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Glycoprotein hormones, follicle-stimulating hormone (FSH), luteinizing hormone (LH),
and thyroid-stimulating hormone (TSH) are heterodimeric proteins with a common
α-subunit and hormone-specific β-subunit. These hormones are dominant regulators 
of reproduction and metabolic processes. Receptors for the glycoprotein hormones
belong to the family of G protein-coupled receptors. FSH receptor (FSHR) and LH
receptor are primarily expressed in somatic cells in ovary and testis to promote egg 
and sperm production in women and men, respectively. TSH receptor is expressed in 
thyroid cells and regulates the secretion of T3 and T4. Glycoprotein hormones bind to 
the large extracellular domain of the receptor and cause a conformational change in 
the receptor that leads to activation of more than one intracellular signaling pathway. 
Several small molecules have been described to activate/inhibit glycoprotein hormone 
receptors through allosteric sites of the receptor. Small molecule allosteric modulators 
have the potential to be administered orally to patients, thus improving the convenience 
of treatment. It has been a challenge to develop a small molecule allosteric agonist for 
glycoprotein hormones that can mimic the agonistic effects of the large natural ligand 
to activate similar signaling pathways. However, in the past few years, there have been 
several promising reports describing distinct chemical series with improved potency in 
preclinical models. In parallel, proposal of new structural model for FSHR and in silico 
docking studies of small molecule ligands to glycoprotein hormone receptors provide a 
giant leap on the understanding of the mechanism of action of the natural ligands and 
new chemical entities on the receptors. This review will focus on the current status of 
small molecule allosteric modulators of glycoprotein hormone receptors, their effects on 
common signaling pathways in cells, their utility for clinical application as demonstrated 
in preclinical models, and use of these molecules as novel tools to dissect the molecular 
signaling pathways of these receptors.

 
 

 
 

Keywords: small molecule allosteric modulators, follicle-stimulating hormone, leutinizing hormone/chorionic 
gonadotropin, thyroid-stimulating hormone, G protein-coupled receptor, glycoprotein hormone receptors, 
leucine-rich repeat

http://www.frontiersin.org/Endocrinology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2015.00142&domain=pdf&date_stamp=2015-09-14
http://www.frontiersin.org/Endocrinology/archive
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://dx.doi.org/10.3389/fendo.2015.00142
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:selva@tocopherx.com
http://dx.doi.org/10.3389/fendo.2015.00142
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00142/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00142/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00142/abstract
http://loop.frontiersin.org/people/241556/overview
http://loop.frontiersin.org/people/269724/overview
http://loop.frontiersin.org/people/269472/overview


September 2015 | Volume 6 | Article 1422

Nataraja et al. Allosteric modulators of FSH/LH/TSH receptors

Frontiers in Endocrinology | www.frontiersin.org

introduction

Glycoprotein hormones, FSH, LH, and TSH, are secreted from 
the anterior pituitary gland (1, 2). These hormones are composed 
of two subunits, a common α-subunit and a hormone-specific 
β-subunit (2, 3). Specificity of the hormone for receptor binding 
is determined by the β-subunit (4, 5). Chorionic gonadotropin 
(CG), a homolog of LH, is secreted from the placenta of primates 
during pregnancy (6, 7). Human CG β-subunit (beta-hCG) gene 
has evolved from LH β-subunit by gene duplication and read-
ing through into the 3′ untranslated region (8–10). Beta-hCG 
differs from LH β-subunit at the C-terminal end of the protein, 
which contains additional 34 amino acids called the C-terminal 
peptide (CTP) (11). Glycoprotein hormones are characterized by 
glycosylation of both subunits (11, 12). The common α-subunit 
carries two N-linked glycans and the β-subunits of all three glyco-
proteins have one or two N-linked glycans (13). Human CGβ has 
additional four O-linked glycans in their CTP (14). The N-linked 
oligosaccharide chains have a minor role in receptor binding 
of glycoprotein hormones, but they are critical for bioactivity 
(15). Glycoprotein hormones lacking N-linked oligosaccharides 
behave as antagonists (16–19). On the other hand, it was sug-
gested that the four O-linked oligosaccharides play an important 
role in the survival of hCG in circulation, and thus increasing the 
half-life of the protein (15, 20). Naturally occurring glycosyla-
tion variants of hFSH and hCG with differing activity in human 
granulosa cells have been described (14, 21–23).

Stimulation of FSH and LH secretion is controlled by gon-
adotropin-releasing hormone (GnRH), released from the hypo-
thalamus (24, 25). FSH and LH secretion from the pituitary is 
also modulated by gonadal feedback through steroid and protein 
factors (26–28). Gonadotropins, FSH and LH, play critical roles 
in regulating reproduction. In females, FSH induces follicular 
development, while LH stimulates egg maturation and ovulation 
in ovaries, and subsequently supports the corpus luteum (29, 30). 
In males, FSH supports early stages of sperm production in testes 
and LH stimulates final maturation of sperm through stimulation 
of testosterone from Leydig cells (31).

Thyrotrophin-releasing hormone (TRH), released from the 
hypothalamus, regulates TSH secretion with fine tuning by the 
feedback action of thyroxine (T4) and tri-iodo-thyronine (T3) 
(32, 33). The primary role of TSH is in stimulating the growth of 
thyrocytes and biosynthesis of thyroid hormone (T3/T4) through 
increased uptake of iodide by thyrocytes (34–36). TSHR is also a 
major autoantigen for autoimmune processes in Grave’s disease 
(37–41).

Receptors for the glycoprotein hormones belong to the large 
family of G protein-coupled receptors (GPCRs) that play crucial 
roles in cellular homeostasis. While GPCRs account for only 3% 
of the human functional genes, this class of proteins have proven 
to be extremely valuable as targets for drug discovery with >30% 
of the small molecule therapeutics developed to date modulat-
ing this class of membrane proteins (42–44). Common features 
shared by GPCRs are their hepta-helical or 7-transmembrane 
domain (7TM) that links an N-terminal extracellular domain with 
a C-terminal intracellular domain. The 7TM domain of GPCRs 
have, in common, three extracellular loops and three intracellular 

loops that have been shown to be involved in transmission of 
hormone-binding events into cellular signaling responses (45). 
GPCRs are activated by variety of stimuli, such as glycoproteins, 
peptides, neurotransmitters, and ions (46).

