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Age-associated weight gain, leptin,
and SIRT1: a possible role for
hypothalamic SIRT1 in the prevention
of weight gain and aging through
modulation of leptin sensitivity
Tsutomu Sasaki*

Laboratory for Metabolic Signaling, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan

The hypothalamus is the principal regulator of body weight and energy balance. It
modulates both energy intake and energy expenditure by sensing the energy status of the
body through neural inputs from the periphery as well as direct humoral inputs. Leptin,
an adipokine, is one of the humoral factors responsible for alerting the hypothalamus
that enough energy is stored in the periphery. Plasma leptin levels are positively linked to
adiposity; leptin suppress energy intake and stimulates energy expenditure. However,
prolonged increases in plasma leptin levels due to obesity cause leptin resistance,
affecting both leptin access to hypothalamic neurons and leptin signal transduction
within hypothalamic neurons. Decreased sensing of peripheral energy status through
leptin may lead to a positive energy balance and gradual gains in weight and adiposity,
further worsening leptin resistance. Leptin resistance, increased adiposity, and weight
gain are all associated with aging in both humans and animals. Central insulin resistance
is associated with similar observations. Therefore, improving the action of humoral factors
in the hypothalamus may prevent gradual weight gain, especially during middle age.
SIRT1 is a NAD+-dependent protein deacetylase with numerous substrates, including
histones, transcription factors, co-factors, and various enzymes. SIRT1 improves both
leptin sensitivity and insulin sensitivity by decreasing the levels of several molecules that
impair leptin and insulin signal transduction. SIRT1 and NAD+ levels decrease with age in
the hypothalamus; increased hypothalamic SIRT1 levels prevent age-associated weight
gain and improve leptin sensitivity in mice. Therefore, preventing the age-dependent loss
of SIRT1 function in the hypothalamus could improve the action of humoral factors in the
hypothalamus as well as central regulation of energy balance.

Keywords: aging, energy homeostasis, energy sensing, inflammation, insulin resistance, leptin resistance, sirtuin,
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Introduction

In this review, I will first highlight the impact of obesity preva-
lence and the importance of age-associated weight gain in this
context. Next, I will provide an overview of the central mecha-
nisms for regulating body weight, including a discussion of cen-
tral leptin/insulin resistance during aging and obesity. Finally, I
will explore how hypothalamic SIRT1 may be involved in age-
associated weight gain and diet-induced obesity by regulating
leptin and insulin sensitivity in the central nervous system. I
propose that hypothalamic SIRT1 dysfunction could be a cause
of weight gain associated with aging and diet.

Underestimated Prevalence of
Obesity-Associated Health Issues

Obesity is a worldwide health concern. Based on theWorldHealth
Organization’s definition of obesity [body mass index (BMI)
>30 kg/m2], more than 600 million adults were obese and more
than 1.9 billion adults were overweight (BMI 25–30 kg/m2) in
2014 (1). In other words, ~13% of the world’s adult population
(11% of men and 15% of women) was obese in 2014. These
numbers are alarming, but they underestimate the actual impact
on health care caused by obesity throughout the world.

Ethnic groups exhibit differing susceptibilities to obesity-
associated diseases, such as diabetes. In particular, Asians are
more vulnerable to the detrimental effects of obesity than Cau-
casians. The prevalence of diabetes among Asian descendants
living in the United States and Canada with BMI of 25 kg/m2

is equal to that of Caucasians with BMI of 30 kg/m2 (2, 3).
This phenomenon is partly due to different pancreatic beta-cell
reserve capacity (4), but Asians also have more visceral adipose
mass than Caucasians at the same BMI (5). Based on the risk
of developing metabolic syndrome, the definition of obesity in
Japan is BMI> 25 kg/m2, not BMI> 30 kg/m2 (6). Although ~5%
of Japanese males in their 30s and 40s are obese according to the
World Health Organization’s definition (BMI> 30 kg/m2), this
number increases to ~35% if the Japanese definition of obesity
(BMI> 25 kg/m2) is used (Figure 1) (7). Therefore, the true num-
ber of people at health risk due to “obesity” around the world is
somewhere between 600million (BMI> 30 kg/m2) and 2.5 billion
(BMI> 25 kg/m2).

