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Role of energy metabolism in the
brown fat gene program
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MA, USA

In murine and human brown adipose tissue (BAT), mitochondria are powerful generators
of heat that safely metabolize fat, a feature that has great promise in the fight against obe-
sity and diabetes. Recent studies suggest that the actions of mitochondria extend beyond
their conventional role as generators of heat. There is mounting evidence that impaired
mitochondrial respiratory capacity is accompanied by attenuated expression of Ucp1 and
other BAT-selective genes, implying that mitochondria exert transcriptional control over
the brown fat gene program. In this review, we discuss the current understanding of
brown fat mitochondria, their potential role in transcriptional control of the brown fat gene
program, and potential strategies to treat obesity in humans by leveraging thermogenesis
in brown adipocytes.
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Introduction

Brown fat is composed of thermogenic adipocytes that convert chemical energy to heat. Found in
homeothermic animals such as mammals, brown fat protects against cold stress. In neonates, brown
fat plays a critical role in thermoregulation. The thermogenic capacity of brown fat is attributed to
abundant mitochondria, which dissipates heat via uncoupling (1).

There are two types of thermogenic adipocytes: classical brown adipocytes and beige/brite
adipocytes. Classical brown adipocytes exhibit constitutive thermogenic capacity with large num-
bers of mitochondria. Developmentally programed brown fat, such as the rodent interscapular
depot, consists of these cells. Another type of thermogenic adipocytes is found in white fat.
These cells are recruited by thermogenic stimuli and in turn display comparable thermogenic
capacity to classical brown adipocytes. Due to these properties, they have been named beige/brite
(brown-in-white) adipocytes (1, 2).

Brown fat has unique genetic signatures that support its thermogenic function. Uncoupling
protein 1 (Ucp1), a key thermogenic protein, is highly expressed in brown fat. Cell death-inducing
DFFA-like effector (Cidea), a modulator of UCP1, and Type II iodothyronine deiodinase (Dio2),
an enzyme that converts T4 to active T3 within the tissue locally, are among major thermogenic
genes (3–5). Fatty acid oxidation (FAO) genes and electron transport chain (ETC) subunit genes
are also enriched (6). This transcriptional signature is in part determined by PR domain containing
16 (Prdm16), a determinant of brown fat, and peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (Ppargc1a), a key coactivator of peroxisome proliferator-activated receptor
alpha (Ppara) and gamma (Pparg) (7, 8). The transcriptional network of the brown fat genes have
been reviewed elsewhere (9). Since many of the brown fat-selective genes regulate thermogenesis,
hereafter “the thermogenic gene program” and “the brown fat gene program” are reciprocally used.

Mitochondria play a central role in providing an energetic basis for thermogenesis in brown
fat. Brown fat mitochondria fulfill their duty as cellular powerhouses in the non-stimulated state.
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In sympathetically stimulated brown fat, UCP1 is rapidly activated
and uncouples electron transit and ATP production. Instead, the
chemical energy stored in the proton gradient is dissipated as
heat (10). Interestingly, several studies have demonstrated that
impaired mitochondrial respiratory capacity is accompanied by
attenuated expression of Ucp1 and other brown adipose tissue
(BAT)-selective genes in classical brown adipocytes (11, 12). In
addition to a conventional role as generators of heat, this suggests
that brown fat mitochondria have an unappreciated role in regu-
lating genes involved in thermogenesis depending on the status
of respiratory capacity. Critical evaluation of these studies will
broaden our thoughts on mitochondria in brown fat. This review
summarizes the features of brown fat mitochondria and discusses
their potential role in transcriptional control of the brown fat gene
program and its therapeutic implications in humans.

Features of Brown Fat Mitochondria

Morphological Features
Brown fat mitochondria are dynamic organelles that meet the
thermogenic needs of the organism by regulating their number
and networking as well as their biochemical and ultrastructural
profile. Acute cold exposure (or activation with norepinephrine)
immediately promotes mitochondrial fission, an event that pre-
cedes and augments thermogenesis (13). Brown fat mitochon-
dria exhibit unique morphological features. Notably, brown fat
mitochondria are enlarged and densely packed with respiratory
units, resulting in dense cristae (14). The morphological features
of brown fat also differ across gender with females having larger
mitochondria and denser cristae (15). The density of brown fat
mitochondria is among the highest of any tissue (16). Even so,
chronic cold exposure increases mitochondrial mass even fur-
ther. This is mediated by catecholamines via β-adrenergic signal-
ing, which increases PGC-1α, a transcriptional coactivator that
induces ERRα and NRF-1, culminating in increased mitochon-
drial mass (17–19).