The GPCR superfamily can be divided into subfamilies on the 
basis of phylogenetic analysis of the sequence (47). Glycoprotein 
hormone receptors belong to the leucine-rich repeat containing 
GPCR (LGR) subfamily (48). The LGR subfamily is part of the 
larger Family-A or rhodopsin like GPCR (42, 49). LGRs differ 
from other Family-A receptors through their extracellular 
domain. While non-LGRs have a short extracellular region and 
bind small molecules (e.g., aminergic receptor, opioid receptor, 
etc.), LGRs have exceptionally large extracellular domains with 
the leucine-rich repeats (LRRs) of about 340–420 amino acids 
(50). Binding of glycoprotein hormone to their receptor leads to 
activation of the receptor by stabilizing the active confirmation 
(51). Active receptor, in turn, communicates the extracellular 
event to intracellular signal transducers primarily through a 
G-protein heterodimer leading to the dissociation of the α and 
β, γ subunits (52, 53). Following dissociation, the α-subunit 
stimulates adenylate cyclase, and consequently increases cAMP 
(54). Increase in intracellular cAMP results in activation of PKA 
(54). In parallel, the β, γ subunits recruit GPCR-kinases (GRK) to 
phosphorylate the receptor. This, in turn, leads to the recruitment 
of β-arrestin to the receptor, resulting in downregulation of the 
receptor (53, 55–57). In addition to the classical intracellular sig-
nal, cAMP, activated glycoprotein hormone receptors have also 
been shown to invoke other signaling pathways like Ca2+, MAPK, 
and Akt (Figure 1) (54, 58–60). In summary, glycoprotein hor-
mones or FSH, as shown in Figure 1, provokes a complex pattern 
of gene expression through actions of many different signaling 
cascades culminating in their physiological response.

Structure of Glycoprotein Hormone and Their 
Receptor
Structural determination of glycoprotein heterodimers bound to 
their cognate GPCRs is extremely challenging. However, several 
groups have utilized improved technological advances in molecu-
lar biology, structural biology, and impressive crystallization 
methods to stabilize and anchor GPCRs to obtain quality crystals. 
Solving the crystal structure of hCG was a major milestone in 
the early quest for elucidating the structure for glycoprotein hor-
mones (61, 62). Subsequently, Fox et al. determined the crystal 
structure of βThr26Ala hFSHR, a partially deglycosylated protein 
(63). These studies interestingly revealed that both subunits of 
glycoprotein hormones are folded into elongated non-globular 
structures belonging to the cysteine-knot superfamily, which 
includes some growth factors. The heterodimer is stabilized by 
a segment of the beta subunit, which wraps around the alpha 
subunit and is covalently linked like a seat belt (61–63). Based 
on charge distribution, β93–100 (determinant loop), located at 
the center of the “seatbelt” of beta-hCG conferred specificity of 
the hormone binding to the receptor. This has been confirmed 
experimentally by several groups (64–66). In addition to the 
determinant loop, a second site in the β subunit, L2β has also 
been implicated in hormone binding to the receptor (67–69). In 
α-subunit, the CTP 88–92, is required for receptor activation of 
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intracellular signals (70–72). Thus, these three regions of the hor-
mone, the determinant loop, the L2β loop of the β-subunit, and 
the CTP of the α-subunit, are the major contributors of receptor 
binding and activation.

Extracellular domain of these receptors can be further divided 
into two distinct regions, the N-terminal LRR domains, and the 
hinge region that connects the LRRs to the TMD. In 1990s, several 
groups identified the importance of the LRR of the extracellular 
domain of glycoprotein hormone receptor for ligand interaction 
(73–75). Elucidation of the crystal structure of FSH complexed 
with truncated FSHR in 2005 by Fan and Hendrickson revealed 
a detailed interaction of the hormone with the extracellular 
domain of the receptor (76). The crystal structure revealed that 
FSH binds to FSHR like “a handclasp” (76). According to their 
hypothesis, the basal receptor exists as a monomer and ligand 
binding induces formation of an activated dimer. Recent crystal 
structure analysis of the complete ectodomain of FSHR confirms 
that the heterodimeric FSH is bound into the concave surface of 
LRR in a “handclasp” fashion similar to that described by Fan and 
Hendrickson (77).

The concave high-affinity hormone-binding surface in the LRR 
region is a common feature among other members of this family 
of LRR-GPCRs. TSH and the TSHR stimulating monoclonal anti-
body M22 bind to the corresponding concave surface of TSHR in 
the complex (78, 79). Very recently crystal structure of R-spondin 
with LGR4 and LGR5 revealed that the concave surface of these 
LGRs is the sole interacting site for R-spondin (50, 80).

The role of the hinge domain in hormone binding and 
signal transduction has been intensively investigated (81–86). 
Jiang and co-workers identified a critical function for the 
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sulfated Tyr-335 (sTyr) in the FSHR hinge region as a second 
interaction site with FSH (Figure 2) (77). According to their 
findings, binding of FSH to the high-affinity inner concave 
face of the ECD is a transitory event. This first binding event 
is followed by the formation of sTyr-binding pocket at the 
interface of α and β subunits of FSH. Then, sTyr is drawn into 
the pocket lifting the hairpin loop. The lift of the loop releases 
the inhibitory nature of the hairpin loop and activation of the 
transmembrane domain. A sulfated tyrosine located in the 
hinge domain of both LH/CGR and TSHR is also essential for 
the activation of the hairpin loop domain by their respective 
ligands (87, 88), suggesting that glycoprotein receptors utilize 
a common two-step mechanism for ligand recognition and 
activation.

Glycoprotein hormone receptors have been proposed to 
undergo dimerization in living cells (86, 89–92). The previous 
crystal structure of FSH with the extracellular domain of FSHR, 
lacking the hinge domain, proposed that the dimeric FSH-FSHR 
may be involved in receptor signaling (76). Evidence supporting 
intermolecular co-operativity as a component of transactivation 
of receptor has been cited as supportive evidence for the activated 
form of the receptor to be a dimer for all three glycoprotein recep-
tors (86, 90, 93, 94). In a very elegant series of genetic models, 
Huhtaniemi’s group demonstrated that in LHR deficient mice co-
expressing equal ratios of both binding deficient and signaling-
deficient forms of LHR receptor transactivation can reestablish 
normal LHR function through intermolecular interaction to 
restore spermatogenesis (95). In contrast, in transgenic mice 
expressing only the binding deficient receptor or the signaling-
deficient receptor, males were spermatogenically incompetent. 
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Further, single-molecule analysis of these mutant receptors 
reveal diverse structural assembly of LHR with varying degree of 
oligomerization that can regulate signaling of the receptor (96).

