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The melanocortin system is one of the most important neuronal pathways involved 
in the regulation of food intake and is probably the best characterized. Agouti-related 
peptide (AgRP) and proopiomelanocortin (POMC) expressing neurons located in the 
arcuate nucleus of the hypothalamus are the key elements of this system. These two 
neuronal populations are sensitive to circulating molecules and receive many excitatory 
and inhibitory inputs from various brain areas. According to sensory and metabolic 
information they integrate, these neurons control different aspects of feeding behav-
ior and orchestrate autonomic responses aimed at maintaining energy homeostasis. 
Interestingly, composition and abundance of pre-synaptic inputs onto arcuate AgRP and 
POMC neurons vary in the adult hypothalamus in response to changes in the met-
abolic state, a phenomenon that can be recapitulated by treatment with hormones, 
such as leptin or ghrelin. As described in other neuroendrocrine systems, glia might be 
determinant to shift the synaptic configuration of AgRP and POMC neurons. Here, we 
discuss the physiological outcome of the synaptic plasticity of the melanocortin system, 
and more particularly its contribution to the control of energy balance. The discovery of 
this attribute has changed how we view obesity and related disorders, and opens new 
perspectives for their management.
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introduction

Brain plasticity refers to the natural capacity of the brain to modify its structure and function through 
experience. This attribute relies on the property of neurons to adjust their responsiveness, molecular 
content, and connections as a result of activity. At the level of synapses, plasticity includes functional 
changes that strengthen or weaken existing synapses – by changing probability of neurotransmitter 
release and conductance and quantity of post-synaptic receptors  –  as well as structural changes 
that involve synapse formation and elimination (1). The hypothalamus, which ensures long-term 
stability of the inner milieu, is a brain area prone to synaptic plasticity. Neurotransmission in numer-
ous neuronal circuits located in the hypothalamus varies in response to changes within the body 
and in the environment. This Review focuses on the structural forms of synaptic plasticity in the 
melanocortin system of the hypothalamus, one of the main neuronal circuits that control appetite 
and energy homeostasis. We also discuss recent findings suggesting that loss of plasticity in this 
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circuit might compromise its function and confer risk for obesity 
and related disorders.

Overview of the Melanocortin System

Feeding behavior is controlled by several homeostatic brain 
circuits that promote food intake or suppress appetite accord-
ing to metabolic needs, and by cognitive structures involved in 
hedonic hunger, eating habits, and emotional processing of the 
meal context (2). The melanocortin system is one of the most 
important neuronal pathways involved in the regulation of food 
intake and is probably the best characterized (3–7). This circuit 
includes (i) neurons expressing melanocortin receptors (MCR), 
namely central MC3R and MC4R subtypes, (ii) neurons that 
express MCR agonists, such as the melanocortin peptide called 
α-melanocyte-stimulating hormone (MSH), which derives from 
the proopiomelanocortin (POMC) precursor protein, and (iii) 
neurons that express MCR antagonists, such as the high-affinity 
ligand agouti-related peptide (AgRP).

While MC3R and MC4R target neurons are widely distributed 
through the brain, they are highly enriched in specific brain areas 
controlling energy balance (8–10). The role of MC3R in energy 
homeostasis is not well understood yet, but MC3R neurons 
likely contribute to behavioral adaptation to fasting and nutri-
ent partitioning (11, 12). Conversely, MCR4 is clearly involved 
in several aspects of energy balance, such as feeding behavior, 
adaptive thermogenesis, and glucose homeostasis (13–17). The 
anorectic and weight-lowering functions of MC4R have been 
evidenced using pharmacological and genetic tools in the late 
1990s (18, 19). Moreover, mutations in the MC4R gene represent 
the most frequent genetic form of obesity and are associated with 
hyperphagia (20–22).