Biochemical Features
Early biochemical and functional studies on brown fat mitochon-
dria in rodents revealed high cellular respiration but low ATP
synthase activity (20). This implied that pathway involving proton
leakage must underlie the basis of thermogenesis. Biochemical
studies identified that UCP1 constitutes the molecular basis for
enhanced proton leak (21). Interestingly, in larger mammals such
as lambs the abundance of ATP synthase is higher (22), presum-
ably because larger animals are less dependent on non-shivering
thermogenesis due to their smaller surface-to-volume ratio and
due to their increased capacity for shivering.

Long-chain free fatty acids (LCFAs) activate UCP1, while
purine nucleotides inhibit UCP1 (10). Intuitively, mobilization of
free fatty acids via β-adrenergic activation is coupled to UCP1
activation and heat production. Fedorenko et al. (23) reported
that UCP1 does not exhibit constitutive proton transport activity.
Instead, there is obligatory binding of LCFAs to UCP1, a process
that transfers protons associated with LCFA into the matrix via
a conformational change of UCP1. LCFAs can also overcome
inhibition by purine nucleotides. This is important because in the

basal state, there is no lipolysis and inhibition of UCP1 by purine
nucleotides will promote coupled ATP-generating respiration.

In theory, uncoupling should de-energize brown fat mitochon-
dria, culminating in an ATP crisis. ATP, however, is required for
the activation of fatty acids during uncoupling. Brown fat mito-
chondria circumvent this by increasing glycolysis as well as the
TCA cycle. Arsenite, an inhibitor of pyruvate dehydrogenase com-
plex (PDC) and α-ketoglutarate dehydrogenase, depleted ATP in
norepinephrine-stimulated brown adipocytes, implying that the
TCA cycle is critical for maintaining ATP during thermogenesis
(24). Although succinyl-CoA synthetase primarily generates GTP,
this TCA enzyme complex can also generate ATP, a process which
may explain how the TCA cycle is critical for maintaining ATP in
brown fat (discussed further in Proteomical Features). Glycolysis
is an important source of ATP, too. Notably, hexokinase activity
increases fourfold in cold acclimated rats, achieving glycolytic
activity similar to liver (25).

Proteomical Features
Mass spectrometric analysis of brown fat mitochondria has
revealed striking proteomic difference compared with white fat
mitochondria (26). In fact, the proteomic profile of brown fat
mitochondria was most similar to that of skeletal muscle. Com-
pared with white fat mitochondria, there was an enrichment of
catabolic pathways including ETC, TCA cycle, and fatty acid
metabolism in brown fat mitochondria. Complexes I–IV are
present at higher levels, whereas complex V is present at lower
levels, a pattern favorable for thermogenesis. There is robust
expression of enzymes involved in the TCA cycle–ADP-forming
succinyl-CoA synthetase β subunit (A-SCS-β), pyruvate dehy-
drogenase kinase 4 (PDK4), and pyruvate dehydrogenase phos-
phatase regulatory subunit (PDPr). SCS converts succinyl-CoA
to succinate. This reaction is coupled to the formation of ATP
or GTP, which is determined by two different β subunits, ADP-
forming and GDP-forming. In mouse, rat, and human, metabol-
ically active tissues, such as brain and heart, express high lev-
els of ADP-forming subunits compared with GDP-forming sub-
units (27). Likewise, brown fat mitochondria may preferentially
use A-SCS-β to supply ATP, a feature that matches a role of
substrate-level phosphorylation in stimulated brown adipocytes.
During cold exposure, lipid uptake and lipogenesis replenish
fat stores that have been oxidized (28). Control of lipogenesis
during cold exposure is complex and partly regulated by pyru-
vate metabolism (29, 30). Pyruvate can be targeted for com-
plete oxidation by converting it into acetyl-CoA via the enzy-
matic action of PDC (31). Alternatively, inhibition of PDC by
PDK4 diverts pyruvate into glycerol, which is the backbone for
free fatty acid (FFA) esterification (31). An enzymatic com-
plex consisting of PDPr counteracts the action of PDK4, and
thus, targets pyruvate for complete oxidation (32, 33). In sum-
mary, opposing regulation by PDK4 and PDP may play a crit-
ical role in whether or not the brown adipocyte uses pyruvate
for lipogenesis (PDK4-mediated) or complete oxidation (PDPr-
mediated).