Zonen and co-workers propose that ligand binding induces 
strong negative cooperativity within the glycoprotein hormone 
receptor (86). At physiological concentrations, a single ligand 
binds a dimer, leading to transmission of the intracellular signal 
before horizontally causing a negative impact on the transmem-
brane domain of the other protomer. This leads to lowering of 
the binding affinity of the second protomer, providing allosteric 
cooperativity across the receptors (86). Very recently, single-
molecule analysis of FSHR/LHR co-expressed in HK293 cells 
demonstrates heterodimeric interaction between FSHR and 
LHR (97). This heterodimeric interaction results in attenua-
tion of LH-induced signaling through LHR and attenuation of 
FSH-mediated signaling through FSHR. The authors propose 
that heterodimerization of glycoprotein receptors could play a 
significant role in fine tuning the signaling event of FSH and LH 
during granulosa cell differentiation. However, it will be critical 
to demonstrate heterodimerization in primary cell systems and 
in in vivo models where the receptor expression is at low level 
compared to the overexpression system.

The recent crystal structure of the FSH complexed with the 
complete extracellular domain of FSHR challenged the previous 

view of the structural changes imposed on this receptor upon 
ligand binding (98). According to this model, in basal state, 
FSHR exists as a trimer (Figure 2A), and only a single unit of fully 
glycosylated FSH bind the trimeric receptor (Figure 2B), leading 
to dissociation and activation of the ligand-bound monomeric 
receptor. On the other hand, due to the lack of bulky glycans, 
three deglycosylated hormones can bind to the receptor keep-
ing it in the trimeric inactive state (Figure  2D). Although the 
trimer model of FSHR in FSH recognition could well explain 
some observation in biochemical and functional studies, the 
in vivo relevance of the FSHR-FSH trimerization and the actual 
oligomerization form in living cells still need to be determined.

Small Molecule Modulators of Glycoprotein 
Hormone Receptors
Development of drugs that target the ligand-binding domain has 
been highly successful for agonists or antagonists that address 
the large superfamily of GPCRs. Unfortunately, many of the cur-
rent GPCR-based drugs produce unwanted dose-limiting side 
effects due to cross reactivity with other related receptors that 
share structurally conserved features. Yet, another challenge for 
developing innovative drugs targeting GPCRs is that many of the 
synthetic molecules that replace peptide or protein ligands have 
been intractable (not ‘‘drug-able”) largely because the molecules 

http://www.frontiersin.org/Endocrinology/archive
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org


September 2015 | Volume 6 | Article 1425

Nataraja et al. Allosteric modulators of FSH/LH/TSH receptors

Frontiers in Endocrinology | www.frontiersin.org

must fit into highly lipophylic regions of the GPCR transmem-
brane domains (99). However, for the past several decades, it 
has been realized that receptors can be regulated by allosteric 
sites that are distinct from the ligand-binding orthosteric site 
(100). Accordingly, there is now ample evidence over the past 
decade and half that a GPCR response to endogenous ligand can 
be modulated by synthetic small molecules targeting allosteric 
sites (101–105). These allosteric modulators can exert negative 
or positive effects on endogenous ligand signaling. There are 
four types of allosteric ligands, antagonist known as negative 
allosteric modulators (NAMs), potentiators also called positive 
allosteric modulators (PAMs), allosteric agonists (allo-agonists), 
and finally silent modulators (SAMs) (106). For glycoprotein 
hormone receptors, since the ligands are very large and involve 
multiple binding sites at the receptor, a small molecule binding 
the orthosteric site cannot be envisaged. The advent of allos-
teric modulators in other GPCR programs has encouraged the 
incorporation of drug discovery strategies to screen for allosteric 
modulators that modulate glycoprotein hormone receptors.

The primary market driver invoked by drug discoverers to 
pursue allosteric modulators for glycoprotein hormones over 
available injectable proteins is patient convenience. A second-
ary motivation is the hope that a new mechanism of action for 
allosteric agonists can improve the biological response relative 
to “glyco-uniform” biotherapeutics. As the number and quality 
of allosteric modulators increases, subtle advantages of PAMs 
or NAMs over the injectable proteins are beginning to emerge. 
In the late 1990s, recombinant therapeutic proteins were devel-
oped to provide superior consistency than could be obtained by 
purification of hormones from natural sources. However, the 
recombinant proteins continue to be administered by injections, 
which are inconvenient and results in low patient engagement for 
infertility treatment. Recombinant proteins are also constrained 
by regulatory requirements for uniform post-translational modi-
fications, such as glycosylation. The preference of patients and 
physicians for orally active therapeutics has motivated develop-
ment of replacements for injectable treatments in rheumatoid 
arthritis (anti-TNF agents vs JAK inhibitors) (107, 108) and 
multiple sclerosis (interferons vs Fingolimod or Teriflunomide) 
(109, 110). For infertility patients, the motivation is similar; it 
is more desirable to have small molecule agonists of glycopro-
tein hormones that can be used as an oral therapy. Secondarily, 
if the allosteric agonist can amplify the receptor response to 
endogenous biodiverse glycoprotein forms, this may provide a 
preferred therapeutic over suppressing endogenous glycoprotein 
production followed by replacement with a bio-constrained uni-
formly glycosylated glycoprotein. A NAM of FSHR and/or LHR 
may lead to development of a highly specific oral contraceptive 
with lesser side effects than the currently available steroidal-
based drugs. In addition, glycoprotein hormone receptor small 
molecule antagonists may have a better long-term safety than 
steroidal contraceptives (111–113).

Developing small molecule agonists or antagonists for 
glycoprotein hormone receptors has been challenging for 
medicinal chemists; however, in the last few years, great strides 
have been achieved in developing chemical scaffolds targeting 
the glycoprotein receptors through advances in screening tools, 

access to larger diverse library of small molecule compounds and 
robotic systems to conduct high-throughput campaign. Most 
of the new allosteric modulators have been identified through 
high-throughput screening (HTS) campaigns using cell-based 
assays (114–117). The availability of a wide range of assays from 
overexpressed isolated proteins to engineered cell culture systems 
measuring second messengers, to primary cell cultures, and to 
ex vivo animal tissues has made it critical to identify the appropri-
ate system for screening as well as various transitions to more 
physiologically relevant models. The key objective of the optimal 
screen is to quickly filter false positives identified because of the 
artificial system and confirm their activity in physiologic cellular 
responses that address the therapeutic goal (118).