Interestingly, most of MC4R-expressing sites in the brain 
receive dual antagonistic innervation of stimulatory POMC and 
inhibitory AgRP fibers (23–25), suggesting that the melanocortin 
system is finely tuned to maintain energy homeostasis. POMC- 
and AgRP-expressing neurons are contained in close proximity 
in the arcuate nucleus of the hypothalamus, but a small cluster 
of POMC neurons is also found in the solitary tract nucleus 
(nucleus tractus solitarii, NTS) in the brainstem (26–29). One 
special feature of the arcuate neurons is their position in a brain 
parenchyma flooded by blood-borne factors and cerebrospinal 
factors that are released by permeable microvessels of the median 
eminence and delivered by tanycytes lining the third ventricle 
(30–33). The ability of arcuate POMC and AgRP neurons to 
be regulated by circulating hormones, including leptin, insulin, 
ghrelin, estrogens, glucocorticoids, glucagon-like peptide 1, and 
peptide YY, and by nutrients makes the melanocortin system 
sensitive to changes in body’s energy status (34–36). For instance, 
the adipose-derived signal leptin increases the activity of POMC 
neurons and inhibits that of AgRP neurons, which is consistent 
with the anorexigenic effect of this hormone (29, 37). Intrinsic 
particularities have been found in the melanocortin system based 
on the neurochemistry, anatomy, and sensitivity of its neuronal 
components. Arcuate but not NTS POMC neurons co-express 
the cocaine amphetamine-related peptide (CART), another ano-
rexigenic molecule (38, 39). Moreover, arcuate POMC neurons 

are likely segregated into different projectional systems through 
the rostro-caudal axis of the hypothalamus, sending separated 
bundles of fibers to anterior brain structures (e.g., bed nucleus 
of the stria terminalis), lateral regions [e.g., paraventricular 
nucleus of the hypothalamus (PVN), lateral hypothalamus (LH), 
amygdala], or caudal regions (e.g., periaqueductal gray) (23, 25, 
40). Likewise, distinct subpopulations of arcuate AgRP neurons 
project to different brain regions (41). AgRP neurons co-express 
the orexigenic neuropeptide Y (NPY) (42, 43), and the neuro-
transmitter gamma-aminobutyric acid (GABA) that allows direct 
inhibition of POMC neurons (29). By contrast, arcuate POMC 
neurons exhibit diverse GABAergic, glutamatergic, and choliner-
gic neurotransmitter phenotypes (44–48), but the significance of 
this heterogeneity remains unclear (49). Nonetheless, divergence 
in the melanocortin system has been evidenced and the current 
model comprises dissociated sub-circuits that are dedicated to 
regulating specific parameters of the energy balance. For instance, 
MC4R-expressing single-minded homolog 1 (SIM1) neurons 
located in the PVN control appetite, while others in other parts 
of the brain control energy expenditure (50). Indeed, sympathetic 
preganglionic cholinergic MC4R-expressing neurons of the inter-
mediolateral nucleus (IML) of the thoracic spinal cord regulate 
energy expenditure but not food intake (51).