Obesity is commonly discussed in the context of metabolic
syndrome and other diseases that result from obesity. However,
the prevalence of obesity is positively associated with age, and the
global emergence of overweight and obesity is compounded by
simultaneous aging of the population (8, 9). Obesity itself is a risk
factor for age-associated diseases (10–13); it accelerates cellular
processes in a manner similar to aging and shortens lifespan (14–
17). Therefore, understanding gradual declines in quality of health
through aging and obesity is as important as simply understanding
the consequences of obesity.

Although age-associated weight gain is important for under-
standing gradual declines in quality of health, fewer studies have
addressed the mechanisms of these declines than have investi-
gated diet-induced obesity, partly because the former process is
much harder to study than the latter. Although it is difficult to

FIGURE 1 | Age-dependent distribution of Japanese with
BMI> 30kg/m2 (solid bar) and BMI> 25kg/m2 (open bar) in 2014.
(Based on data from the Institute for Health Metrics and Evaluation (IHME).
Overweight and Obesity Viz. Seattle, WA, USA: IHME, University of
Washington, 2014. Available from: http://vizhub.healthdata.org/
obesity).

completely separate the contributions to weight gain of age and
diet, not everyone in the world eats the high-calorie diet employed
in studies of diet-induced obesity; a significant proportion of the
population gains weight during middle age. Therefore, outreach
strategies targeting age-associated weight gain are expected to
impact the health of many people.

Do different mechanisms underpin weight gain associated with
age and weight gain caused by diet, or do common mechanisms
underlie both processes? In order to tackle the obesity crisis, we
must understand how body weight is regulated, as well as how
the intricate system that regulates energy homeostasis could be
disrupted through both aging and diet.

Brief Overview of Homeostatic Control of
Body Weight and Energy Balance by the
Central Nervous System

The hypothalamus is the center of homeostatic control of body
weight and energy balance. It integrates energy information con-
veyed from the periphery by nutrients and hormones through two
pathways (neural and humoral) and regulates energy intake and
expenditure (Figure 2).

The neural pathway senses peripheral energy status via vagal
afferents innervating the gastrointestinal tract and hepatic portal
veins. Nutritional information gathered by vagal afferents is sent
to the solitary tract of the brainstem and subsequently into the
hypothalamus. The humoral pathway consists of direct input of
nutrients and hormones to the primary center for body-weight
control: the arcuate nucleus of the hypothalamus (ARC). TheARC
is located close to the median eminence, which provides humoral
factors with access to the central nervous system. Humoral factors
can enter the cerebrospinal fluid (CSF) in the third ventricle and
gain access to ARC neurons because the tanycytes lining the third
ventricle adjacent to the ARC are permissive to these nutrient
cues (18).

Once nutrients and hormones gain access to ARC neurons,
they can directly affect neuronal activity. Two major subtypes of
neurons located in the ARC are proopiomelanocortin (POMC)
neurons and Agouti-related peptide (AgRP) neurons; both types
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FIGURE 2 | Neural signaling (right, black lines) and hormonal signaling
(left, red lines) from the periphery are required for nutrient/energy
sensing by the hypothalamus (blue) to regulate body weight.
Abbreviation: GI, gastrointestinal.

of neurons receive signals containing information about energy
status (19). POMC neurons promote weight loss and AgRP neu-
rons promote weight gain. These neurons provide similar pro-
jections to secondary centers for body-weight control, such as
the paraventricular nucleus of the hypothalamus and the lateral
hypothalamus (Figure 3). Activity of the neurons in these sec-
ondary centers may be regulated partly through the melanocortin
type 4 receptors, since POMC neurons secrete the agonist α-
melanocyte-stimulating hormone (made by processing the POMC
peptide) and AgRP is an inverse agonist for melanocortin type
4 receptors. AgRP neurons also use the neurotransmitters neu-
ropeptide Y and GABA to suppress target-neuron activity, includ-
ing that of POMC neurons in the ARC. POMC neurons, AgRP
neurons, and melanocortin type 4 receptors comprise the central
melanocortin system.

