
September 2015 | Volume 6 | Article 1491

Review
published: 25 September 2015

doi: 10.3389/fendo.2015.00149

Frontiers in Endocrinology | www.frontiersin.org

Edited by: 
Jun Wu,  

University of Michigan, USA

Reviewed by: 
Lei Sun,  

Duke-NUS Graduate Medical School, 
Singapore  

Yun-Hee Lee,  
Yonsei University, Korea

*Correspondence:
 Xiaoyong Yang,  

Section of Comparative Medicine, 
Yale University School of Medicine, 

P.O. Box 208016, New Haven,  
CT 06520-8016, USA  

xiaoyong.yang@yale.edu

Specialty section: 
This article was submitted to Cellular 

Endocrinology, a section of the 
journal Frontiers in Endocrinology

Received: 28 July 2015
Accepted: 07 September 2015
Published: 25 September 2015

Citation: 
Yang X and Ruan H-B (2015) 
Neuronal control of adaptive 

thermogenesis.  
Front. Endocrinol. 6:149.  

doi: 10.3389/fendo.2015.00149

Neuronal control of adaptive 
thermogenesis
Xiaoyong Yang1,2,3* and Hai-Bin Ruan1,2

1 Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, 
USA, 2 Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA, 3 Department of Cellular 
and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA

The obesity epidemic continues rising as a global health challenge, despite the increas-
ing public awareness and the use of lifestyle and medical interventions. The biomedical 
community is urged to develop new treatments to obesity. Excess energy is stored as 
fat in white adipose tissue (WAT), dysfunction of which lies at the core of obesity and 
associated metabolic disorders. By contrast, brown adipose tissue (BAT) burns fat and 
dissipates chemical energy as heat. The development and activation of “brown-like” 
adipocytes, also known as beige cells, result in WAT browning and thermogenesis. The 
recent discovery of brown and beige adipocytes in adult humans has sparked the explo-
ration of the development, regulation, and function of these thermogenic adipocytes. 
The central nervous system drives the sympathetic nerve activity in BAT and WAT to 
control heat production and energy homeostasis. This review provides an overview of 
the integration of thermal, hormonal, and nutritional information on hypothalamic circuits 
in thermoregulation.

Keywords: brown adipose tissue, white adipose tissue, beige fat, thermogenesis, hypothalamus, sympathetic 
nervous system, Ucp1, obesity

A Trio of Fat

Obesity is a rising global epidemic. Excess adiposity is a major risk factor for type 2 diabetes, car-
diovascular disease, and hypertension. Overweight and obesity arise when energy intake exceeds 
energy expenditure and consequently excessive calories are stored in the adipose tissue. The adipose 
organ comprises white adipose tissue (WAT) and brown adipose tissue (BAT). WAT primarily stores 
energy as triglycerides, whereas BAT dissipates chemical energy as heat, a process mediated by 
uncoupling protein 1 (UCP1) (1–3). WAT excess and dysfunction lie at the core of obesity and asso-
ciated metabolic disorders. By contrast, BAT-mediated adaptive thermogenesis serves to maintain 
body temperature during cold, contributes to fever during infection, as well as counteracts obesity 
and related metabolic dysfunction (4). Here, adaptive thermogenesis is defined as non-shivering 
heat production in response to changes in environmental and physiological settings, such as cold, 
diet, fever, and stress. Adaptive thermogenesis in BAT is believed to be solely dependent on UCP1 
(1–6). However, UCP1-independent thermogenesis in other tissues such as WAT has also been 
suggested (7, 8).

In 2009, metabolically active BAT was “re-discovered” in adult humans (9–13). The activity of 
BAT in humans responds to cold challenge and is inversely associated with body mass index (BMI) 
and age (14). Yet in its infancy, increasing the mass and activity of BAT is considered as a therapeutic 
option for human obesity.
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A “brown-like” type of adipocytes, called beige cells, has been 
recently discovered in specific WAT depots. Although different 
from classic brown adipocytes in their origin and molecular iden-
tity, beige adipocytes express Ucp1, contribute to thermoregula-
tion, and prevent metabolic dysfunction in mice (15, 16). The 
process of recruiting and activating beige adipocytes is referred to 
as “browning.” Although classical brown adipocytes are present 
in adult humans (9, 17, 18), growing evidence suggests that adult 
human BAT is mainly composed of beige adipocytes (19–21). 
Considering the fact that interscapular BAT in human infants 
consists of bona fide brown adipocytes and that BAT depots in 
newborns and adults are located at different sites (22, 23), we 
speculate that classic brown adipocytes degenerate whereas beige 
adipocytes gradually prevail with age in humans. Understanding 
the molecular mechanisms under this transition is important for 
future therapeutics designed to boost BAT function. It is also 
intriguing and important to determine the existence and identity 
of beige adipocytes in other WAT depots, such as subcutaneous 
fat in humans.

