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Type 2 diabetes mellitus (T2DM) is a global public health problem of epidemic proportions, 
with 60–70% of affected individuals suffering from associated neurovascular complica-
tions that act on multiple organ systems. The most common and clinically significant
neuropathies of T2DM include uremic neuropathy, peripheral neuropathy, and cardiac
autonomic neuropathy. These conditions seriously impact an individual’s quality of life
and significantly increase the risk of morbidity and mortality. Although advances in gene
sequencing technologies have identified several genetic variants that may regulate the
development and progression of T2DM, little is known about whether or not the variants
are involved in disease progression and how these genetic variants are associated with
diabetic neuropathy specifically. Significant missing heritability data and complex disease
etiologies remain to be explained. This article is the first to provide a review of the genetic
risk variants implicated in the diabetic neuropathies and to highlight potential commonal-
ities. We thereby aim to contribute to the creation of a genetic-metabolic model that will
help to elucidate the cause of diabetic neuropathies, evaluate a patient’s risk profile, and
ultimately facilitate preventative and targeted treatment for the individual.
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introduction

Diabetes mellitus is a worldwide public health problem that currently affects over 382 million people 
globally, and by 2025 this number is expected to rise to approximately 592 million (1). In 60–70% 
of patients, diabetes is accompanied by neuropathies that can affect all organs of the body, and 
these complications are the key cause of morbidity and mortality among type 2 diabetes (T2DM) 
patients (2, 3). The mechanisms for the development of these neuropathies remain unclear, but are 
likely multifactorial and involve environmental and lifestyle factors, as well as genetic predisposition 
(4). This review is the first to consider the role of single and polygenetic influences in multiple 

Abbreviations: ACEI, angiotensin-converting enzyme inhibitor; AGE, advanced glycation end-product; ARB, 
angiotensin receptor blocker; ARI, aldose reductase inhibitor; CAN, cardiac autonomic neuropathy; DN, diabetic 
nephropathy; DPN, diabetic peripheral neuropathy; GWAS, genome-wide association study; HRV, heart rate 
variability; I/D, insertion/deletion; LDL, low density lipoprotein; NGS, next generation sequencing; NO, nitric 
oxide; SNP, single nucleotide polymorphism; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; 
UN, uremic neuropathy; VLDL, very low density lipoprotein; VNTR, variable number tandem repeat.
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diabetic complications associated with neuropathy, with the 
aim to look for common genes that drive the development and 
progression of diabetic neuropathies. Early subclinical detection 
of diabetic neuropathy, by assessing genetic predisposition as well 
as metabolic control and physiology of diabetic patients, is critical 
in facilitating early intervention and prevention of the potentially 
serious consequences of diabetic neuropathy (5, 6).

The clinically most significant diabetic neuropathies are ure-
mic neuropathy (UN), diabetic peripheral neuropathy (DPN), 
and cardiac autonomic neuropathy (CAN). Although these 
neuropathies may remain asymptomatic for prolonged periods, 
they seriously impact the quality of life of the affected individuals 
and pose an immense burden on public health systems, both in 
terms of human and economic costs as they contribute to the 
need for dialysis and renal transplantation, physical disability and 
amputations, and cardiac interventions. Diabetic neuropathies 
have complex disease etiologies, which are still not completely 
understood. Chronic hyperglycemia, hypertension, dyslipidemia, 
insulin resistance, and uremia are thought to be the key factors 
that contribute to their pathogenesis, as they cause changes in 
gene expression, molecular transport, inflammation, and oxida-
tive stress (Figure 1). Genetic susceptibility and environmental 
factors are also known to interact and contribute significantly to 
disease onset and progression, which is evident in observations 
of twin studies and familial clustering, and in the variation of 
the prevalence and presentation of these complications among 
individuals, and among different ethnic groups (7–10).

Recent advances in the application of genome-wide associa-
tion studies (GWAS) and next-generation sequencing (NGS) are 
expected to expedite and enhance the ability to identify genetic 
variants associated with complex diseases, such as T2DM and its 
associated neuropathies. Studies conducted to identify genetic risk 
factors of diabetic neuropathies still remain scarce, but over 60 loci 
have already been identified to influence the risk of developing 
T2DM (11). Despite this effort, a significant amount of missing 
heritability remains to be explained as the majority of studies 
published in this field are limited by a lack of reproducibility 
and insufficient statistical power. While the search continues for 
novel rare variants that may help explain this missing heritability, 
it is evident that diabetes and its associated complications are the 

FiguRe 1 | The multifactorial etiology of the diabetic neuropathies.

result of the combined effect of numerous genetic variants that 
may interact with each other and the environment to define disease 
risk, progression and severity. Complex interactions between risk 
factors contributing to the various diabetic neuropathies have 
been difficult to assess though, as the scope of diabetes-related 
genetic studies has often been limited to one particular candidate 
gene or one type of complication. GWAS conducted in this field 
so far have either focused on the risk of developing T2DM, or 
investigated risk factors of diabetes-associated retinal and renal 
vascular complications (12).

The pressing need to advance our understanding of the diabetic 
neuropathies is amplified by the rapidly increasing prevalence of 
T2DM and the associated increase in cardiovascular and kidney 
disease. UN and CAN remain underdiagnosed and there is an 
ongoing lack of effective treatment options for any of the diabetes-
associated neuropathies. The main treatment approach for T2DM-
associated neuropathies includes lifestyle changes and strict control 
of glucose and lipid levels, blood pressure control and addressing 
environmental factors (e.g., smoking), but these changes are often 
difficult to control, measure, or achieve and only have limited posi-
tive effects on slowing disease onset and progression (13–17). The 
only alternative treatment options are aimed at controlling pain 
and addressing the malfunctions of affected organs.