Leptin is an adipokine critical to the regulation of energy home-
ostasis (20). Intracellular leptin signaling is initiated by leptin
binding to the long form of leptin receptor (LepRb), which has
the intracellular domain, causing a conformational changes in
LepRb and promoting the phosphorylation and activation of Jak2
(21). Activated Jak2 phosphorylates three tyrosine residues in the
cytoplasmic domain of LepRb (Y985, Y1077, and Y1138), leading
to further signal transduction involving STAT3, STAT5, and the
ERK and PI3K/AKT pathways. LepRb is expressed in several
brain nuclei, including the ARC, the paraventricular nucleus of
the hypothalamus, and the dorsomedial, lateral, and ventromedial
regions of the hypothalamus (22). Mutations in leptin, leptin
receptor, and the central melanocortin system are the most com-
mon mutations in the monogenic form of obesity in humans (23).
A homozygous loss-of-function mutation in the leptin receptor
(the db mutation) causes hyperphagia and obesity, leading to
diabetes in mice (24, 25).

Insulin is a pancreatic hormone that plays a crucial role in
lowering blood glucose levels. It also contributes to the regulation
of body weight. Although insulin acts on peripheral tissues (such
as liver, skeletal muscle, and adipose tissue) to cause anabolic
effects (to cause weight gain), insulin act as a catabolic anorexi-
genic signal in the central nervous system (to cause weight loss)
(26). The insulin receptor is expressed widely in the central ner-
vous system (27). Insulin binding causes the insulin receptor to
recruit insulin receptor substrate (IRS) proteins. IRS-2 is the main
mediator of insulin intracellular responses in the brain (28, 29).
IRS protein activation leads to activation of PI3K and subsequent
activation of AKT. Although the glucose-lowering effect of insulin
is mediated by the insulin-sensitive glucose transporter GLUT4

FIGURE 3 | Humoral factors leptin and insulin, that convey nutrient
cues, act on the central melanocortin system (POMC and AgRP
neurons) in the ARC to regulate body weight.

in the periphery, glucose transport into most neurons is GLUT3-
dependent; transport into the glia and brain endothelial cells
is GLUT1-dependent (30). Therefore, insulin is not needed for
glucose transport into most brain cells. Instead, insulin in the
brain is important for the central regulation of energy homeostasis
and glucose homeostasis.

Both leptin and insulin regulate POMCneurons andAgRPneu-
rons atmultiple levels. They regulate the transcription ofPomc and
AgRP via their downstream target transcription factors STAT3 and
FoxO1, respectively, and promote the expression of anorexigenic
POMC while suppressing orexigenic AgRP (31, 32). FoxO1 also
regulates the expression of carboxypeptidase E, which is necessary
for processing POMC into α-melanocyte-stimulating hormone
(an agonist of melanocortin type 4 receptors) (33). Leptin and

Frontiers in Endocrinology | www.frontiersin.org July 2015 | Volume 6 | Article 1093

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


Sasaki SIRT1 modulates weight and aging

insulin also regulate the activities of POMC neurons and AgRP
neurons (34). For example, both leptin and insulin act on POMC
neurons to increase sympathetic activity to adipose tissues and
to promote the browning of white fat (35). Therefore, these two
hormonal signals of satiety regulate transcription, peptide pro-
cessing, the activity of central melanocortin neurons, and energy
and glucose homeostasis.

