs at
the step of protein synthesis

(88)

eIF4G IRS-1 Scaffold protein involved in the
formation of the eIF4F complex
on the cap structure of mRNA

(88)

PABPC1 IRS-1 Required for the 3′-poly(A) tail
shortening and translation
initiation of mRNA

(88)

SAM68 IRS-1 Alternative splicing regulator
whose function depends on its
protein modification in response
to extracellular cues

(200)

of this new model of IRS-1 action. It will be also important to
reveal how mRNAs are recruited to the IRS-1 complex. Since
IRSs do not have a canonical RNA-binding domain, it is possi-
ble that some undefined RNA-binding proteins are contained in
IRS-1 complex and these proteins tether the selected mRNAs to
IRS-1.

In relation to the novel possible function of IRS-1 in mRNA
translation, as estimated by the interaction of IRS-1 with mRNP
components like PABP, eIF4E, and eIF4G (88), we found that
IRS-1 also forms a complex with U96A small nucleolar RNA
(snoRNA) (89), which functions in the post-transcriptional rRNA
modification in the nucleus (201, 202). Cross-linking immuno-
precipitation (CLIP), which is a method to analyze protein–RNA
interaction, revealed that IRS-1 somehow interacts with U96A
snoRNA in close proximity (89). Moreover, the amount of U96A
snoRNA is lower in the IRS-1-deficient cells compared to wild-
type cells, which suggests that IRS-1 plays a role in the snoRNA
biogenesis. Since modification of rRNA has been shown to be
required for a specific class of mRNA translation, such as inter-
nal ribosome entry site (IRES) containing mRNA (203, 204)
in addition to the translation of the general mRNA transla-
tion (205), it is possible that IRS-1 takes part in upregulating
a specific type of snoRNA abundance in cells, which results
in the sequential rRNA maturation and ribosome function in
the selected mRNA translation as well. Previous studies have
been shown that IRSs are localized in the nucleus under vari-
ous conditions (181, 190, 206, 207), and function in the expres-
sion of genes encoding the factors that drive cell proliferation
including rRNAs (191, 208). Thus, IRS-1 seems to function in
both transcription and modification of rRNA, thereby regulating
cell proliferation in a multilayer fashion. Determining precisely
how IRS-1 localizes in the nucleus and binds to snoRNA is
an essential step to further the understanding of these complex
interactions.

As described in the sections above, the proteins that interact
with IRSs determine their phosphorylation status, stability, and
intracellular localizations. It is not clear, however, if all their
functions are induced simultaneously in the same IRS–RNA
complex or if individual complexes specifically modulate the
IRS-mediated RNA translation. Further analysis is needed to

resolve these issues; however, the ability of IRSs to control
RNA metabolism and translation as well as the signaling out-
comes via differences in the association with their partners
is a fascinating new model of IGF/insulin-mediated protein
synthesis.

Possible Functions of IRSome in Physiology and
Diseases Including Cancer
A lot of IRS-associated proteins are related to the physiological
regulation of insulin-like activity. As described above, IGF bioac-
tivity is often potentiated by other hormones, by which appropri-
ate IGF activities will be expressed in vivo (209). In thyroid epithe-
lial cells, TSH stimulation and the following activation of cAMP
pathway enhance IGF-I-induced IRS-2 tyrosine phosphorylation
and cell proliferation (209), which is thought to be important for
thyroid morphogenesis and thyroid hormone homeostasis (210).
We reported that HSP90 and Nedd4 mediate cAMP-dependent
enhancement of IRS-2 tyrosine phosphorylation and cell pro-
liferation (135, 140). Notably, Nedd4–IRS-2 interaction is one
of the important tuning points in this signal crosstalk, because
Nedd4–IRS-2 interaction is upregulated in response to cAMP and
it triggers the mechanisms by which cAMP signaling enhances
IGF signaling (140). Conversely, IGF/insulin signaling can mod-
ulate other signaling pathways through IRS-associated proteins.
IRS-1 interacts with the inhibitory G protein Gi in response to
insulin in platelets, which may enhance cAMP signaling and
lead to the attenuation of platelet activation (211). IRS-1/2 inter-
acts with and stabilizes Disheveled, thereby promoting Wnt/beta-
catenin signaling (212). IRS-1/2 interacts with sarco-endoplasmic
reticulum calcium ATPase (SERCA), and may regulate Ca2+ sig-
naling (213, 214). IRS-1/2 can also interact with Bcl-2, and may
modulate apoptosis signaling (215).