Diabetic neuropathy is a multifactorial disease that can affect 
the function of all organs of the body either directly or indi-
rectly, mainly due to altered glucose metabolism, which affects 
neural tissue including central and peripheral nerves through 
oxidative stress mechanisms (18). Many of the genes and gene 
polymorphisms implicated in these complications to date are 
linked to glucose metabolism and biochemical changes, includ-
ing inflammatory and immunological processes and hence may 
form a common genetic group that influences the development of 
diabetic complications. In order to allow us to target the diabetic 
neuropathies more effectively, future research needs to not only 
identify new genetic variants that contribute to each particular 
condition, but also to elucidate how such variants function 
and interact to give rise to the various diabetic neuropathies. 
By identifying commonalities, or differences, in the genes and 
proteins that determine the development and progression of the 
diabetic neuropathies, a deeper understanding of their complex 
disease etiologies will be gained, enabling the development of a 
more comprehensive approach to assessing an individual’s risk 
profile and ultimately providing personalized, targeted treatment. 
To contribute to the creation of an integrated genetic-metabolic 
model of diabetic neuropathies, this review provides an original 
overview of the diabetic neuropathies UN, DPN, and CAN in 
T2DM patients, and discusses the common genetic risk variants 
that have been associated with these disease complications.

Clinical Presentation of Diabetic 
Neuropathies

uremic Neuropathy
Approximately 30% of diabetic patients develop diabetic 
nephropathy (DN) and advanced renal failure, which are now the 
main cause of kidney failure in Western society (19). Diabetic 
nephropathy is also closely linked with the onset and progression 
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of other diabetic neurovascular complications (20, 21). Advanced 
renal disease and renal failure lead to the release of uremic toxins. 
This uremia, combined with oxidative stress-related free radical 
activity, contributes to the damage of motor, sensory and auto-
nomic nerves, making it a causative factor in the development 
of UN, DPN, and CAN (22, 23). In rare cases, the cranial nerves 
and pulmonary sympathetic nerves may also be affected (24–27). 
Approximately 60–100% of patients receiving dialysis treatment 
suffer from UN and the complication is more severe in diabetics 
than in non-diabetics (17, 28, 29). The most common form of UN 
is a distal symmetric polyneuropathy in the lower limbs, which is 
due to length-dependent axonal degradation and secondary focal 
loss of myelin sheaths (30, 31).

Uremic neuropathy remains largely asymptomatic until 
renal function has decreased by approximately 75%, when the 
glomerular filtration rate drops below 10–12 ml/min, which may 
not occur until 10–15 years after the onset of DN (Table 1). At this 
advanced stage of renal disease, the symptoms rapidly progress 
in severity over months as serum creatinine levels build up (32). 
Early sensory symptoms include paresthesia, paradoxical heat 
sensation and increased pain sensation in the lower extremities 
(33, 34). Restless leg syndrome and cramps are common, and 
symptoms may move proximally and spread to upper extremi-
ties (35). As the disease progresses, motor neuropathy becomes 
evident as weakness, impaired deep tendon reflexes, imbalance, 
numbness, and atrophy of the lower limbs. Approximately half of 
uremic patients also experience autonomic impairment, evident 
in postural hypertension, hyperhidrosis, and dysfunction of the 
digestive, excretory. and reproductive organs (17, 27, 36). However, 
clinical signs and symptoms due to UN, such as tingling in the 
feet, may be present much earlier (37).

Due to the prolonged asymptomatic nature of the condition, 
diagnosis often does not occur until significant damage has already 
taken place. Detailed neurological assessment and nerve conduc-
tion velocity testing are the most accurate way of diagnosing UN, 
even in asymptomatic patients (32). Afferent and efferent nerves 
regulate kidney function, and it is the renal sympathetic nerves that 
play an important role in kidney function and kidney homeostasis 
via renorenal reflex pathways. In T2DM and other pathologies, 
abnormal sympathetic modulation of the kidney contributes sig-
nificantly to abnormal renal function (38). Autonomic dysfunction 
can be evaluated by monitoring cardiovascular reflex and heart rate 
variability (HRV) (39, 40). Only dialysis and renal transplantation 
are known to reverse the effects of UN and improve neural func-
tion. Unfortunately these interventions are themselves associated 
with similar neuropathic complications (27, 30).

Diabetic Peripheral Neuropathy
Approximately 50% of diabetic patients will develop DPN, which 
entails the risk of recurrent foot ulceration and potential amputa-
tion of lower extremities (Table 1) (41–44). The most common 
form of DPN is distal symmetrical polyneuropathy, which begins 
in the lower extremities and progresses to the upper limbs over 
time, giving rise to a “glove and stocking” pattern (5). Neuropathic 
pain, changes in sensitivity to vibration and thermal thresholds, 
as well as numbness is common characteristics of DPN (42). As 
the disease progresses, motor deficits, muscle weakness, and foot 

deformities may develop, affecting the individual’s gait (5, 45). 
The combined effects of peripheral neuropathy, foot deformities, 
changes in foot biomechanics, and impaired turning of all major 
joints, contributes to significant postural sway and enhanced 
fall risk in comparison to healthy individuals. DPN has also 
been associated with symptoms of distal sympathetic autonomic 
neuropathy, which may become evident as dry, cracked, and warm 
skin and the appearance of plantar calluses at weight-bearing areas 
(46–49). Physical examination of the feet for calluses and ulcers, 
and monitoring for changes in sensory perception and muscle 
strength of the feet, may provide an early indication of the somatic 
neuropathy of DPN. No preventative treatment exists, but strict 
metabolic control is thought to slow down DPN progression.