Fatty acids serve asmajor substrates for thermogenesis and they
activate UCP1 (10). In brown fat, there is a high expression of
enzymes involved in FAO, including short-, medium-, long-chain
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acyl-CoA dehydrogenases and 3-ketoacyl-CoA thiolase (26).
Long-chain fatty acids require a carnitine palmitoyltransferase
1B (CPT1B)-mediated carnitine shuttle for oxidation in mito-
chondria. Supporting a role for robust oxidative capacity in
brown fat, CPT1B is 50-fold higher in brown fat compared with
white fat (26). Brown fat may also exhibit metabolic flexibility
in fuel utilization. Highly expressed in brown fat, acetyl-CoA
synthetase 2-like (ACSS1) permits oxidation of ketone bod-
ies during starvation (26, 34, 35). Indeed, activity of ketone
body oxidizing enzymes in brown fat parallels that of the
heart (36).

Role of Energy Metabolism in the Brown
Fat Gene Program

Although manipulating regulators of mitochondrial biogenesis,
such as PGC-1 coactivators and ERRα, affects Ucp1 expression,
those factors are also known to directly regulate transcription
of respiratory subunits (37), making it challenging to delineate
a direct relationship between respiratory capacity and the ther-
mogenic gene program per se. Here, we discuss approaches to
directly manipulate mitochondrial respiratory capacity and the
attendant effects on the brown fat genes, which are summarized in
Table 1.

Leucine-Rich Pentatricopeptide Repeat
Containing Motif (LRPPRC; also called
Leucine-Rich Protein 130kDa, LRP130)
A potential role of mitochondrial respiratory capacity in the
brown fat gene program was reported in a study using LRPPRC-
deficient brown adipocytes (11). LRPPRC was originally iden-
tified as a causal protein in a rare neurological disorder called
Leigh Syndrome French Canadian variant (42). Initial stud-
ies using human fibroblasts identified defects in cytochrome c
oxidase deficiency; however, later studies using mouse mod-
els revealed that LRPPRC affects the expression of all mito-
chondrially encoded subunits of the ETC but their differen-
tial effects on respiratory complex activity related to cell type
(43–46). Brown adipocytes with depleted LRPPRC were notable
for impaired oxygen consumption but intact mitochondrial
density and PGC-1 coactivators, indicating a specific impair-
ment of respiratory capacity without altering mitochondrial
biogenesis (11).

LRPPRC-deficient brown adipocytes had a marked reduction
in brown fat-selective genes, includingUcp1 andCidea, suggesting
a link between respiratory capacity and a basal expression of
certain brown fat genes (11). While LRRPRC is weakly expressed
in the nucleus, recent data show that the majority of LRPPRC is
localized to mitochondria and regulates mtDNA-encoded tran-
scripts across various species, suggesting that a nuclear role of
LRPPRC in the regulation of brown fat genes may be modest
and that the predominant effect is mediated by impaired cellular
respiration (44, 47–49). In addition, cAMP-mediated induction
of Ucp1 was unaffected in LRPPRC-deficient brown adipocytes
(11). Given that PGC-1α is responsible for this cAMP effect, it is
less likely that LRPPRC is an essential part of PGC-1α coactivator
complexes necessary forUcp1 expression. Furthermore, in human TA
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fibroblasts, deficiency of LRPPRC did not affect expression of
PGC-1α target genes (50), implying that signals secondary to
impaired cellular respiration, not reduced nuclear expression of
LRPPRC, are likely important.