Until recently, it was thought that AgRP neurons promote food 
intake via GABA- and NPY-mediated inhibition of local POMC 
neurons, and via AgRP-mediated competitive antagonism on 
distant MCR-expressing neurons (3, 52). The use of genetically 
encoded anatomical, optogenetic, and pharmacogenetic tools 
allowed for the identification of further modes of action of arcuate 
AgRP and POMC neurons in the control of food intake. In fact, 
the MCR signaling is not always mandatory for AgRP neurons to 
mediate their orexigenic effect. This has been exemplified in two 
different models. The first is based on selective ablation of AgRP 
neurons in adult mice. This procedure reduces the GABAergic 
tone from AgRP neurons within the parabrachial nucleus (PBN) 
of the hindbrain, a visceral and taste-sensing area, which leads to 
cessation of feeding and ultimately to death by starvation (53–55). 
In this specific hypothalamus-to-hindbrain circuit, AgRP innerva-
tion of the PBN maintains food intake in mice in a melanocortin-
independent manner (54). The second model uses chemical- or 
light-mediated activation of melanocortin neurons in mice. These 
experiments show that artificial acute and selective activation of 
AgRP neurons is sufficient to rapidly induce voracious feeding (56, 
57). Because this behavioral response is still found in Lethal yellow 
(Ay) mutant mice, whose ectopic expression of the endogenous 
MCR antagonist Agouti blocks the melanocortin signaling, this 
indicates that MCR signaling is not necessary for AgRP neurons 
to initiate feeding (56). Conversely, photo-activation of POMC 
reduces food intake but the POMC-mediated anorexigenic effect 
is completely blocked by the Ay mutation showing that POMC 
neurons require downstream melanocortin signaling to reduce 
food intake (56). Further studies have indicated that AgRP neurons 
control distinct phases of eating via specific molecular signaling 
pathways and neuronal circuits. NPY and GABA transmitters 
from AgRP neurons are involved in short-term regulation of food 
intake, whereas the AgRP peptide itself – as well as arcuate POMC 
neurons – controls food intake through an action on MC4R over 
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a delayed and prolonged period (56, 58–60). A growing body of 
evidence suggests that AgRP and POMC neurons not only control 
homeostatic food intake but also motivate feeding behaviors, 
including desire to eat and food-seeking behavior (57), preference 
for flavors (61), visceral malaise anorexia (62), and reward-related 
behaviors (63). Furthermore, these neurons take into account the 
nutritional value and accessibility of food together with the inter-
nal physiological state to produce an anticipatory modulation of 
the feeding behavior (64). Finally, current model shows that AgRP 
neurons engage a constellation of parallel circuits and brain relays 
to control different aspects of feeding behavior, some of which 
have a redundant capability to drive feeding behavior (41).

evidences of Synaptic Plasticity in the 
Melanocortin System in Adult Brain

Sensory experiences and changes in the inner milieu deeply mod-
ify the function of specialized neuronal circuits in the adult brain 
(1, 65, 66). This capacity to adapt to ever-changing life conditions 
relies on coordinated molecular and cellular mechanisms, includ-
ing changes in synaptic strength and in neuronal connectivity. 
The concept that the mature hypothalamus can undergo mor-
phological plasticity according to variations of the physiological 
state and in response to hormonal cues is not a recent idea. In 
the 1980s, synaptic reorganization within the oxytocinergic 
system has been evidenced during lactation or in response to 
changes in water homeostasis (67, 68). In the same time, synaptic 
remodeling has been found in the hypothalamus in response to 
sex steroid hormones and during the estrous cycle (69, 70). This 
hormone-dependent synaptic plasticity affects gonadotropin 
releasing hormone (GnRH) neurons involved in the neuroendo-
crine control of reproduction (71). During the two last decades, 
Tamas Horvath and colleagues have clearly established that the 
melanocortin system is another hypothalamic system whose 
connectivity is affected by variation in circulating hormones (72). 
Pioneer studies were based on depletion–repletion paradigms in 
living animals to control hormone levels combined with in-depth 
inspection of synaptic organization on arcuate POMC and NPY 
neurons (73–75). In the first report, the situation in mutant ob/ob 
mice lacking leptin was compared to that of wild-type and leptin-
supplemented ob/ob mice (73). Electron microscopic stereology 
on fixed brain sections combined to ex vivo electrophysiological 
recordings of living brain slices revealed that leptin induces a 
shift in the composition of afferent inputs on POMC neurons in 
adult brain, by increasing excitatory synapses apposed on these 
cells within only 6 h following intraperitoneal injection. Opposite 
effects were found on NPY/AgRP neurons. Interestingly, leptin-
induced synaptic changes are consistent with the anorectic effect 
of leptin suggesting that a causal relation might exist. Similar 
strategies were used to evidence remodeling properties of estradiol 
and corticosterone, whose effects on the connectivity of the adult 
melanocortin system are still consistent with their physiological 
actions (74, 75). Further studies have revealed that injection of 
ghrelin in wild-type mice also causes synaptic remodeling on 
POMC and NPY/AgRP neurons (73, 76). All these observations 
clearly indicate the ability of the adult melanocortin to rewire in 
response to metabolic cues.