Cardiac Autonomic Neuropathy
Cardiac autonomic neuropathy is thought to occur in 20–73% of 
T2DM patients, yet it often goes undiagnosed for several years 
(Table 1) (13). CAN alters cardiac rhythm through pathological 
changes, first occurring in the parasympathetic cardiac branches 
followed by sympathetic nervous system dysfunction, and thereby 
predisposes to cardiac arrhythmia (40, 50, 51). In some populations, 
it has been shown to increase the 5-year mortality risk by 50% (50, 
52–54). The presence and severity of UN and DPN have been asso-
ciated with earlier onset and higher prevalence of CAN, supporting 
the close epidemiological link between these complications, but the 
concurrent development of somatic and autonomic neuropathies 
has also been reported in T2DM, with CAN developing during 
the pre-diabetic condition (55–60). The exact pathogenesis of 
CAN remains unclear and our understanding of neural damage 
relies largely on models of somatic neuropathy (13, 48). Chronic 
hyperglycemia, dyslipidemia, and oxidative stress are thought to 
contribute to accelerated nerve damage, neuronal ischemia, and 
the dysfunction and apoptosis of neurons (13, 51, 61, 62). CAN 
may be subclinical for many years, while parasympathetic denerva-
tion occurs. This results in an imbalance between parasympathetic 
and sympathetic tone, leading to changes in HRV as a marker of 
sympathovagal balance, alterations in baroreflex sensitivity, and 
abnormalities of the left ventricle (2, 63–65). Within 5 years, CAN 
is thought to progress to sympathetic nerve damage, but the exact 
timeline is uncertain. In this clinical stage, patients experience 
resting tachycardia, exercise intolerance, postural hypotension, 
cardiac dysfunction, and diabetic cardiomyopathy (13).

Cardiovascular autonomic reflex tests can be used to monitor 
cardiac autonomic function by measuring changes in heart rate 
and blood pressure in response to deep respiration, the Valsalva 
maneuver and postural changes (47, 66, 67). New techniques 
for cardiac imaging and guidance on diagnostic procedures are 
expected to improve the detection of subclinical CAN (3, 13). 
Intensive control of glycemia, lipidemia, hypertension, and lifestyle 
changes may reduce the risk of CAN by up to 50%, but no thera-
peutic treatment exists that can prevent CAN completely (13, 62).

genetics of Diabetic Neuropathies

The commonalities in the clinical presentation and molecular 
pathways known to be involved in UN, DPN, and CAN support 
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TAble 1 | Clinical presentation and management of the diabetic neuropathies.

uremic  
neuropathy (uN)

Diabetic peripheral  
neuropathy (DPN)

Cardiac autonomic  
neuropathy (CAN)

Affected nerves Distal symmetric polyneuropathy of sensory, 
motor and autonomic nerves including renal 
sympathetic nerves

Distal symmetric polyneuropathy of sensory  
and motor nerves. Distal sympathetic  
autonomic neuropathy may also be observed

Parasympathetic and sympathetic 
autonomic nerves of the heart and the 
vasculature

In rare cases: cranial and pulmonary  
sympathetic nerves

Pathogenesis Exact mechanism unclear Exact mechanism unclear Exact mechanism unclear
Advanced renal disease and build-up of uremic 
toxins are thought to affect neuron function

Hyperglycemia is thought to affect  
numerous pathways, causing nerve damage  
and inhibiting repair mechanisms

Hyperglycemia is thought to lead to 
accumulation of AGE products, which 
signal through their receptor RAGE, 
inducing chronic inflammation and 
nerve damage

Symptoms Early sensory symptoms Early sensory symptoms Subclinical stage
• Paresthesia
• Paradoxical heat sensation
• Increased pain sensation in lower extremities
•   Restless leg syndrome
• Cramps

• Neuropathic pain
•  Sensitivity changes to vibration and 

temperature
• Numbness

•  Parasympathetic and sympathetic 
tone imbalance

• HRV changes
• Alterations in baroreflex sensitivity

Advanced disease motor-deficit symptoms • Abnormalities in left ventricle

• Muscle weakness Clinical stage
Advanced disease motor-deficit symptoms • Foot deformities • Resting tachycardia
• Muscle weakness • Impaired deep tendon reflexes • Exercise intolerance
• Impaired deep tendon reflexes • Imbalance • Postural hypotension
• Imbalance • Changes in gait and postural sway • Cardiac dysfunction
• Numbness Distal sympathetic autonomic neuropathy • Diabetic cardiomyopathy

• Atrophy of lower limbs • Dry, cracked and warm skin
Autonomic impairment • Plantar calluses at weight-bearing areas
• Postural hypotension
• Hyperhidrosis
•  Dysfunction of digestive, excretory and 

reproductive organs

Diagnosis of somatic 
neuropathy

• Neurological assessment • Physical examination of feet

• Cardiovascular autonomic reflex tests
• HRV

• Nerve conduction velocity testing • Perception of vibration, temperature, pain
• Ankle reflex

Diagnosis of autonomic 
neuropathy

•  Cardiovascular autonomic  
reflex tests

• Foot muscle strength
• Cardiovascular autonomic reflex tests

• HRV • HRV

Treatment No preventative treatment No preventative treatment No preventative treatment
Dialysis and renal transplantation Intensive control of glycemia, lipidemia, 

hypertension and lifestyle changes  
reduce risk

Intensive control of glycemia, lipidemia, 
hypertension and lifestyle changes 
reduce risk
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a close epidemiological link between these diabetic neuropathies, 
and the presence of one neuropathy frequently increases the risk 
of onset or severity of another (68, 69). Only a small number of 
studies have been carried out to investigate the genetic predisposi-
tion to these neuropathies in T2DM patients.

genetics of uremic Neuropathy
Considering the increasing prevalence and severe implications 
of chronic kidney disease, it is not surprising that an extensive 
number of studies have been carried out to identify genetic variants 
that may contribute to renal disease, including DN, but far less 
is known of the genetics of UN. MalaCards, the human malady 
compendium database, lists four genes related to UN: B2M, PTH, 
PSMC2, and PNRC1 (70). Beta-2-microglobulin (B2M) has been 
extensively studied in relation to diabetes, kidney disease, and 
cardiac events. In T2DM, it acts as a sensitive diagnostic marker for 
renal function; it is considered a uremic toxin and is also used as a 