Three Layers of Leptin/Insulin Resistance
in the Central Regulation of Body Weight

The anorexigenic hormone leptin needs to enter the central ner-
vous system and reach target neurons in order to suppress food
intake and to stimulate energy expenditure. Leptin action encoun-
ters three barriers: the blood–CSF barrier, leptin uptake by the
target neuron, and intracellular leptin-signaling resistance.

First, leptin must exit the bloodstream and gain access to
the CSF. The short isoform of the leptin receptor is highly
expressed in cerebral microvessels and choroid plexuses, and is
considered to be the main receptor by which leptin crosses the
blood–brain barrier and the blood–CSF barrier (36). Megalin
expressed by choroid plexuses can also act as a receptor to trans-
port leptin from the blood to the CSF (37). The fenestrated
endothelium of median eminence microvessels and the tight
junctions between tanycytes together compose the blood–CSF
barrier adjacent to the ARC (18). VEGF-A expression in tany-
cytes modulates the properties of this barrier, and ERK signaling
in tanycytes promotes leptin transport across tanycytes to the
CSF (38, 39). Once leptin enters the CSF/brain, it must find its
target receptor (LepRb), but gliosis can interfere with the dif-
fusion of leptin to LepRb on the target neurons (40). Finally,
intracellular leptin signaling can be down-regulated by several
molecules, such as PTP-1B, TC-PTP, SOCS3, and endospanin
1, which act on JAK2, STAT3, LepRb, and LepRb endocytosis,
respectively (41, 42).

Although the source of central insulin is debated, peripheral
administration of insulin raises insulin concentrations within the
CSF (43), indicating that peripheral insulin also serves as a satiety
signal for the central nervous system by crossing the blood–brain
barrier (44). Kinetic studies indicate that plasma-to-CSF transport
of insulin involves a saturable mechanism (45, 46); this transport
is decreased in several insulin-resistant states (47–49). Megalin
is implicated in insulin transport, at least across renal tubular
epithelial cells (50), which suggest that megalin may also work
at the blood–CSF barrier as a carrier for insulin. Both PTP-1B
and SOCS3 have been reported to cause insulin resistance at the
level of the insulin receptor and IRS proteins, respectively (26).
Therefore, commonmechanisms are involved in central resistance
to leptin and insulin (Figure 4).

Diet-Induced Obesity and Aging Cause
Central Resistance to Leptin and Insulin

Diet-induced obesity causes central leptin resistance first by
affecting the central access of leptin and later by causing lep-
tin resistance within the central nervous system (51). Obesity is
associated with decreased leptin transport across the blood–brain

FIGURE 4 | Common mechanisms for central leptin/insulin resistance.

barrier in rats (36) and in humans (52), which explains why obese
humans have low CSF leptin levels despite having high-serum
leptin levels.Within the central nervous system, diet-induced obe-
sity does not uniformly cause leptin resistance. Diet-induced obe-
sity caused by intake of a chronic high-fat diet mainly induces
cellular leptin resistance in the ARC and the ventral tegmental
area, but not in the lateral hypothalamus, ventromedial hypotha-
lamus, and dorsomedial hypothalamus (53). Diet-induced obe-
sity also induces astrogliosis (along with activation of microglia),
which prevents circulating metabolic feedback factors, such as
leptin from accessing neurons (54). Aging also impairs the
central response to leptin (55–59) by impairing central leptin
access and cellular leptin signaling (60). Aging is associated with
down-regulation of megalin expression (37), decreased leptin
uptake in the hypothalamus due to decreased expression of leptin
receptor mRNA (61), decreased levels of leptin receptor protein
in the hypothalamus (62), and increased PTP1B levels in the
hypothalamus (63).