In our own drug discovery experience, there has been an 
evolution in the approaches we have used to identify and develop 
small molecule agonists of glycoprotein hormone receptors. In 
the process, we learned three key lessons: (a) molecules that 
stimulate cAMP in immortalized cell systems expressing FSH 
receptor (FSHR) as a primary screen do not necessarily reflect the 
compound requirements to stimulate follicular development; (b) 
the diversity of intracellular and intrafollicular events stimulated 
by FSH cannot be reproduced by measuring single endpoints in 
single cell types in vitro; and (c) the highest potency compound 
in  vitro does not always correlate with best efficacy in  vivo. In 
the next several sections, we will highlight how these lessons 
influenced our current discovery process.

Molecules that Stimulate cAMP in Immortalized Cell 
Systems Expressing FSH Receptor as a Primary 
Screen Do Not Necessarily Reflect the Compound 
Requirements to Stimulate Follicular Development
It is intuitively obvious that it is a huge challenge to engineer a 
small molecule (molecular weight 500–600) that can replicate 
the integrated biochemical response of a large protein (molecular 
weight 33,000). A small molecule glycoprotein hormone receptor 
agonist cannot occupy the same space in the extracellular ligand-
binding domain of the FSHR. Therefore, binding assays were 
discarded as a primary screen in these programs, but instead were 
applied to understand changes in receptor conformations induced 
by the small molecule. Cell-based assays using physiologically 
reasonable levels of expression of the appropriate receptor and 
intracellular signaling cascades are important to interpret screen-
ing results. Exaggerated overexpression systems can make a 
weakly active compound look more potent than it really is. FSHR 
expression in our CHO-cell system, as detected by FSH binding 
to receptors, was approximately threefold greater than expression 
in primary granulosa cells. It has been demonstrated that receptor 
density at the plasma membrane can control the balance between 
distinct signal transduction pathways (56).

Diversity of Intracellular and Intrafollicular Events 
Stimulated by FSH Cannot be Reproduced by 
Measuring Single Cell, Single Outputs in Cell Culture
It is imperative to confirm changes in second messengers induced 
by allosteric modulators, in subsequent primary cell culture sys-
tems that measure physiologically relevant products associated 
with the same intracellular pathways. In the earliest attempts 
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to identify FSHR agonists, compounds with activity in FSHR-
expressing CHO cells were quickly advanced into in vivo models 
without evaluation in primary granulosa cells. Over several 
iterations of screening, we learnt that the structure–activity rela-
tionship (SAR) from immortalized CHO cells does not translate 
well to activity in rat granulosa cells or human granulosa cells. 
Compounds active in the immortalized cell screen were tested 
in relevant functional assays using rat granulosa cell cultures 
and measuring estradiol secreted in the media. Responses of the 
compounds varied between CHO-hFSHR cells and in granulosa 
cells (Table 1). Among compounds that were moderately potent 
in CHO cells (EC50 between 10–49.9 nM and 50–250 nM) ~30% 
of compounds were ineffective in stimulating estradiol in the 
functional assay (Table  1). Furthermore, among compounds 
that were potent in CHO-FSHR cells (1–4.9 nM and 5–9.9 nM 
EC50), ~25% of the compounds were unable to stimulate 
estradiol production in granulosa cell culture. Among the most 
potent compounds (EC50 < 1 nM), only 7% of compounds were 
inactive in granulosa cells (Table 1). This data suggests that the 
result obtained from overexpression system should be treated 
with caution, as response in functional assay at the beginning of 
the lead optimization effort had nearly 30% false positive rate.

The converse relationship between physiological activity in 
granulosa cells and signaling activity in immortalized cells was 
observed for FSHR NAMs. An FSHR NAM was shown capable to 
partially reduce cAMP induced by FSH in HEK293 cells, but it was 
very effective in blocking cAMP and progesterone production in 
a primary granulosa cell system (119). This clearly highlights that 
the SAR developed in an immortalized cell system is not always 
transferable to the physiologically relevant functional cell model. 
It is imperative to test molecules in a therapeutically relevant 
cell very early on in the screening program before progressing 
molecules to animal models.

Highest Potency Compound In Vitro Does Not 
Always Correlate with Best Efficacy In Vivo
The correlation between granulosa cell activity and in vivo activity 
is much lower, and is affected by multiple variables. Compounds 
in our program as well as compounds from other efforts 
[thiazolidinones (TZDs)] that are very potent (EC50  <  1  nM) 
are poorly absorbed and/or extensively metabolized following 
oral exposure (117, 120). In general, these molecules have very 
high logD values, and are metabolized faster. One has to balance 
the desire for highly potent compounds with candidates that can 
be orally available. Highly potent compounds frequently share 

TABLe 1 | Not all compounds active in CHO-hFSR cells can stimulate 
estradiol secretion in primary rat granulosa cells.

eC50 in   
CHO-hFSHR (nM)

Rat granulosa cell assay (GC)

No. of compounds

Tested in GC No activity % inactive

<1 44 3 7
1–4.99 97 20 21
5–9.99 52 15 29
10–49.9 84 30 36
50–250 10 3 30

undesirable absorption, distribution, and metabolism (ADME) 
properties. There are some excellent reviews published on the 
small molecule allosteric modulators of glycoprotein hormone 
receptors (121–123). We will focus on the most recent advances 
made in this exciting field.

FSH Receptor Modulators
Among the three glycoprotein hormones used in infertility treat-
ment, FSH is the major value driver for therapeutic intervention. 
Without the FSH treatment, there is no ovarian hyperstimulation. 
As expected, there are several publications on FSHR modulators 
and fewer reports on development of LHR and TSHR modula-
tors. The first report of FSHR agonist was published as a patent 
in 2001 by Serono (124), describing a piperidine carboxyamide, 
which had an EC50 of 3.9 nM in CHO-hFSHR cells measuring 
cAMP. These molecules were originally identified through HTS 
of a compound library. Unfortunately, piperidine carboximides 
lacked in  vivo activity. In this program, there was virtually no 
systematic structure-based optimization of the lead through 
iterative Med Chem efforts using granulosa cell cultures to guide 
their development. Since then, several groups have followed up 
with various chemical scaffolds targeting FSHR, including TZDs 
(125–127), substituted gamma-lactam (128), diketopiperazines 
(129, 130), N-alkylated sulfonyl piperazine (131), tetrahydro-
quinolines (132), hexahydroquinoline (133), thienopyrimidines 
(134), and benzamides (117). Chemical structures for some of 
these are provided in Figure  3. For more detailed review on 
chemical nature of other series, please refer to van Straten and 
Timmers (123). The cellular and physiological effects of specific 
chemical classes are summarized below.