surrogate marker for other uremic toxins (71–73). Elevated B2M 
plasma levels have been associated with cardiovascular disease and 
mortality in uremic patients (71). Parathyroid hormone (PTH) has 
also been implicated in several chronic complications of diabetes 
including retinopathy and nephropathy, as well as in renal disease 
in non-diabetics (74–76). It is considered a major uremic toxin, and 
variations in PTH levels have been associated with UN (77, 78). 
In a study conducted in non-diabetic dialysis patients, PTH levels 
were not found to be associated with autonomic dysfunction; to 
our knowledge this association has not been tested in diabetics (14, 
79). Whether the genes identified by two GWAS linking DN with 
T2DM are also involved in UN is not clear (80–82). Statistically 
significant associations have been detected between DN in T2DM 
and single nucleotide polymorphisms (SNPs) in genes including 
ACACB (83), ACE (84), ADIPOR2 (85), AGER (RAGE) (85), AGTR1 
(86), AGT (86), AKR1B1 (87), APOE (88), CCL5 (RANTES), and 
its receptor CCR5 (89, 90), CNDP1 (91), CYBA (92), ELMO1 (93), 
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FABP-2 (94), FRMD3 (95), HSPG2 (85), IL-6 (96), KCNQ1 (97), 
LPL (88), MMP9 (98), MTHFR (99), MYH9 (100), NCALD (80, 
101), NOS3 (85), and PPARγ2 (102), PVT1 (103), SIRT1 (104), 
SLC12A3 (80, 105), VEGF (106), rs1411766 (chromosome 13q) 
(107), rs1034589 (nearest gene: RNF185) (81), and several SNPs 
within the LIMK2-SF1 region (81). Numerous candidate genes 
could be added to this list by including polymorphisms that have 
been shown to have a marginally significant association with DN, 
and gene expression studies that have associated DN with changes 
in expression levels of miRNAs and members of the NF-κB, TGF-
β1 and complement pathways (19, 81, 85, 108–113).

genetics of Diabetic Peripheral Neuropathy
Numerous studies have investigated genetic risk and protective 
factors for DPN in T2DM in particular, highlighting a potential 
association with specific polymorphisms in genes including 
ACE (114), AKR1B1 (115), ADRA2B (116), APOE (117–119), 
GPx-1 (120), IL-4 (121), IL-10 (122), IFN-γ (122), MTHFR (123), 
NOS1AP (124), NOS3 (125–127), TLR4 (128), UCP2 (129), and 
VEGF (Table 2) (130). Variants of mitochondrial genes have also 
been linked to T2DM, and recently polymorphisms in ATPase 8, 
ND1, ND5, and MT-CYB were suggested to affect DPN based on 
a study of a single individual (131). Further candidate genes have 
been proposed, based on their role in regulating DPN in type 1 
diabetes (T1DM).

genetics of Cardiac Autonomic Neuropathy
Studies on genetic variants involved in CAN remain scarce and 
potential candidate genes are often selected based on their implica-
tion in somatic peripheral neuropathies. A number of genes have 
been linked to CAN in particular, based on their involvement in 
autonomic dysfunction in animal models and in human patients of 
T1DM or other cardiac complication, or due to their involvement in 
inflammatory responses that are thought to contribute to neuronal 
injury. These candidate genes include ACE (134), ADRB2 (135), 
AKR1B1 (47, 136), APOE (137), CAT (138), GNAS (139), MTHFR 
(140), NF-κB (141), NOS (142, 143), TLR2 and TLR4 (144), and 
SREBP-1 (145). The only genetic polymorphisms that have been 
associated with the risk of CAN in T2DM patients are TCF7L2 
(9), TNF-α (133, 146), and CHT1 (Table 2) (132). Serum levels of 
interleukin 6 (IL-6) (147, 148) and adiponectin (ADIPOQ) (146) 
have also shown to change with CAN in T2DM patients, but no 
genetic variants have been linked to this observation. The herit-
ability of CAN-related parameters has been associated particularly 
with variants of the ACE gene, but twin studies in non-diabetic 
subjects have produced contradictory results with regards to the 
effect size imposed by genetic and environmental factors on CAN 
risk (10, 149–151).

Common genetic Risk Factors
This review highlights the lack of studies conducted to investigate 
the genetic risk factors that contribute to diabetic neuropathies, 
particularly UN, DPN, and CAN. Based on the publications 
identified in this review, polymorphisms within ACE, AKR1B1, 
APOE, MTHFR, NOS3, and VEGF have been shown to contribute 
to DPN as well as DN. Considering the functions of these genes, 
it is possible that these same variants also contribute to UN and 

CAN (Figure 2). If one also considers candidate genes that have 
been implied in but not significantly associated with the diabetic 
neuropathies, this list of potentially common risk factors could be 
extended significantly. The implication of these candidate genes 
comes as no surprise as all of them are associated with key molecu-
lar pathways that have been linked to diabetes and its complications 
(48, 50, 152). This observation warrants further investigation into 
how exactly these genetic variants may contribute to the diabetic 
neuropathies, and what their pharmacogenetic effects may be.

ACE
The ACE gene encodes the angiotensin-converting enzyme, which 
is a key component of the renin–angiotensin system. It is a potent 
vasoconstrictor that converts angiotensin I to angiotensin II, and 
is involved in inducing proteolysis of the vasodilator bradykinin 2 
(153–155). Angiotensin II is attributed a role in the regulation of 
glucose and insulin levels, and the hyperglycemia-induced increase 
in angiotensin II levels has been linked to diabetes risk and found 
to induce oxidative stress, damage to endothelial cells, inflam-
mation, vascular changes, and thrombosis (Figure 2) (156–158). 
The insertion/deletion (I/D) polymorphism of a 287 base pair Alu 
sequence in intron 16 of the ACE gene is of particular interest, as 
this polymorphism alone is thought to be responsible for 46% of 
the variance of the ACE enzyme present in serum (159, 160). The 
deletion variant D, and the DD genotype in particular, has been 
associated with significantly higher plasma levels of ACE (161, 
162). In DPN, the ACE I/D polymorphism has been identified as a 
genetic risk factor (Table 1) (114, 163). No studies have investigated 
the association between ACE and UN, but the renin–angiotensin 
system and its component angiotensin II are thought to contribute 
to most pathological processes involved in DN and therefore 
may also be contributing to UN (164, 165). This is supported by 
several meta-analyses that suggest that the D allele is a risk factor 
for DN (166–168); the I/I genotype is thought to fulfill a protec-
tive function in this regard (169). The ACE I/D polymorphism 
alone, and haplotypes including this and other markers within 
the ACE gene, have been associated with DN progression and 
end stage renal disease in particular, which in turn leads to UN 
(84, 170–172). The ACE D/D genotype has also been linked with 
impaired circadian blood pressure variation in T2DM, which is 
associated with autonomic neuropathy, hypertension, and limited 
kidney function (134, 173). Studies investigating the association 
between the ACE I/D polymorphism and diabetic complications 
have produced very contradictory results, providing a good exam-
ple of an issue encountered in the majority of genetic studies of 
T2DM risk factors. These contradictions have been attributed to 
inter-ethnic variation of allele distribution, and a lack of considera-
tion for haplotypes and linkage disequilibrium that exists between 
different genetic variants across the ACE gene (172, 174).