Connectivity of the Melanocortin System 
is Nutritionally Regulated

Plasticity of the melanocortin system in adult brain has been ini-
tially evidenced in response to hormone replacement in depleted 
backgrounds found in mutant ob/ob, ovariectomized, or adre-
nalectomized mice (73–75). This discovery markedly changed 
our understanding of how hormones regulate the melanocortin 
system. A second breakthrough was achieved in the early 2010s 
when it was shown that synaptic rearrangement on POMC and 
NPY/AgRP neurons naturally occurs in naïve animals in response 
to changes in the nutritional state.

During positive energy balance, high level of circulating leptin 
stimulates arcuate leptin-sensitive POMC neurons, which might 
activate anorexigenic MC4R-signaling in downstream neurons via 
α-MSH release (29, 77, 78). In parallel, leptin blunts the tonic AgRP 
activity by reducing excitatory inputs on AgRP neurons through an 
opioid receptor-dependent pathway (78). It is likely the release of 
β-endorphin from leptin-stimulated POMC neurons that down-
regulates the glutamatergic activity on AgRP neurons (78).

Food deprivation induces synaptic remodeling in both AgRP 
and POMC neurons (77–79). Orexigenic ghrelin, which is elevated 
after fasting (80), promotes excitatory glutamate release onto 
AgRP neurons (78). Ca2+ and AMPK intracellular signaling in pre-
synaptic glutamatergic neurons mediates this effect (78). N-methyl-
d-aspartate (NMDA) receptors and spinogenesis in AgRP neurons 
are also required to increase AgRP activity during fasting (79). In 
addition, the inhibitory tone on POMC neurons increases when 
blood leptin level falls during fasting (77, 78). Fasting-induced 
inhibition of POMC neurons might result from ghrelin-activated 
GABAergic AgRP neurons that innervate POMC neurons (29, 58, 
77, 81) but is also caused by apposition of new inhibitory terminals 
on POMC neurons, which are non-AgRP GABAergic neurons (77).

Finally, the current model for food deprivation-induced 
neuronal rewiring implies two opposite signals acting on several 
cell targets (Figure 1). Ghrelin rewires the melanocortin system 
during negative energy balance and basal synaptic organization 
is recovered by the rise of leptin when energy balance is restored. 
In this model, leptin is viewed as a resetting signal. On the other 
hand, overfeeding for few days, which is associated with high 
leptin level, is another nutritional situation that initiates synaptic 
remodeling in the melanocortin system (82). Precisely, short-
term high-fat diet for 3 days increases excitatory inputs on POMC 
neurons. This observation indicates that synaptic plasticity of 
AgRP and POMC neurons is not a specific response to fasting 
and suggests that synaptic remodeling is activated after positive 
or negative deviation from the metabolic set point. Underlying 
biological mediators, molecular pathways as well as origin of 
dynamic synapses probably differ for each situation.