The central insulin response is also attenuated by aging and
diet-induced obesity (64–67). Insulin levels in the CSF are
paradoxically low- compared to high-serum insulin levels in
obese humans (68) and in genetically induced and diet-induced
obese animals (49, 69). Consumption of a high-fat diet trig-
gers hypothalamic angiopathy (70); endothelial cells of brain
microvessels in obese fa/fa rats exhibit reduced insulin binding,
leading to reduced internalization of the insulin–insulin recep-
tor complex in rat brain endothelial cells (71). Expression of
the insulin receptor decreases with aging in the central ner-
vous system, especially in the hypothalamus, cerebral cortex,
and hippocampus in rats (72). Central administration of insulin
fails to reduce food intake under conditions of obesity (65, 67,
73), and intranasal application of insulin to the human brain
improves peripheral insulin sensitivity in lean but not in obese
men (74), indicating that obesity also causes central insulin
resistance.

Therefore, previous studies indicate that both central leptin
resistance and central insulin resistance are induced by diet-
induced obesity and aging at multiple levels. Does a common
mechanism underlie these phenomena?
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Hypothalamic Inflammation as a Culprit for
Central Leptin/Insulin Resistance

Hypothalamic inflammation is induced during diet-induced obe-
sity both in rodents and in humans (75). Although intracellular
fatty-acid sensing within the hypothalamus is important for the
regulation of energy balance (76), excessive amounts of fatty acid
in the diet cause hypothalamic inflammation and lead to obesity.
Consumption of a diet rich in saturated fatty acids promotes
inflammation, gliosis, and neuronal stresses in the mediobasal
hypothalamus, along with inflammatory activation of microglia.
Depleting microglia from the mediobasal hypothalamus of mice
blocks the inflammation and neuronal stresses induced by dietary
saturated fatty acids and improve leptin sensitivity (77). Saturated
fatty acids can activate toll-like receptor 2- and 4-dependent sig-
naling, leading to induction of the pro-inflammatory signaling
mediated by JNK andNF-κB (78, 79). Excess amounts of free fatty
acids, glucose, and amino acids due to over-nutrition induce endo-
plasmic reticulum (ER) stress and oxidative stress, which also pro-
mote the activation of pro-inflammatory signaling and defective
autophagy (79). These metabolically induced pro-inflammatory
changes in the hypothalamus cause defective intracellular leptin
and insulin signaling, leading to central leptin/insulin resistance
(80–84) (Figure 5).

Pro-inflammatory signals in the hypothalamus are also
involved in the aging of mice. Aging activates microglia and NF-
κB signaling in the hypothalamus, inhibiting these reactions can
improve age-dependent declines in body function in mice (85).
Therefore, hypothalamic inflammation, specifically microglial
activation and induction of NF-κB signaling, is involved in
age-dependent and diet-induced obesity, which are accompanied
by central leptin/insulin resistance.

Hypothalamic SIRT1 Ameliorates Central
Leptin Resistance and Central Insulin
Resistance

SIRT1 is an NAD+-dependent protein deacetylase (86) and
an energy-sensing molecule responsible for promoting healthy
longevity through caloric restriction (87). Caloric restriction pre-
vents aging-associated central leptin resistance in rats (88, 89).
In peripheral tissues, SIRT1 has been demonstrated to promote
fatty-acid oxidation and to improve insulin sensitivity (90). Single
nucleotide polymorphisms in human SIRT1 are linked to both
adult obesity (91–94) and childhood obesity (95), indicating that
SIRT1 may regulate body weight.

Several groups have reported genetic manipulation of SIRT1 in
the hypothalamus and analyzed the effects of thismanipulation on
energy and glucose homeostasis. Genetic loss of Sirt1 in anorex-
igenic POMC neurons causes leptin resistance and decreases
energy expenditure, whereas increasing SIRT1 levels in POMC
neurons improves leptin sensitivity and ameliorates the decreased
energy expenditure caused by an insulin-resistant form of FOXO1
in mice (96–98). Genetic loss of Sirt1 in orexigenic AgRP neurons
causes weight loss due to decreased food intake via reductions in
the firing ability of AgRP neurons in mice (99). Increasing SIRT1
levels inAgRPneurons also decreases food intake andbodyweight