The ACE I/D variant is also thought to affect a patient’s response 
to therapeutics commonly used in diabetes: angiotensin-converting 
enzyme inhibitors (ACEIs) and angiotensin receptor blockers 
(ARBs) are used to treat hypertension and numerous diabetic 
complications including retinopathy, nephropathy, neuropathy, 
CAN, and cardiovascular disease (175–181). The polymorphism 
has also been reported to affect the efficiency of statins used to 
treat hypercholesterolemia (182). Contradictory results have 
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TAble 2 | genetic variants showing a significant association with diabetic neuropathies in T2DM.

gene SNP/variant Risk variant Sample size ethnic group Reference

A. Diabetic peripheral neuropathy (DPN)
ACE I/D (287 bp, intron 19) D 1316 T2DM patients with DPN, 1617 controls Caucasians and Asians (114)

AKR1B1 −106 C/T T 85 T2DM patients,  
126 non-diabetic controls

Finnish (115)
(CA)n repeat (Z allele, 
 n = 24)

Z-2

Alpha 2B-AR I/D D 130 T2DM patients with DPN,  
60 T2DM patients without DPN

Greek (116)

APOE rs429358 T/C, rs7412 C/T C/C 158 T2DM patients Japanese (117)

GPx-1 rs1050450 C/T T 1155 T1DM and T2DM patients Caucasian (120)

IL-4 VNTR (P1/P2 allele) P1 allele 227 T1DM and T2DM patients with DPN,  
241 non-diabetic controls

Turkish (121)

IL-10 −1082 G/A G 198 T2DM patients, 202 non-diabetic controls South Indian (122)

IFN-γ 874 A/T A 198 T2DM patients, 202 non-diabetic controls South Indian (122)

MTHFR 677 C/T T 230 T1DM and T2DM patients with DPN, Turkish (123)
282 Non-diabetic controls

NOS1AP rs1963645 A/G G 26 Diabetic patients with CKD White American (124)
rs6659759 T/C C 21 Non-diabetics with CKD
rs16849113 C/T T 30 Diabetic patients with CKD African
rs880296 C/G G 20 Non-diabetics with CKD American

NOS3 27VNTR (4a/b) 4a 353 T2DM patients with DPN North and South Indian (125)
−786 T/C (rs270744) C 905 T2DM patients without DPN

TLR4 896 A/G (rs4986790) AA 246 T1DM patients, 530 T2DM patients German Caucasian (128)
1196 C/T CC

UCP2 −866 G/A A 197 T2DM patients Japanese (129)

VEGF I/D (18bp, at −2549) D 84 T2DM patients with DPN, Romanian (130)
90 Non-diabetic controls

b. Cardiac autonomic neuropathy (CAN)

CHT1 SNP in 3′UTR T 95 T2DM patients, 208 non-diabetic controls African Americans (132)

TCF7L2 rs7903146 C/T T 154 T2DM patients, 185 non-diabetic controls Italian (9)
rs7901695 T/C C

TCF-α −308 A/G A eight diabetic patients with congestive heart 
failure, three healthy controls

Serbian (133)

Several genes and their genetic variants have been associated with diabetic peripheral neuropathy (DPN, A) and cardiac autonomic neuropathy (CAN, B) in type 2 diabetes mellitus 
(T2DM). This table lists the first publications to identify a statistically significant association between these genetic variants and the diabetic neuropathy, or refers to a recent meta-
analysis if too many contradictory publications were found on the topic. bp, base pair; CKD, chronic kidney disease; SNP, single nucleotide polymorphism; T1DM, type 1 diabetes 
mellitus; T2DM, type 2 diabetes mellitus; UTR, untranslated region.
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been published on either the II or DD genotype facilitating a 
better treatment outcome and due to these inconsistencies, and 
a lack of sufficient genetic data, no consensus has been reached 
on the benefit of routinely genotyping patients for the ACE I/D 
polymorphism (176, 182–187).

AKR1B1
Aldose reductase is the first rate-limiting enzyme in the polyol 
pathway, which reduces glucose to sorbitol in an NADPH-
dependent reaction. In hyperglycemic conditions, an increased 
flux of glucose through the polyol pathway has been shown to 
contribute to diabetic neurovascular complications by deplet-
ing NADPH levels and reducing a cell’s antioxidant capacity by 
increasing the formation of advanced glycation end products 
(AGEs), and contributing to oxidative and osmotic stress 
(Figure  2) (188). Polymorphisms within the aldose reductase 
gene, AKR1B1, and its promoter region have been linked to 