Astrocytes Regulate the Connectivity of 
Melanocortin Neurons

Initially viewed as the “brain glue,” i.e., an inert scaffold for neural 
tissues, and then as non-excitable supporting and nourishing 
cells for neurons, astrocytes are now considered as key players 
in neurotransmission (83). Recently, it has been proposed that 
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these glial cells contribute to the brain control of energy balance 
(84–86). In fact, astrocytes are at the interface between blood ves-
sels and neurons (87). Expression of sensors for metabolic signals, 
including those for glucose, fatty acids, insulin, leptin, insulin-like 
growth factor-1 (IGF1), and glucocorticoids, give to astrocytes the 
ability to integrate changes in the microenvironment that might be 
communicated to neurons (88–96). Obviously, hypothalamic and 
hindbrain astrocytes are glucosensitive cells involved in several 
physiological functions, including glucose homeostasis and gas-
tric motility (97–100). Moreover, leptin regulates the expression 
of glutamate and glucose transporters in hypothalamic astrocytes 
(101). Alteration of leptin signaling in astrocytes causes aberrant 
feeding responses to fasting and to leptin or ghrelin injections 
(96). Feeding response to high-fat diet is also impaired by disrup-
tion of the nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-κB) pathway in astrocytes (102). All these data support 
the idea that astrocytes contribute to the control of food intake. 
However, the mode of action of astrocytes for modulating activity 
of feeding circuits is not totally elucidated. Indeed, they act on 
neurons through a wide variety of mechanisms. These glial cells 
modulate neuronal excitability and synaptic transmission via the 
clearance of synaptic transmitters and the delivery of signaling 
compounds, called gliotransmitters, such as protons, lactate, and 
adenosine (103, 104). For instance, blood osmolality is nutrition-
ally regulated through a ghrelin-dependent astrocytic ATP release 
on vasopressin neurons (105). Furthermore, it has been shown 

that astrocytes control food intake by inhibiting AgRP neurons via 
adenosine A1 receptors (106). Astrocytes also produce bioactive 
molecules, such as apolipoprotein E (ApoE), the most abundant 
lipid transporter in the brain, which acts in the hypothalamus as 
a satiety factor by reducing food intake after central administra-
tion (107). Modification of astrocyte coverage at the synapses is 
another mean to efficiently and rapidly modulate the synaptic 
strength onto neurons (108–110). Time-lapse imaging shows 
that perisynaptic astrocytic processes that embrace synapses are 
highly reactive and motile structures, to an even higher degree 
than dendritic spines (111). Interestingly, leptin alters the expres-
sion of structural proteins, such as glial fibrillary acidic protein 
(GFAP), actin, and vimentin, in astrocytes, which is accompanied 
by changes in astrocytes morphology (112). Furthermore, the 
morphology of astrocytes surrounding arcuate POMC and AgRP 
soma varies in the adult brain according to nutritional history, 
metabolic state, and leptin signaling (96, 101, 113). These morpho-
logical changes significantly influence the synaptic inputs received 
by melanocortin neurons, which might affect overall activity of 
the system and ultimately the feeding behavior (96, 101, 113).

Physiological Relevance of Synaptic 
Plasticity in the Melanocortin System

The ability of the brain to change physically and functionally 
following experience is a way to adapt to changing environment. 

FiGURe 1 | Model illustrating the synaptic remodeling on arcuate AgRP and POMC neurons after food deprivation. In the fed state (left panel), high level 
of circulating leptin stimulates POMC neurons, which probably activate MC4R downstream neurons to limit further food intake. Leptin also causes the release of 
β-endorphin from POMC neurons. This endogenous opioid blunts the activity of AgRP neurons by reducing the excitatory glutamatergic tone applied on them. Food 
deprivation raises the level of circulating ghrelin (right panel). This orexigenic hormone promotes apposition of new excitatory synapses on AgRP neurons that 
increases the activity of these cells. The concomitant drop of blood leptin allows the insertion of inhibitory terminals on POMC cells. These additional inhibitory 
synapses originate mainly from non-AgRP GABAergic neurons.
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Thus, rearrangement of pre-synaptic contacts onto AgRP and 
POMC neurons in response to metabolic cues would serve to 
adjust the reactiveness of the melanocortin circuit and to finely 
control feeding behavior according to energy availability. This 
attribute would avoid stereotyped responses and maladaptive 
behaviors. For instance, in fasted animals synaptic remodeling in 
AgRP and POMC neurons might contribute to increase sensitiv-
ity for food cues and/or to increase threshold for satiety signals in 
order to increase meal size following food deprivation. However, 
such relation has not been established yet. Nevertheless, it is very 
likely that the plasticity of the melanocortin system is involved 
in the regulation of food intake and energy homeostasis. First, 
because the synaptic rearrangement on AgRP and/or POMC 
neurons naturally occurs in adult animals in response to positive 
or negative deviation from a metabolic steady state, i.e., situations 
that require central regulation of energy metabolism and behav-
ior (78, 79, 82). Second, because the synaptic rearrangement on 
AgRP and/or POMC neurons caused by metabolic imbalance is 
consistent with the activation of a counter-regulatory response 
mediated by changes in AgRP and POMC neuronal activity (78, 
79, 82). This observation is in line with seminal reports showing 
that hormones affect AgRP and POMC synaptology in a manner 
compatible with their effects on food intake and body weight 
regulation (73–75, 78). Third, because removal of polysialic acid 
(PSA), a major synaptic plasticity-promoting factor, from the 
hypothalamus not only inhibits POMC neurons rewiring during 
overfeeding but also blunts the following normalization of energy 
intake (82). While the permissive factor PSA was not selectively 
ablated in POMC cells in this study – but removed in the whole 
hypothalamus – these results suggest that POMC rewiring induced 
by dietary fat consumption contributes to the homeostatic control 
of food intake. Further studies based on cell-specific manipula-
tion of synaptic plasticity in adult animals are definitively needed 
to characterize physiological consequences of plasticity-related 
mechanisms caused by changes in the nutritional state.