Cytochrome C Oxidase Subunit VIIa Polypeptide
2-Like (COX7RP)
Recent work using COX7RP knockout mice provides direct evi-
dence for the role of respiratory capacity in the brown fat gene
program (12). In this study, COX7RP was identified as a novel
assembly factor for respiratory chain supercomplexes in mito-
chondria. ETC complexes are known to form supercomplexes,
consisting mainly of complex I, III, and IV (so-called respira-
some), which enhances respiratory activity (51). With reduced
oxygen consumption at a whole-body level, COX7RP KO mice
revealed hypertrophic and pale brown fat, generally indicative of
defective brown fat. More importantly,Ucp1was severely reduced
in this dysmorphic brown fat. Microarray analysis also showed
a downregulation of several brown fat-enriched genes including
Dio2 and Elovl3. Expression of PGC-1 coactivators was decreased
but their downstream targets, such as Erra, Nrf1, and Tfam, were
unaltered, implying no significant impact on the PGC-1 coactiva-
tor network. All together, this study strongly suggests that respi-
ratory capacity dictates a retrograde signaling from mitochondria
to the nucleus regulating the brown fat gene program.

Transcription Factor A, Mitochondrial (TFAM)
One approach to genetically manipulate respiratory capacity is to
target components of the basal transcriptional machinery ofmito-
chondrial DNA (mtDNA). Among them is TFAM, a key player
inmtDNA transcription andmaintenance (52). Fabp4-Cre-driven
loss of TFAM led to diminished respiratory activity and a drop in
mtDNA copy number in brown and white fat (38). Paradoxically,
in those mice, brown fat showed enhanced respiratory capacity
as evidenced by increased oxygen consumption, FAO, and citrate
synthase activity. Although reduced in weight, this brown fat
had normal expression of brown fat genes. Similarly, brown fat
markers were intact in brown fat with Adipoq-Cre-driven loss
of TFAM, which was accompanied by increased citrate synthase
activity (39). Therefore, it is likely that the unaltered brown fat
gene program inTFAM-deficient fat is ascribed to a compensatory
increase in respiratory capacity. Although not decisive, obser-
vations from adipose-specific TFAM knockout mice imply that
whole-cell respiratory capacity is monitored by an innate sensor
to dictate the brown fat gene program.

CR6-Interacting Factor 1 (CRIF1)
CRIF1 is a mitochondrial protein that controls the translation
and insertion of mitochondrially encoded respiratory subunits
into the inner membrane (53). The activities of Complexes I, III,
and IV are abrogated by CRIF1 deficiency in mouse embryonic
fibroblasts (53). The severity of impaired respiratory capacity by
ablation of CRIF1 is evident in brain-specific and cardiac muscle-
specific knockout mice in which severe neurodegeneration and
premature death develop, respectively (53, 54). Adipose-specific
CRIF1 knockout mice (driven by Fabp4-Cre) show a develop-
mental defect in white fat, reduced body weight, and postnatal

death at week 3 (40). Brown fat in these mice is smaller in
size; however, histology is unremarkable and UCP1 expression
is normal. Because mice die by 3weeks of age, it was not pos-
sible to assess the chronic effect of respiratory defects in brown
fat. Although mice with Adipoq-Cre-driven deletion of CRIF1
were viable, data regarding the brown fat genes were not shown
(40). Even so, these data could suggest that impaired mitochon-
drial function does not influence brown adipocyte development.
Future studies will be necessary to address if mitochondrial func-
tion is critical for the maintenance of the brown fat program.
Finally, as mentioned for TFAM, the method by which cellular
respiration is disrupted may have differential effects on mito-
chondrial signaling and subsequent transcriptional events in the
nucleus.

LSD1 (Lysine-Specific Demethylase 1)
LSD1 demethylatesmono- and di-methylated lysines (particularly
lysine 4 and 9 of histone H3) via the cofactor flavin adenosine
dinucleotide (FAD) (55). Ubiquitously expressed, LSD1 is essen-
tial for embryogenesis and tissue-specific differentiation (56). In
the study by Duteil et al. (41), LSD1 was newly identified as a
cold-, and β3-adrenergic signaling-inducible protein in mouse
white fat. Ectopic expression of LSD1 further revealed that it
was sufficient to induce respiratory capacity through nuclear
respiratory factor 1 (NRF1) in white adipose cell lines. In addi-
tion, there was an activation of the brown fat gene program
including Prdm16, Ppargc1a, and Ucp1 in LSD1-overexpressing
white adipocytes. LSD1 transgenic mice confirmed these in vitro
findings. Interestingly, this browning effect was more robust in
subcutaneous white fat where beige adipocytes reside. However,
in brown fat of LSD1 transgenic mice, respiratory activity was
modestly increased and there were no significant changes in
the brown fat markers. These data suggest that augmented res-
piratory capacity may promote browning by stimulating beige
adipocytes.