diabetic neuropathies and microvascular complications (115, 
189). These include the (CA)n microsatellite (n  =  22–29; Z 
allele n  =  24) located approximately 2.1  kb upstream of the 
gene’s transcription start site, and two polymorphisms in the 
basal promoter region at −106 C/T (rs759853) and −12 G/C. 
The (CA)n Z-2 and the −106 C/T polymorphisms have been 
found to be closely linked (115). Patients suffering from diabetic 
neurovascular complications have been shown to express higher 
levels of aldose reductase; a haplotype including the microsatellite 
Z-2 and SNP −106 C variants has been associated with the highest 
expression levels of AKR1B1 and is thought to pose a high risk for 
diabetic microvascular complications (190). In T2DM patients 
with DN, the Z-2 and −106T alleles have been shown to have 
a synergistic effect on increasing the risk of patients suffering 
cardio-renal endpoints (191, 192). The overexpression of AKR1B1 
has not only been reported in glomeruli, but also in the peripheral 
nerves of T2DM patients, where it is thought to contribute to 
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FiguRe 2 | The effects of common genetic variants implicated in the 
diabetic neuropathies. The gene products of ACE, AKR1B1, APOE, MTHFR, 
NOS3, and VEGF are all involved in important molecular pathways that have 
been associated with type 2 diabetes (T2DM) and diabetic neuropathies. 
Certain genetic variants of these genes have been identified as risk factors for 
diabetic nephropathy (DN) and diabetic peripheral neuropathy (DPN) in 
particular. DN causes renal damage and a build-up of uremic toxins, which is 

thought to lead to uremic neuropathy (UN), suggesting that these genetic risk 
factors also affect the onset and progression of UN. The same genetic variants 
have also been implied in diabetic autonomic neuropathy and cardiac 
complications, suggesting their involvement in CAN, but their direct association 
with CAN in T2DM patients remains to be proven. Solid black arrows indicate 
that a statistically significant association has been published; dashed gray 
arrows indicate a suspected association.
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the disease pathology of diabetic neuropathy (193, 194). T2DM 
patients with the AKR1B1 −106 T/T genotype have been reported 
to experience more severe neuropathological deterioration in the 
sural and radial nerves, contributing to the onset of DPN (115). 

The Z-2 variant has not been found to significantly affect DPN 
to date (115, 195). AKR1B1 variants have been associated with 
CAN in T1DM patients, but no association has been shown in 
individuals with T2DM (47, 195, 196).
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Aldose reductase inhibitors (ARIs) have been researched over 
many years for their use in treating diabetic complications, but 
although animal studies have provided promising results, clinical 
trials in search of an optimal ARI for humans continues (197–206). 
Only Epalrestat is currently on the market in Japan to treat DPN-
associated symptoms (198, 207, 208). Epalrestat has also been 
reported to delay progression of diabetic retinopathy, nephropathy, 
and neuropathy, and has been suggested as a treatment for CAN 
(207–209). As polymorphisms of AKR1B1 affect aldose reductase 
expression levels, it is suspected that these polymorphisms may 
affect a patient’s optimum dosage of ARIs, but this remains to be 
investigated.

APOE
The apolipoprotein E (apoE) gene product is a cholesterol transport 
protein and a major ligand of the low density lipoprotein (LDL) 
receptor, which plays an important role in lipid metabolism, 
hypercholesterolemia, as well as nerve repair and regeneration 
(Figure 2) (210, 211). The APOE gene has three main alleles, which 
are the result of two SNPs that cause amino acid changes at 112 
Cys/Arg (rs429358 C/T) and 158 Arg/Cys (rs7412 T/C). The ε3 
variant is the most common and has the wild type alleles at both 
SNPs; the ε4 allele has a substitution giving rise to an arginine at 
amino acid 112, and the least common allele, ε2, has a substitution 
leading to a cysteine at amino acid 158 (212). These alleles give 
rise to the apoE2, E3, and E4 protein isoforms, which differ in 
charge and stability, and their roles in various disease pathologies. 
The ε2 allele is thought to result in higher circulatory levels of 
apoE, but lower levels of LDL cholesterol. It has been shown to 
be defective in binding the LDL receptor, but has been suggested 
to protect against micro- and macro-vascular complications in 
T2DM (213, 214). The ε4 variant has been associated with lower 
levels of circulatory apoE, but higher plasma levels of total cho-
lesterol, LDL, and VLDL (very low density lipoprotein), and has 
been associated with higher risk and severity of neuropathological 
diseases (119, 214–216). Contradictory results have been obtained 
with regards to the role of APOE variants in diabetes, which may be 
due to population-specific effects and variations in study designs 
(210). APOE polymorphisms have been linked to DN risk, but no 
definite conclusion has been made on whether the ε2 or ε4 allele 
confers disease risk (217). The APOE variants have been implicated 
in neurological disorders of the central and peripheral nervous 
system, yet results on their role as a risk or protective factor in 
DPN have also been inconsistent and a recent meta-analysis could 
not establish a definite association (119, 212). Several studies have 
shown that the APOE ε4 allele may be associated with particularly 
severe DPN (117–119). Interestingly, the APOE ε2 allele was 
associated with lower levels of DPN in most published studies, 
and may have a protective role in neuromuscular diseases (118, 
119, 212, 218). Based on the association of APOE and its ε4 allele 
with disorders of the nervous system, as well as observations made 
in APOE(−/−) knockout mice, it is considered a candidate gene 
for CAN risk, but no association has been published (50, 137, 219).

Pharmacogenetic effects of the APOE genotype have also been 
found in response to therapeutic approaches used in diabetes, 
hyperlipidemia, and neurodegenerative diseases (220–223). 
Metformin has been found to enhance APOE expression, which 

is known to affect peripheral nerve regeneration (220, 224, 225); 
if this effect is isoform specific is unclear. APOE genetic variants 
have been reported to respond differently to diet therapy and lipid-
lowering therapy using statins. Some studies suggest that carriers 
of the ε4 isoform are less responsive to statins, but more responsive 
to diet and lifestyle interventions. However controversial results 
have also been published and no consensus has been reached with 
regards to routine APOE genotyping (163, 210, 221, 223, 226–229).