Thiazolidinones Agonists
Thiazolidinones were identified through a combinatorial library 
screening (126–128). The initial hit obtained through screening 
had an EC50 of 20 μM in CHO-hFSHR cells, but this potency was 
optimized over 10,000-fold during lead optimization (127). In 
addition to their effects in immortalized cells, TZDs were capable 
of stimulating estradiol production in functional rat granulosa 
cells (127). These authors further explored the site within the 
receptor where these compounds might be working. Using mul-
tiple reconstitutions of FSHR and TSHR transmembrane domain 
chimeras, they identified that TZDs activated FSHR through 
the transmembrane domain 1–3 (127). They also observed a 
range of biochemical features of this series of compounds from 
PAM to mixed modulators and to negative modulators (125), 
suggesting that a small change in the TZD scaffold can provide 
FSHR analogs of differing pharmacology. The agonists stimulated 
cAMP and estradiol in granulosa cells. On the other hand, the 
negative modulators were completely devoid of agonistic activity 
and inhibited FSH-induced cAMP and steroidogenesis, through 
activation of Gi pathway. The mixed modulators at lower concen-
trations behaved as agonist stimulating cAMP through Gs, while 
at higher concentration, the compound activated Gi pathway 
and reduced cAMP demonstrating negative cooperativity as was 
demonstrated within cells expressing constitutively active glyco-
protein receptors (86, 125). These molecules provide evidence 
that it is possible to selectively trigger specific signaling pathways 
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A Agonists

1. Thiazolidinone (Compound 5, Yanofsky et al. 2006)

2. Hexahydroquinolines (Org214444-0, van Koppen et al. 2013)

3. Benzamide (Compound 9K, Yu et al. 2014)

B Antagonists

1. Thiazolidinone (Compound 3, Arey et al. 2008)

2. Dimethoxybenzamide (ADX68692, Dias et al. 2014) 

3. Aminoalkyamine (van Straten et al. 2005)

FiGURe 3 | Chemical structure of selected small molecule modulators 
of FSHR. (A) Agonists: (1) thiazolidinone [compound 5 (127)], 
(2) hexahydroquinolines [Org214444-0 (135)], and (3) benzamide [compound 
9K (117)]. (B) Antagonists: (1) thiazolidinone [compound 3 (125)], 
(2) dimethoxybenzamide [ADX68692 (147)], and (3) aminoalkyamine (132).
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of the receptor. Recently, our group demonstrated that the TZD 
compound was capable of stimulating multiple signaling path-
ways, in addition to cAMP, in an integrated cellular signal very 
similar to FSH (120). These molecules behaved as “allo-agonists,” 
in that they can potentiate FSH action in the presence of low FSH, 
and also directly activate FSHR in rat granulosa cells (120). In 
relevant physiological cellular models, TZD stimulated cumulus 
expansion of granulosa cells, and induced in  vitro follicular 
growth. Due to extremely low oral bioavailability, TZD was not 
suitable as orally active therapeutics; however, the compound was 
quite effective in stimulating follicular development in immature 
rat when delivered continuously by Alzet pump (120).

Hexahydroquinoline Agonists
A series of hexahydroquinolines with nanomolar activity in CHO 
cells were reported (133). Cyclocondensation reaction of hexahy-
droquinolines resulted in mixtures of four diastereoisomers with 
EC50 <1  nM. One such compound, Org214444-0, was highly 
lipophilic and stereoselective on FSHR over related LHR and 
TSHR (135). Org214444-0 was quite potent in stimulating rat and 
human granulosa cells. In binding experiment with 125I-FSH, this 
compound was able to increase FSH binding affinity by 6.5-fold, 
while in CHO-CRE luciferase assay, a three to fivefold increase 
in potency was observed, behaving as “allo agonist.” They also 
demonstrated oral bioactivity as measured by increased follicular 
development and ovulation in mature rats (135). This is the first 
report of an orally active FSHR molecule. In an attempt to reduce 
the lipophilicity, several pyridyl- and sulfonamide-substituted 
hexahydroquinolines were prepared (136). The compounds had 
moderate in vitro activity but there is no report on their in vivo 
potency.

FSHR Antagonists
In addition to the pursuit of the development of small molecule 
FSHR agonists to promote fertility, several novel series of com-
pounds have shown potential to suppress fertility as contracep-
tives. Contraceptives have played a significant role in avoiding 
unwanted pregnancy, for family planning, and for slowing 
population growth. Currently the widely used contraceptives are 
steroid based and have a number of side effects, so developing a 
safer method of contraceptive is a significant unmet medical need 
(137, 138). FSH plays a critical role in follicular development and 
the onset of sperm production (139–142). Thus, blocking FSH 
action with a receptor antagonist can be a novel non-steroidal-
based approach with specific activity in ovary and testes without 
affecting other peripheral and central tissue.

The first report of an FSHR antagonist for use in contraception 
was reported in 2002 (143). The compound inhibited FSH-induced 
cAMP and steroid production. In vivo at 100 mg/kg, provided by 
ip, the compound blocked increases in ovarian weight and ovula-
tion (143). Aminoalkylamides were described in 2003 to have 
antagonistic activity against FSHR (144). Two compounds were 
tested for their ability to interrupt estrous cycle in female rats and 
their effect on spermatogenesis in male, but in both cases, the 
compounds were not very effective (144). Organon later reported 
identification of tetrahydroquinolines agonists from HTS with 
EC50 on FSHR at 4.4 μM (132). Hit optimization of this series led 
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to switch from agonist to antagonist with IC50 of 5 nM (132). This 
compound showed antagonistic activity in granulosa cells and 
inhibited in vitro follicle growth and ovulation (132). However, 
in vivo efficacy of this molecule was not reported. Antagonists 
with greater potency were obtained with dimeric compounds 
(145). Connection of two weakly antagonistic molecules with a 
spacer of sufficient length generated antagonists with much better 
activity in vitro (145).