FIGURE 5 | Hypothalamic inflammation and central leptin/insulin
resistance.

due to improved nutrient/hormone sensing in mice (97). Genetic
manipulation of Sirt1 in steroidgenic factor 1 (SF1)-positive ven-
tromedial hypothalamic neurons alters sensitivity to leptin and
orexin-A, andmodulates glucose uptake by skeletal muscle via the
sympathetic nervous system (100). Therefore, SIRT1 stimulates
energy expenditure, suppresses food intake, and regulates glucose
homeostasis in POMCneurons, AgRP neurons, and ventromedial
hypothalamic SF1-positive neurons, respectively, partly through
improved nutrient/hormone sensing.

How does SIRT1 improve central leptin/insulin sensitivity?
SIRT1 can down-regulate proteins that promote leptin resistance,
such as PTP1B, TC-PTP, and SOCS3 (97, 101). It also promotes
insulin sensitivity by suppressing PTP1B [which also contributes
to insulin resistance (101)], promoting IRS2 function (102), and
down-regulating the transcription factor FOXO1 by promoting
its degradation (98, 103). Down-regulation of NF-κB signaling
may also improve central leptin/insulin sensitivity because SIRT1
suppresses inflammatory reactions by suppressing the p65RelA
subunit of NF-κB (104). SIRT1 levels are reported to decrease as
microglia age, and microglial SIRT1 deficiency plays a causative
role in aging-mediated memory deficits in mice (105). How-
ever, the actions of microglial SIRT1 in the context of obesity,
induced by aging or by diet, remain elusive. Other candidates for
SIRT1’s downstream effects on central leptin/insulin sensitivity
are autophagy and ER stress, since disruption of autophagy and
increased ER stress are both linked to hypothalamic leptin resis-
tance and perturbed energy homeostasis (80, 82, 83, 106, 107);
SIRT1 regulates both autophagy and ER stress through substrates,
such as LC3 (108), Atg5, Atg7, Atg8 (109), and XBP1s (110).
However, these hypotheses need to be tested experimentally.

SIRT1 can influence epigenetic regulation by directly modi-
fying histones (86) and by affecting DNA methylation through
DNMT1 (111) and MeCP2 (112). Thus, SIRT1 can modify the
global transcriptional landscape through epigenetic regulation
and the targeting of numerous transcription factors and co-factors
(90). Therefore, unidentified molecules may also play roles in the
improvement of central leptin/insulin sensitivity by SIRT1.

Potential Role of Hypothalamic SIRT1 in
Weight Gain and Aging

Overall, SIRT1 in the hypothalamus improves energy and glucose
homeostasis and central leptin/insulin sensitivity. Because there is
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no single reliable marker for SIRT1 function in vivo, here I discuss
changes in NAD+ content and SIRT1 protein levels during aging
and diet-induced obesity in the hypothalamus.

NAD+ content in the brain decreases with age in humans
and in mice (113, 114). In mice, hypothalamic NAD+ content is
significantly decreased in diet-induced obesity (after 4weeks of
a high-fat, high-sucrose diet) and in genetically induced obesity
(with a homozygous db mutation) (97). Nicotinamide phospho-
ribosyltransferase (NAMPT), an essential enzyme in the NAD+

biosynthetic pathway that converts nicotinamide into nicoti-
namide mononucleotide, exists in two forms (intracellular and
extracellular) inmammals (115). The brain expresses intracellular
NAMPT at very low levels, andNAMPT levels decrease with aging
in multiple organs (116, 117). The extracellular form of NAMPT
is secreted from adipose tissue to affect NAD+ concentrations in
the hypothalamus. Systemic injection of a NAMPT-neutralizing
antibody decreases hypothalamic NAD+ content (118). Adipose
tissue-specific Nampt knockout mice exhibit reduced plasma lev-
els of extracellular NAMPT as well as reduced NAD+ concen-
trations in the hypothalamus; in contrast, adipose tissue-specific
Nampt knock-in mice display increased plasma levels of extra-
cellular NAMPT and increased hypothalamic NAD+ content
(118). Therefore, although the brain relies on circulating extra-
cellular NAMPT and nicotinamide mononucleotide for NAD+

biosynthesis, the supplies of these precursors decrease with age.
Supplementation with these precursors effectively prevents diet-
induced obesity and aging-induced diabetes in mice (116, 119),
and therefore, this supplementation is currently under exploration
as a strategy for counteracting aging and obesity in humans.