MTHFR
The 5,10-methylene-tetrahydrofolate reductase (MTHFR) enzyme 
and its genetic variants have been implicated in various disease 
pathologies. The two most studied missense mutations, 677 C/T 
(rs1801133) and 1298 A/C (rs1801131), have been associated with 
T2DM and diabetic neuropathies, independently and in synergy 
(230). Both polymorphism leads to a reduced enzyme activity 
of MTHFR, which has been linked to hyperhomocysteinemia 
(elevated plasma levels of homocysteine) and lower levels of 
folate, and vitamins B6, and B12 (230–233). At least 35% of this 
variation in homocysteine levels is thought to be due to folate 
and vitamin B12 levels, and a change in diet may counteract the 
negative effects of the 677 C/T polymorphism to some extent 
(234, 235). This indicates that diet is a confounding factor that 
should be considered in MTHFR studies. Hyperhomocysteinemia 
has been shown to induce oxidative damage of endothelial cells, 
arteriosclerosis, and impaired neural function (236, 237), and 
has been associated with neurovascular diabetic complications 
(238, 239). The 677 C/T variant has been linked to DPN (123, 237, 
240). Albuminuria, glomerular lesions, and DN in T2DM have also 
been linked to hyperhomocysteinemia and the 677 T allele, but no 
direct association with UN has been made (237, 241–243). Elevated 
homocysteine level is also considered a risk factor for diabetic 
autonomic neuropathy (244). No studies investigated the role of 
MTHFR polymorphisms in relation to CAN specifically, but in a 
non-diabetic study, the 677 T allele was linked to lower HRV than 
the CC genotype, which is a diagnostic indicator of CAN (140).

Mutations of the MTHFR gene have been found to affect a 
patient’s response to numerous drugs, including metformin, 
nitrous oxide anesthesia, methotrexate, and chemotherapy 
(245–249). In diabetics, metformin treatment has been linked 
to vitamin B12 deficiency; this vitamin deficiency may in turn 
cause hyperhomocysteinemia, which is exacerbated in patients 
with the 677 C/T mutation and increases the risk of DPN, diabetic 
retinopathy, and vascular thrombosis (250–252). In the presence of 
the 677 C/T and 1298 A/C polymorphisms of MTHFR, treatment 
with MTHFR-5, vitamins (such as folic acid) and minerals are 
suggested to supplement the deficient enzyme (246, 251).

NOS3
Nitric oxide (NO) is produced from L-arginine by endothelial nitric 
oxide synthase (NOS3 or eNOS) and functions as a vasodilator that 
is essential for the maintenance of endothelial cell function and 
homeostasis (Figure 2) (253). Genetic variants of NOS3 have been 
linked to changes in circulating levels of NO and have been impli-
cated in hypertension, atherosclerosis, and diabetic microvascular 
complications (254). Three polymorphisms within this gene have 
been of particular interest as they have been shown to alter NOS3 
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enzyme activity and plasma levels of NO: the −786 T/C (rs2070744) 
and 894 G/T (rs1799983) SNPs, as well as the variable number 
tandem repeat (VNTR) polymorphism within intron 4 that can 
give rise to two deletion variants, 4a and 4b. The regulation of NOS3 
is complicated by strong linkage that exists between several SNPs 
within the gene, as well as potential interactions of these alleles 
with other genetic variants (255). Numerous studies have linked 
these three polymorphisms of NOS3 and related haplotypes with 
the development and progression of DN (256, 257). No association 
with UN has been made, but NO and the nitric oxide synthases 
are known to fulfill important functions in the peripheral nervous 
system. Several recent studies have implicated NOS3 variants in 
DPN. Particularly the NOS3 VNTR 4a/b variant is suspected of 
having a haplotype-dependent effect on diabetic microvascular 
complications and diabetic neuropathy (258). Many contradic-
tory results have been reported on the role of NOS3 variants in 
relation to diabetic neuropathies as they seem to be significantly 
influenced by population-specific effects (125–127). Nitric oxide 
is also an important regulator of the autonomic nervous system 
and the NOS3 −786 T/C variant has been found to contribute to 
autonomic imbalance in various disease pathologies, but it has 
not yet been associated with CAN in T2DM in particular (143).

The association of NOS3 with neuropathic pain and inflamma-
tion makes it an interesting therapeutic target (259). As the NOS3 
polymorphisms discussed here affect NOS3 enzyme activity as well 
as NO plasma levels, they may need to be considered during drug 
design and dosage. L-arginine supplementation has been tested 
to restore NO levels in diabetes, but contradictory results about 
the effectiveness of this NO precursor have been published and 
whether NOS3 polymorphisms have an effect on this supplementa-
tion remains unclear (260–263).

VEGF
The vascular endothelial growth factor (VEGF) is a chemokine that 
induces vascular endothelial cell proliferation and organ repair. It 
plays a key role in modulating vascular permeability and regulating 
angiogenesis, and numerous studies have highlighted its positive 
contribution to neurogenesis (264, 265). A significant level of 
heritability has been found to affect VEGF levels in circulation, 
up to 60−80%, of which 50% are determined by its SNPs rs6921438 
and rs10738760 (266–269). Although several studies suggest that 
an upregulation of VEGF may fulfill a protective and neurotropic 
function, and that administration of VEGF may improve diabetic 
neuropathy, other studies show that an increase in circulating VEGF 
levels is associated with pathological angiogenesis and changes 
in vascular permeability, thereby contributing to cardiovascular 
and diabetic complications, ischemia of nerve fibers and hypoxia 
(Figure 2) (48, 270–274). In DN, the contradictory effects of VEGF 
may be explained by VEGF potentially fulfilling different functions 
during disease onset and progression, and in diabetics versus non-
diabetics (275). VEGF polymorphisms have been linked to the risk 
of developing DN, but no significant association could be detected 
between VEGF polymorphisms and UN or DPN so far (106, 276).

Anti-VEGF antibodies, or antibody fragments, are currently 
only being used to treat diabetic retinopathy and macular edema 
(277, 278). Studies in non-diabetic patients with age-related macu-
lar degeneration have suggested that polymorphisms of VEGF 

contribute to the variability in response to anti-VEGF treatment, 
but contradictory results have been published (279–286). With 
regards to neuropathy treatment, gene transfer of VEGF is being 
investigated (287, 288).