Small molecule FSHR agonists have varying pharmacokinet-
ics properties, hence shown to have quite different half-life. 
A clever approach was used by van de Lagemaat to develop a 
contraceptive using a FSHR agonist with a very short half-life 
(146). Follicle stimulation in mammals is achieved when the cir-
culating concentration of FSH is sustained above the threshold 
for sufficiently long time. Thus in rats, optimal follicular growth 
occurs only when FSH is administered twice a day for 2 days due 
to its short half-life, in contrast to a single injection of PMSG, 
which has longer half-life and remains in the circulation for 
a longer duration (119). Van de Lagemaat et  al. observed that 
oral administration of the short-acting FSHR agonist inhibited 
ovulation by inducing premature luteinization of unruptured 
follicles in rat and guinea pig (146). This effect was reversible; 
therefore, this novel approach of short follicular stimulation fol-
lowed by premature withdrawal presents a unique mechanism of 
contraceptive action relative to that used by steroidal hormones, 
which blocks the entire ovarian follicular phase. However, in 
cynomolgus monkey, the effect of the compound was partial as 
only about 40% of animals showed luteinized unruptured folli-
cle. Due to the variation in response in non-human primate, this 
molecule was not pursued for development, but the approach 
is quite novel. Thus, having allosteric modulators with differing 
pharmacology can be a useful tool for both stimulating and 
controlling fertility.

Investigators from Addex, in collaboration with Dias and 
co-workers, characterized three of the NAM identified from 
their drug discovery effort. These are low molecular weight 
compounds effective in blocking FSH-induced cAMP produc-
tion in CHO-hFSHR and rat granulosa cells. In the first paper, 
they demonstrate ADX61623 to increase the affinity of 125I-hFSH 
binding to the receptor (119). In rat granulosa cells, FSH-induced 
progesterone secretion was inhibited by ADX61623, but not estra-
diol, demonstrating biased antagonism on FSH signaling. This 
molecule was only partially effective in blocking FSH-induced 
follicular development and ovulation in rats (119). Results with 
ADX61623 provide proof that small molecule modulator of 
FSHR can be used to dissect the signaling pathways of the recep-
tor. In a more recent publication, Dias et al. have tested two other 
NAMs, ADX68692 and its analog ADX68693 (147). ADX68692 
inhibited FSH-induced progesterone and estradiol production in 
granulosa cells. In vivo, this compound blocked FSH-mediated 
follicular maturation and ovulation in immature rats (147). While 
in mature cycling rats, though ADX68692 disrupted estrous 
cycle, it had only a partial effect in blocking pregnancy following 
mating (147). Its contraceptive efficacy in mature rat remained 
lower than that can be achieved with steroidal contraceptives. 
ADX68693, on the other hand, showed biased antagonistic 
activity on FSH-mediated steroid production like ADX61623 by 

inhibiting FSH-stimulated progesterone, but rather stimulating 
estradiol secretion in granulosa cells and no significant effect in 
blocking ovulation in immature rat (147). These studies demon-
strate that, for an effective contraception, it is critical to inhibit 
both arms of FSH-induced steroidogenesis, i.e., progesterone and 
estradiol biosynthesis. At present, the available FSH antagonists 
lack pharmacological properties that would justify development 
as alternatives to steroidal contraceptives.

LH Receptor Modulators
The first series of small molecule LHR agonist reported in litera-
ture were thienopyrimidines (116). An HTS campaign followed 
by hit optimization resulted in Org41841 with EC50 of 20 nM 
in CHO-hLHR assay. This compound stimulated testosterone in 
mouse Leydig cells. Org41841 at 50 mg/kg administered orally 
induced ovulation in 40% of immature mice primed with FSH 
(116). This was the first report of oral activity of LHR analog. 
Intensive medchem optimization of thienopyrimidines led to 
the identification of several potent molecules. One compound, 
a trifluoroacetic acid salt form of thienopyrimidine, Org42599 
behaved as a pharmacochaperone of mutant LHR (148). In 
previous work, mutations in LH receptors (LHRs) at two loca-
tions, A593P and S616Y, cause misfolding of the receptor and 
these receptors fail to get trafficked to the plasma membrane. 
Org42599 facilitated expression of the mutant receptors to the 
plasma membrane behaving as pharmacochaperone and rescued 
the stimulatory response to LH (148). This approach may have 
translational application for treatment of patients bearing such 
mutation.

A series of pyrazole compounds with mixed FSH/LH activ-
ity was reported (149). Compound 5 was described to have an 
EC50 of 20  nM (efficacy 53%) in CHO-hLHR and an EC50 
value of 130 nM (efficacy 73%) in CH-hFSHR assays (122). This 
compound stimulated testosterone production in rat (122, 149), 
though its effect on follicular development was not reported. 
Bonger et al. obtained a highly selective LHR agonist by linking 
a dual LHR/FSHR molecule to a previously characterized FSHR 
antagonist (115, 150).

Another interesting molecule from optimization of thienopy-
rimidine is Org43553. This molecule stimulated LHR to produce 
cAMP with EC50 3.4 nM, while FSHR was activated at 110 nM 
(151). LH at higher concentration can activate phospholipase C 
(PLC), but Org43553 inhibited LH-induced PLC, showing biased 
agonism on LHR (152). Pharmacokinetic analysis showed that 
the compound had high oral bioavailability with short half-life 
(151). Oral administration of Org43553 induced ovulation in 
female (immature mice and adult rat) and serum testosterone 
in male rat (151). Since the half-life of this molecule was shorter 
than that of hCG, it can potentially reduce the risk of ovarian 
hyperstimulation syndrome (OHSS), a condition believed to be 
induced by hCG (153–155). In fact, in rat, Org43553 induced ovu-
lation without the increased vascular permeability or increased 
expression of vascular endothelial growth factor (VEGF), caused 
by hCG (156). At present, it is unclear if it is biased agonism or 
short half-life of the Org43553 that is able to induce ovulation, 
but reduce the risk of OHSS (156). Finally, in the most excit-
ing study, Org43553 and another molecule Org43902 were well 

A Agonist
1. Phenylpyrazole ( Compound 10, Jorand-Lebrun et al. 2007)

2. Thienopyrimidine (Org43553, van de Lagemaat1 et al. 2009)

B Antagonist
1. Terphenyl derivative (LUF5771, Heitmann et al. 2012)

FiGURe 4 | Chemical structure of LHR modulators. (A) Agonist: 
(1) phenylpyrazole [compound 10 (149)] and (2) thienopyrimidine [Org43553 
(151)]. (B) Antagonist: (1) terphenyl derivative [LUF5771 (158)].
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tolerated in normal healthy women and demonstrated that single 
oral administration of the small molecule agonist induced ovula-
tion of gonadotropin-stimulated, mature follicles in pituitary-
suppressed women (157). This represents a giant stride toward 
the demonstration of proof of concept for development of an 
orally active small molecule modulator of glycoprotein hormone 
receptor in human.