IRS-associated proteins are relevant to insulin resistance and
abnormal glucose metabolism. Obesity increases inflammatory
cytokines including TNF-α. TNF-α decreases GKAP42, an IRS-
associated protein that enhances IRS-1-mediated signaling (134),
and also induces the association of IRS-1 with calmodulin
that suppresses IRS-1-mediated signaling (133, 216). Cytokine-
induced JNK activation causes IRS-1 serine phosphorylation and
impairs insulin signaling, which is mediated by IRS-associated
protein JIP (131, 132). Obesity and inflammatory cytokines
increase ubiquitin ligase SOCS1/3 and MG53, thereby decreasing
IRS-1/2 levels (156, 159, 160). Obesity seems to impair APPL1
function as a linker of IRSs to IR (180). These events could
contribute to the induction of insulin resistance and diabetes.
On the other hand, food intake increases Pin1, an IRS-associated
protein that enhances IRS-1-mediated signaling, thereby lead-
ing to increased insulin sensitivity and adiposity (138). Several
Sirt1 activators have beneficial effects on glucose homeostasis and
insulin sensitivity in obese mice (217), which is partly explained
by the function of Sirt1 as an IRS-associated protein that enhances
IRS-2-mediated signaling (64, 137).

IRS-associated proteinsmay also contribute to themaintenance
of the cancer phenotype. Nedd4 and Epsin1, which coordinately
enhance IGF-I-induced IRS-2 tyrosine phosphorylation, are often
overexpressed in cancer cells (218, 219). Nedd4 is known to
function as an oncogenic protein (218), and we showed that
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Nedd4 is required for IGF-I-induced proliferation of prostate
cancer cells (140) (Figure 4). Another IRS-associated protein
MEMO1 is often increased in aggressive cancers, and is reported
to induce epithelial–mesenchymal transition in breast cancer
cells and enhance their metastasis. The underlying mechanism
partly involves preventing IRS-1 dephosphorylation and increas-
ing IGF signaling (129). Protein levels of IRSs are often upreg-
ulated in various cancer cells. IRS-associated ubiquitin ligases
and DUBs may contribute to this upregulation. Nuclear IRSs
are also often observed in cancer, and many IRS-associated pro-
teins are suggested to mediate cancer-related nuclear IRS func-
tions (114). T-antigens, v-src, and estrogen receptors can inter-
act with IRSs and mediate IRS nuclear translocation. In nuclei,
Rad51 recombinase interacts with IRSs, and the interaction is
proposed to impair DNA repair. UBF-1, a key regulator of RNA
polymerase-I, also interacts with nuclear IRSs, and the interac-
tion is proposed to enhance rRNA synthesis, thereby promot-
ing cell growth. A transcriptional factor β-catenin also inter-
acts with nuclear IRSs, which enhance the expression of the
β-catenin target genes that promote cell proliferation. Through
these interactions, nuclear IRSs may participate in cancer devel-
opment (114). In addition, as described above, IRSs possess cell
transformation promoting ability. Although the molecular mech-
anism how IRSs promote cell transformation remains largely
unclear, the observation that IRS can interact with oncopro-
teins including SV40 T-antigen, JCV T-antigen, Ret, NPM–ALK,
and ETV6–NTRK3 (122, 182, 220–223) provide clues to the
mechanism.

Conclusion

We and others discovered that IRSs are associated with a variety
of proteins. IRSs form high-molecular-mass complexes evenwith-
out their tyrosine phosphorylation (Figure 1C). These complexes
contain proteins modulating insulin-like signals of IRSs triggered
by receptor tyrosine kinase, proteins controlling stability of IRSs,
proteins determining intracellular localization of IRSs, proteins
involved in RNA metabolism, and RNAs themselves (Figure 3).
Based on these results, we propose that IRSs function not only
as signaling mediators through tyrosine phosphorylation but also
as scaffold proteins independent of tyrosine phosphorylation in
mediation of novel biological activities or modulation of insulin-
like activities (Figures 1 and 3).

However, these proteins seem not to function independently.
In other words, they are likely to interlock. For example, after
IRSs are synthesized, IRSs are recognized by sorting proteins
and recruited to specific intracellular compartments. IRSs are
associated with the specific proteins there. Another example is
intramolecular modification of IRSs. IRSs are post-translationally
modified by IRS-associated proteins, such as serine/threonine
kinases or phosphatases, E3 ubiquitin ligases or DUBs, acetylases
or deacetylases, which are activated by various extracellular fac-
tors, such as hormones and cytokines and various physiological
states. And then, differentially modified IRSs are recognized by
different IRSAPs, which mediate novel biological activities or
modulate insulin-like activities. For these reasons, the phenotypes
of mice or cells in which IRSs were knocked out or knocked down

should be reconsidered from the point of view of IRS-associated
proteins.

As mentioned in the Introduction, when dysregulation of
insulin-like activities is induced, many types of age-related
diseases including diabetes, cancer, neurodegenerative disease,
arteriosclerosis, and osteoporosis will develop (12–14). Based on
our and others’ recent data about IRSAPs, IRSAPs would be
expected to contribute to the modulation of insulin-like activities.
Thus, the disorder of modulation of insulin-like activities that
underlies several age-related diseases including cancer is possibly
explained by IRSome function. The IRSome is an important new
target for the treatment of these diseases by controlling insulin-
like activities.
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