Conclusion

Type 2 diabetes mellitus is associated with the risk of developing 
debilitating and life-threatening neurovascular complications 
including UN, DPN, and CAN. While recent advances in genetic 
research tools have already provided us with a wealth of data on 
genetic variants that may affect an individual’s risk of developing 
diabetes and its associated retinal and renal vascular complica-
tions, little research has been conducted in the area of diabetic 
neuropathies. As new NGS developments drive the search for rare 
genetic variants that may explain the missing heritability of T2DM, 
it is important to not lose sight of the need to further investigate the 
variants we have already identified. How do these genetic variants 
function and interact in the various diabetic neuropathies? How 
can we use this knowledge to assess an individual’s risk of diabetic 
neuropathy? And ultimately, how can we apply this information 
to provide patients with targeted, personalized treatment? Most 
studies of T2DM genetics investigate polymorphisms and single 
gene effects in the diabetic population in general, irrespective of 
the patients’ complications, or they only focus on one diabetic 
complication in particular. Yet, we are already aware of common 
risk factors contributing to the various diabetic complications. 
Recent reviews by Tang et al. (111) and Forbes & Cooper (152) have 
provided a comprehensive overview of the genetic and molecular 
pathways contributing to T2DM and its vascular complications, 
highlighting commonalities between the different conditions. To 
our knowledge, our review is the first to provide an overview of 
common genetic variants that contribute to the diabetic neuropa-
thies, including UN, DPN, and CAN.

Extensive research in the areas of chronic kidney disease, 
peripheral neuropathy, and atherosclerosis has given rise to a 
substantial list of genetic variants that may be associated with 
these conditions, paving the way for research into their role in 
diabetic neuropathy. This review suggests that polymorphism 
within ACE, AKR1B1, APOE, MTHFR, NOS3, and VEGF may 
act as common genetic risk factors for the diabetic neuropathies 
in T2DM (Figure 2). Numerous other genetic variants have been 
implicated, yet not significantly associated with all of UN, DPN, 
and CAN. Polymorphisms in genes of the inflammatory and 
thrombotic pathways, as well as the plasma levels of the result-
ing gene products including, CD40 ligand and MCP-1, may be 
of particular interest to future studies, as these processes have 
been implicated in the development of nerve damage in several 
diabetic neuropathies and have also been linked to other diabetic 
complications including ischemic stroke (289–291). More research 
is required, especially in the field of UN, to elucidate the possible 
synergistic effects of gene products. There may be common genetic 
variants associated with both CAN and UN, which may be difficult 
to disentangle as both CAN and UN have a pre-clinical phase that 
can be present early in diabetic disease progression and even at the 
pre-diabetic stage. The identification of genetic risk factors may be 
further complicated by the fact that genes that play a role in the 
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diverse biochemical pathways associated with the development of 
diabetic neuropathy, including oxidative stress, AGE products and 
the polyol pathway, may be selectively turned on or off depending 
on the stage of disease progression.

Another interesting area of research, with regards to the 
genetics of diabetic neuropathies, is the field of pharmacogenet-
ics. Treatment options for gene related products is an important 
new direction for therapy, which is gaining momentum with the 
identification of gene variants being associated with diabetic 
complications. It is important to note that genetic polymorphisms, 
such as the ones discussed in this review, may modify a patient’s 
response to medication. Further genetic data will be essential to 
verify the possible benefits of routine genotyping, and the phar-
macogenetics that may guide personalized medication, dosage 
and delivery.

In addition to increasing research efforts with regards to the 
diabetic neuropathies, methodological issues experienced by 
genetic studies also need to be tackled. When one reviews the lit-
erature published on genetic risk factors of T2DM and the diabetic 
complications, major issues such as the lack of reproducibility and 
insufficient statistical power are very apparent. These shortcomings 
can be largely attributed to small samples sizes, population-specific 
effects and the significant heterogeneity between study designs. 
The generation of standards and guidelines on the definition and 
diagnosis of the different neuropathies, and a better understand-
ing of what confounding factors or comorbidities must be taken 
into account, will hopefully reduce this variation and improve 
our ability to generate more reproducible results. Taking into 
consideration the effect of haplotypes, linkage disequilibrium, and 
gene-environment interactions may also explain a significant part 
of this variation. By reducing the heterogeneity between studies, 
meta-analysis would be more applicable and could help increase 
the statistical power by combining smaller datasets. Advances in 
NGS are also expected to enhance the statistical power of stud-
ies, but the use of sufficiently large sample sizes continues to be 
paramount, as many studies still include less than 100 subjects. 
Inter-ethnic differences in allele frequencies have also been identi-
fied for most genetic variants, which points toward the need for 
population-specific studies. Ultimately, even when genetic variants 
alone do not indicate a significant association with a condition, 
associated changes in gene expression and regulation may still 
identify the variant’s product as a useful biomarker. Genetic 
variants should not be viewed in isolation; and neither should 
the diabetic neuropathies.

To further our understanding of UN, DPN, and CAN in 
T2DM, we suggest that whole genome analysis will be required 

to investigate not only patients presenting with single, but also 
with multiple neuropathies. This will allow the identification of 
commonalities and differences in risk and protective factors of 
these diabetic complications. The study of haplotypes and gene 
interactions with lifestyle or environmental factors will lead to a 
better understanding of disease etiologies. The use of populations 
with a limited genetic pool, such as the Arab Bedouins, in which 
consanguineous marriages are common and family sizes are large, 
could also enhance our understanding of the heritability of T2DM 
and the diabetic neuropathies (292).

By highlighting the commonalties in genetic risk variants in 
the diabetic neuropathies, this review aims to stress the need of a 
unified genetic model for these diabetic complications. We cannot 
expect genetics alone to provide a full explanation for the cause and 
progression of the diabetic neuropathies, but research is continuing 
to support its important role in these multifactorial complications 
(85, 111, 293–296). Ultimately, our understanding of the complex 
disease etiology of these diabetic neuropathies will require a multi-
system multifactorial approach, combining genetics, epigenetics, 
proteomics, and treatment effects. A better disease process model 
would allow individualized preventative care and targeted drug 
delivery, and have a serious impact on improving patients’ lives 
and reducing healthcare costs. The complexity of T2DM does not 
only lie in finding the missing puzzle pieces, but also in putting 
them together to see the ‘big picture’.
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