Therapeutic Implications

There is an association between impaired brown fat function
and various animal models of obesity and diabetes, including
ob/obmice, db/dbmice, SHR/N-cp rats, and high-fat/high sucrose
(HFHS)-fedmice (57–61). A similar association has been reported
for human obesity (62–64). In the aforementionedmurinemodels
of obesity and diabetes, there is “de-browning” of brown fat,
characterized by concomitant reduction inUCP1 protein, and res-
piratory complex activities (40, 53–56). Similar to classical brown
adipocytes, beige adipocytes exhibit this type of de-browning in
mice fed a high-fat diet, implying a shared mechanism for all
types of thermogenic adipocytes (65). As detailed earlier, several
models and systems have established a causal relationship between
mitochondrial respiratory capacity and transcription of genes
involved in thermogenesis. Impaired respiration in certainmodels
of obesity and diabetes may explain impaired transcription of
the thermogenic genes. In the future, altering respiratory capacity
may prove promising in restoring brown fat function in certain
forms of obesity and diabetes. Even if there are no effects on
transcriptional programs involved in thermogenesis, augmenting
respiratory capacity per se could still effectively protect against

Frontiers in Endocrinology | www.frontiersin.org June 2015 | Volume 6 | Article 1044

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


Nam and Cooper Mitochondrial regulation of BAT genes

FIGURE 1 | Mitochondria exert transcriptional control over gene
programs involved in oxidative metabolism and thermogenesis.
Transcriptional control is dependent on mitochondrial respiratory capacity. In
this model, impaired respiratory capacity acts as a transcriptional checkpoint,
whereas augmented respiratory capacity acts as a transcriptional trigger. In
humans and mice, obesity is associated with reduced brown fat function. Our
model may explain the inverse association between respiratory capacity and
thermogenic gene expression in brown fat of certain obese mice (eg. ob/ob)
and perhaps obese humans.

obesity and diabetes by way of increased respiratory capacity,
which in turn would increase thermogenic capacity.

In humans andmice, cold exposure and β3-adrenergic agonists
activate brown fat to promote energy expenditure (10, 66–
68). Many adrenergic receptor (AR) agonists, including pan-
adrenergic (ephedrine) and β3-adrenergic (CL-316,243, etc.)
agonists, have been unsuccessful in humans due to either unde-
sirable cardiovascular effects, poor oral availability, or in the case
of CL 316,243, weak agonism for the human β3-AR (69). Recently,
a clinical study using a new class of β3-AR agonist increased
energy expenditure via brown fat-meditated thermogenesis (70).
Based on our review of the literature, the status of mitochon-
drial respiratory capacity may powerfully influence the outcome

of β3-adrenergic agents and should be considered as adjunc-
tive therapies to either restore or enhance the brown fat gene
program.

Concluding Remarks

The putative role of mitochondrial respiratory capacity in
transcriptional programs that regulate thermogenesis raises an
intriguing question (Figure 1). Why is respiratory capacity per se
linked to the regulation of the thermogenic gene program in
brown fat? And what are the signals from mitochondria that
govern this control? From a teleological perspective, impaired
respiratory capacity would impair thermogenesis, making it a
futile process. There seems to be interesting retrograde signaling
from the mitochondrion to the nucleus, signaling, which may
inactivate programs that expend energy and may promote stor-
ing that energy as lipid. Upon recovery of respiratory capacity,
such signaling is turned off and energy expending programs are
re-activated.

Control of nuclear genes based on the status of mitochondrial
function (or stress) has been termed “mitohormesis” and is readily
apparent in yeast andmammalian cells (71). In brown fat, a highly
specialized tissue for thermogenesis, such mitohormesis may be
crucial in matching functional and metabolic capacity to genetic
programs that influence them.

In the future, it will be of great interest to unravel the signaling
pathways by which respiratory capacity regulates the thermo-
genic gene program. Elucidating these signals and downstream
pathways may inform the search for diagnostic and therapeutic
interventions important for obesity and diabetes.
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