Restoring SIRT1 protein levels is a less-explored approach to
this goal. SIRT1 levels within the ARC decrease with age (97,
120) and after 4weeks of consumption of a high-fat, high-sucrose
diet in mice (97). Increasing SIRT1 protein levels specifically
in POMC neurons or in AgRP neurons via genetic approaches
was sufficient to prevent age-associated weight gain by stimulat-
ing energy expenditure and by suppressing food intake through
improved leptin sensitivity (97). However, feeding mice a high-
fat, high-sucrose diet reduced both endogenous SIRT1 protein
and overexpressed SIRT1 protein in ARC, and eliminated the
beneficial effects of genetic overexpression of SIRT1. Therefore,
along with increasing SIRT1 activity by providing more NAD+

or a pharmacological activator, increasing the effective enzyme
concentration per se also yields benefits. To enable such a SIRT1
“booster” approach, themechanisms responsible for the decline in
ARC SIRT1 levels during diet-induced obesity and/or aging must
be identified.

Diet similarly affected ARC SIRT1 protein levels when SIRT1
was expressed from the endogenous Sirt1 locus and when coding-
sequence Sirt1 cDNA (without any 5′-UTR or 3′-UTR) was
expressed from the endogenousRosa26 promoter (97). These data
indicate that the diet-induced reduction in ARC SIRT1 levels is
unlikely to be driven by transcriptional or post-transcriptional
regulation, but is likely mediated by post-translational regulation.
SIRT1 degradation in vitro and in vivo could be regulated by
the ubiquitin-proteasome system in the hypothalamus (121) and
possibly in other tissues (122–124). Although exposure to a 4-
week, high-fat, high-sucrose diet was sufficient to decrease ARC

FIGURE 6 | Schematic of potential strategies to ameliorate
hypothalamic SIRT1 dysfunction caused by aging- and diet-induced
obesity.

SIRT1 levels inmice, neither a high-fat diet nor a high-sucrose diet
alone was as effective (unpublished observation). Furthermore,
the effect was not as clearly evident after 2weeks of a high-fat,
high-sucrose diet (unpublished observation). Therefore, declines
in ARC SIRT1 levels may not directly result from nutrients within
the diet, but rather may be due to metabolic changes within
the hypothalamus or in the periphery caused by chronic over-
nutrition. Pro-inflammatory signaling could underlie the declines
inARCSIRT1 levels during aging and during diet-induced obesity
because inflammatory changes occur during aging and during
chronic over-nutrition.

Conclusion

Central leptin and insulin resistance, hallmarks of disrupted nutri-
ent/energy sensing by the hypothalamus, are common mecha-
nisms for weight gain caused by aging and diet. Hypothalamic
SIRT1 can improve these disruptions by acting on several targets
that cause central leptin/insulin resistance. Meanwhile, aging and
diets that promote weight gain suppress hypothalamic SIRT1
function by affecting the levels of both SIRT1 and NAD+, which
is required for SIRT1 activity. Restoration of hypothalamic SIRT1
function can prevent age-associated weight gain in mice, indicat-
ing that improving hypothalamic SIRT1 function atmultiple levels
via supplementation with NAD+ intermediates, SIRT1 activators,
and a SIRT1 “booster” may enable novel treatments of weight gain
related to metabolic syndromes as well as weight gain caused by
aging (Figure 6).
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