Antagonist
Development of LHR antagonists is very limited. A binding 
assay using small molecule radioligand 3H-Org43553 (LHR 
agonist, described above) was used as a screening tool to identify 
LHR antagonists (158). Binding of 3H-Org43553 with hLHR 
membrane was saturable with Kd of 2.4 nM and Bmax of 1.6 pmol/
mg protein (159). Five small molecule agonists evaluated in this 
assay showed good correlation between binding affinity relative 
to Org43553 and their potency in cellular assay (159). Using 
this binding assay as the screening tool, terphenyl derivatives 
were identified to inhibit 3H-Org43553 binding to the mem-
brane (158). Interestingly, one of the derivatives, compound 24 
(LUF5771) was able to increase the Kd of 3H-Org43553 by 3.3-
fold. In a functional assay, LUF5771 inhibited the activation of 
the receptor by hLH and Org43553. In vivo efficacy of LUF5771 
as an allosteric inhibitor was not demonstrated. Figure 4 illus-
trates the chemical structure of some of the interesting LHR 
modulators.

TSH Receptor Modulators
For the past few years, there are reports on the development of 
small molecule allosteric modulators for TSHR (160, 161). The 
chemical structure of few of the TSHR allosteric modulators 
are shown in Figure  5. The first TSHR agonist started from a 
thienopyrimidine, Org41841, the LHR agonist (116). Due to high 
homology between TMD of LHR and TSHR, it was predicted 
that Org41841 would bind to TSHR. This prediction was con-
firmed by docking studies, and eventually experimental results 
identified Org41841 as a partial agonist (162). Further, HTS and 
optimization of a hit resulted in identification of compound 2 
(C2), which was a full agonist at TSHR with an EC50 of 40 nM 
and no activity at FSHR or LHR (163). More importantly, C2 was 

A Agonist

1. Tetrahydroquinazolinone (Compound 2, Neumann et al. 2009)

2. Tetrahydropyrimidinone (MS438, Latif et al. 2015)

B Antagonist

1. Tetrahydroquinazolinone (Compound 1 and ANTAG3, Neumann et al. 2011; 
Neumann et al. 2014)

2. Tetrahydroquinoline (Org274179-0, van Koppen et al. 2012)

FiGURe 5 | Chemical structure of TSHR modulators. (A) Agonist: 
(1) tetrahydroquinazolinone [compound 2 (163)] and 
(2) tetrahydropyrimidinone [MS438 (114)]. (B) Antagonist: 
(1) tetrahydroquinazolinone [compound 1 and ANTAG3 (165, 169)] and 
(2) tetrahydroquinoline [Org274179-0 (167)].
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estradiol secretion in granulosa cells and no significant effect in 
blocking ovulation in immature rat (147). These studies demon-
strate that, for an effective contraception, it is critical to inhibit 
both arms of FSH-induced steroidogenesis, i.e., progesterone and 
estradiol biosynthesis. At present, the available FSH antagonists 
lack pharmacological properties that would justify development 
as alternatives to steroidal contraceptives.

LH Receptor Modulators
The first series of small molecule LHR agonist reported in litera-
ture were thienopyrimidines (116). An HTS campaign followed 
by hit optimization resulted in Org41841 with EC50 of 20 nM 
in CHO-hLHR assay. This compound stimulated testosterone in 
mouse Leydig cells. Org41841 at 50 mg/kg administered orally 
induced ovulation in 40% of immature mice primed with FSH 
(116). This was the first report of oral activity of LHR analog. 
Intensive medchem optimization of thienopyrimidines led to 
the identification of several potent molecules. One compound, 
a trifluoroacetic acid salt form of thienopyrimidine, Org42599 
behaved as a pharmacochaperone of mutant LHR (148). In 
previous work, mutations in LH receptors (LHRs) at two loca-
tions, A593P and S616Y, cause misfolding of the receptor and 
these receptors fail to get trafficked to the plasma membrane. 
Org42599 facilitated expression of the mutant receptors to the 
plasma membrane behaving as pharmacochaperone and rescued 
the stimulatory response to LH (148). This approach may have 
translational application for treatment of patients bearing such 
mutation.

A series of pyrazole compounds with mixed FSH/LH activ-
ity was reported (149). Compound 5 was described to have an 
EC50 of 20  nM (efficacy 53%) in CHO-hLHR and an EC50 
value of 130 nM (efficacy 73%) in CH-hFSHR assays (122). This 
compound stimulated testosterone production in rat (122, 149), 
though its effect on follicular development was not reported. 
Bonger et al. obtained a highly selective LHR agonist by linking 
a dual LHR/FSHR molecule to a previously characterized FSHR 
antagonist (115, 150).

Another interesting molecule from optimization of thienopy-
rimidine is Org43553. This molecule stimulated LHR to produce 
cAMP with EC50 3.4 nM, while FSHR was activated at 110 nM 
(151). LH at higher concentration can activate phospholipase C 
(PLC), but Org43553 inhibited LH-induced PLC, showing biased 
agonism on LHR (152). Pharmacokinetic analysis showed that 
the compound had high oral bioavailability with short half-life 
(151). Oral administration of Org43553 induced ovulation in 
female (immature mice and adult rat) and serum testosterone 
in male rat (151). Since the half-life of this molecule was shorter 
than that of hCG, it can potentially reduce the risk of ovarian 
hyperstimulation syndrome (OHSS), a condition believed to be 
induced by hCG (153–155). In fact, in rat, Org43553 induced ovu-
lation without the increased vascular permeability or increased 
expression of vascular endothelial growth factor (VEGF), caused 
by hCG (156). At present, it is unclear if it is biased agonism or 
short half-life of the Org43553 that is able to induce ovulation, 
but reduce the risk of OHSS (156). Finally, in the most excit-
ing study, Org43553 and another molecule Org43902 were well 
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(1) phenylpyrazole [compound 10 (149)] and (2) thienopyrimidine [Org43553 
(151)]. (B) Antagonist: (1) terphenyl derivative [LUF5771 (158)].
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active in a physiologically relevant cell system, primary human 
thyrocyte culture. C2 stimulated serum thyroxine (T4) in mice 
when administered orally (163). This is the first proof of princi-
ple study that a small molecule agonist for TSHR is active in an 
in vivo preclinical model. However, there is no report on further 
development of the compound. Very recently, Latif et al. described 
two molecules, MS437 and MS438, with potent activity on TSHR 
and thyrocytes (114). Both these molecules demonstrated in vivo 
activity in stimulating thyroxine in male rats when administered 
intraperitoneally. It is not known if these molecules are orally 
active. Molecular docking studies showed that these compounds 
bind to the TMD3 of TSHR (114).