Conclusion and Perspectives

Synaptic plasticity of the melanocortin system is currently 
considered as an adaptive process activated by huge variations in 
circulating hormones that can be seen during extreme metabolic 
circumstances, such as 3-day overfeeding and 24-h fasting in 
rodents. Other plasticity-related processes occur in response to 
these metabolic challenges. Overfeeding increases cell prolifera-
tion in the mouse brain within few days (114). Blocking the early 
proliferative burst impairs the normalization of energy intake on 
the short term. In addition, percentage of newly generated cells 

adopting a POMC-phenotype in the arcuate nucleus is increased 
on the long term. This suggests that cell renewal is accelerated 
during metabolic imbalance, and that maturation of newborn 
cells is nutritionally regulated to maintain energy homeostasis. 
On the other hand, fasting induces remodeling of the tanycytic 
barrier and change in permeability of capillaries in the median 
eminence and the arcuate nucleus of the hypothalamus, a process 
that modifies blood–brain exchanges and diffusion of blood-
borne molecules into the arcuate parenchyma (31). Structural 
remodeling in brain feeding centers likely strengthens functional 
plasticity based on pure pharmacological mechanisms within 
circuits. Indeed, high-fat feeding induces transient suppres-
sion of orexigenic neuropeptides and subsequent induction of 
anorexigenic neuropeptides (115). Secretion of neuropeptides 
from POMC neurons can be changed selectively, which further 
increases the plasticity of the melanocortin system. Activation 
of cannabinoid receptor 1 (CB1R) induces β-endorphin release, 
but not α-MSH, in a subset of POMC neurons, and thereby shifts 
the function of these appetite-suppressing neurons and increases 
feeding behavior (116). Interestingly, neurotransmission in 
the dopaminergic system of the ventral tegmental area is also 
regulated according to the metabolic state and this regulation 
involves endocannabinoids too (117). This mechanism might 
serve to modulate the anticipatory activity and preference for 
food-related cues. Thus, plasticity of the melanocortin system 
might be an element of a protecting arsenal based on dissemi-
nated structural and functional changes throughout the brain 
that are engaged during metabolic imbalance.

Metabolic magnetic resonance imaging has shown that 
the human hypothalamus is competent for plasticity (118). 
Therefore, it would not be surprising to find in the human 
brain plasticity-related events similar to those that have been 
detected in the melanocortin system of laboratory animals. As a 
corollary, deficiency in the ability to rewire feeding circuits on-
demand would confer a risk for maladaptive feeding behaviors, 
obesity, and related disorders. This hypothesis has been recently 
strengthened by a meta-analysis of genome-wide association 
studies for body mass index in human that has brought to the 
front of the scene the role of the central nervous system in obesity 
susceptibility, implicating genes related to synaptic function and 
plasticity (119).
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