The first antagonist against TSHR also had its origin from 
Org41841. Based on the model of Org41841–TSHR complex, it 
was predicted that elongated analogs would bind differently to 
the receptor, so a long propylene-methyl-ether group was added 
at the para position of the aromatic moiety to obtain compound 
52 (164). This compound inhibited TSH-stimulated cAMP by 
71% with an IC50 of 4.2  μM and blocked antibody-induced 
thyroperoxidase mRNA in primary thyrocytes, suggesting it 
could be used in pathological condition like Grave’s disease 
(164). However, due to its weak potency, it could only be used as 
a starting point to make more potent analogs to develop as thera-
peutics. This group also described developing a TSHR inverse 
agonist with antagonistic activity that can block TSHR antibody-
induced orbital fibroblast functions (165, 166). Van Koppen et al. 
reported development of Org274179-0 as nanomolar potent 
allosteric antagonist capable of inhibiting M22-induced cAMP 
production in orbital fibroblast, but this compound was equally 
effective in inhibiting FSHR as well (167, 168). Perhaps, the 
most potent and selective TSHR antagonist, ANTAG3, inhibited 
TSH and M22-induced elevation of serum-free T4 and mRNAs 
for thyroperoxidase and sodium-iodide cotransporter in  vivo 
(169). Availability of several chemical series of small molecule 
modulators of TSHR opens an exciting opportunity for develop-
ing novel therapy for pathological conditions as well as to use 
them as research tools to understand the basic biology of TSHR 
signaling.

Mechanism of Action of Small Molecule 
Modulators
Small molecule modulators of glycoprotein hormone identified 
to date, except for stilbene bisulfonic acid 20 (143), do not dis-
place the binding of the protein ligand. Several chemotypes have 
been demonstrated experimentally to bind to the transmembrane 
domains of the receptors (127, 162, 170). Molecular modeling 
and mutagenesis studies have helped us to understand the func-
tional mechanism of allosterism of small molecule modulators of 
the glycoprotein receptors. The structure of rhodopsin is adopted 
as a general model for elucidating the functional domains of all 
GPCRs. Using this approach, it is proposed that there are two 
pockets of allosteric binding sites in the transmembrane regions 
of glycoprotein receptors (121, 170). Pocket1 (P1) is formed 
between TMD III, IV, V, and VI, while the 2nd pocket (P2) is 
formed by TMD I, II, III, and VII (121, 170, 171). P1 has been 
suggested to be the site of interaction of pyrazole, pyrimidine, 
and tetrahydroquinoline chemotypes (121, 162). Using chimeric 

FSHR–TSHR hybrid receptors, activity of TZD on FSHR was 
dependent on presence of transmembrane regions I, II, and III, 
suggesting this chemical series interacts with the P2 pocket of the 
receptor (121, 127).

Based on the docking studies and experimental evidence 
with Org43553 and two other small molecules (LUF5771 and 
LUF5419), Heitman et  al. confirmed two binding sites in the 
transmembrane region of LHR for small molecule modulators 
(170). By in silico docking studies, the binding site for LUF5771 
was proposed to be in the pocket created by TMDs 1, 2, 3, 6, 
and extra cellular loop 2, corresponding to site P2 [reviewed in 
Ref. (121)]. Org43553 interaction was restricted to site P1 (170). 
LUF5771, the allosteric inhibitor, strongly overlapped with the 
binding site of LUF5419, an allosteric enhancer of Org43553. 
However, the antagonist interacts with additional residues in 
TM2 and 7, which are likely to restrict the receptor in an inactive 
conformation (170). It is noteworthy to mention that similar 
structural constraint is induced by compound 52 on TSHR to 
behave as an antagonist (161). The existence of multiple allosteric 
sites on glycoprotein hormone receptors provides opportunities 
to design and develop new compounds with improved selectivity 
and therapeutic value.

Recent crystal structure of FSH with FSHR extracellular 
domain provided evidence for the existence of trimer in the basal 
state (Figure  2A) (98). Receptor trimerization is mediated by 
both the transmembrane domains and the ectodomain. Binding 
of one fully glycosylated FSH to the basal trimer results in dis-
sociation of a single monomer from the trimer, resulting in the 
activation of the single monomer (Figure  2B). Based on this 
model of hormone receptor activation, refined through the use of 
several small molecule ligands, the mechanism proposed is that 
small molecules induce 1–3 active monomers in concentration-
dependent manner that can be monitored by binding of three 
glycosylated FSH heterodimers to the dissociated monomers 
(Figure 2C) (98). Increased binding of FSH in the presence of 
the modulators confirms this observation (119, 135, 172). An 
important question is whether the FSHR trimer described by 
the new crystal structure is functionally relevant in physiological 
systems.

Summary

With greater understanding of GPCR biology and improved 
methods to develop allosteric modulators, several chemical 
series have emerged. Currently, we are pursuing a new chemi-
cal series for FSHR modulator, which has shown great promise 
in preclinical models including DMPK, safety, and toxicology 
studies. Successful development of an oral LH/hCG as well as 
GnRH antagonist modulator in clinical studies has kindled our 
hopes to have an oral therapy for fertility treatment in assisted 
reproductive technology. Encouraging progress in the develop-
ment of allosteric modulators of GPCRs can transform the 
dream of physicians and patients for having a more convenient 
therapy associated with infertility treatment into reality. Access 
to an orally active glycoprotein hormone agonist provides hope 
for patients that are considering dropping out of the treatment 
due to the stress involved in injection of the drugs. Similarly, for 
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