The potential of brown and beige adipocytes as anti-obesity 
targets attracts extensive interest. The last decade has seen an 
explosion in our understanding of the development, regulation, 
and pathophysiology of these distinct adipocytes. Chronic cold 
exposure, by stimulating the sympathetic nervous system (SNS), 
is a major and potent activator of BAT thermogenesis and WAT 
browning. Agonists to β3-adrenergic receptors (AR) that are 
selectively expressed in brown and beige adipocytes stimulate 
thermogenesis in both rodents and humans (24). In addition, 
numerous intrinsic proteins and secreted factors have been 
shown to affect the development and function of brown and/
or beige adipocytes (15, 16, 25). The role of the central nervous 
system (CNS) in controlling adipose tissue thermogenesis has 
been an area of intense investigation (26–31). In this review, 
we summarize the recent progress in our understanding of the 
central regulation of thermogenesis in brown and beige cells.

Hypothalamus Orchestrates Metabolism

The hypothalamus acts as to orchestrate homeostatic functions 
such as food intake, energy expenditure, glucose metabolism, and 
circadian rhythm. Homeostasis is achieved through the complex 
crosstalk between the hypothalamus and peripheral tissues in 
response to environmental cues. The arcuate nucleus (ARC) of 
the hypothalamus is considered to be a primary integrator of 
peripheral signals, including hormones and nutrients. Two exten-
sively studied populations of neurons in the ARC are orexigenic 
neurons expressing agouti-related protein (AgRP)/neuropeptide 
Y (NPY) and anorexigenic neurons expressing proopiomelano-
cortin (POMC). These neurons are sensitive, mostly in opposite 
ways, to hormones such as leptin, insulin, and ghrelin, as well as 
nutrients such as glucose, amino acids, and fatty acids (32–34). 
Melanocortin peptides produced by POMC neurons are agonists 
whereas AgRP is an antagonist of melanocortin-3 and -4 recep-
tors (MC3R and MC4R) that are expressed on the second-order 
neurons. Located largely in the lateral hypothalamus (LH) and 
the paraventricular nucleus (PVN) of the hypothalamus, these 
downstream neurons receive projections from the ARC as well 

as direct inputs from peripheral signals. Together with the ARC, 
the LH and PVN function as a metabolic integrator and regulator 
by projecting to high-order neurons in the CNS and secreting 
various neuropeptides, for example orexin, melanin concentrat-
ing hormone (MCH), cocaine- and amphetamine-regulated 
transcript (CART), and corticotropin-releasing hormone (CRH).

In addition to their neuroendocrine role, hypothalamic neu-
rons also project to the SNS to control peripheral metabolism 
(Figure  1). Both BAT and WAT are extensively innervated by 
the sympathetic fibers that can be tracked back to the hypothala-
mus (35). By using the neurotropic pseudorabies virus (PRV), 
a number of studies have described the neuroanatomy of the 
sympathetic control of adipose tissues in rodents. Although BAT 
and WAT are anatomically and functionally distinct, common 
brain areas with efferent projections to both adipose tissues have 
been identified, including the ARC, LH, and PVN of the hypo-
thalamus and other neuronal sites discussed below (35). Release 
of catecholamine, particularly norepinephrine (NE), from the 
sympathetic fibers and subsequent activation of β-AR signaling 
in adipocytes are necessary for the initiation of lipolysis and the 
activation of thermogenesis (36). It is thus reasonable to speculate 
that a “command” neural network dictates these two processes in 
BAT and WAT (35). It should be noted that only a small portion 
(about 5–15%) of individual neurons in these common brain 
regions projects both to BAT and WAT and distinct sympathetic 
circuits project to different WAT depots (35, 36). It is conceiv-
able that the anatomic architecture of neuronal projections to 
adipose tissues is evolved to allow differential sympathetic drive 
across fat depots in response to different lipolytic/thermogenic 
stimuli (37). Generally speaking, sympathetic drive to BAT is 
more intense than that to WAT depots, demonstrated by more 
sympathetic nerve endings on adipocytes, higher NE levels and 
NE turnover rates, and increased expression levels of tyrosine 
hydroxylase (37–39). Moreover, there are differential sympathetic 
activities between various WAT depots at the basal, cold-induced, 
and fasting-induced conditions (37, 39). It will be interesting to 
determine what factors control such differential effects of the SNS 
on adipose tissues.

Along with well-characterized leptin resistance and insulin 
resistance, catecholamine resistance develops in obesity, which 
is characterized by impaired catecholamine synthesis and/
or sensitivity (40–42). Catecholamine-induced lipolysis and 
thermogenesis are compromised in WAT of obese animals and 
patients through several proposed mechanisms, including leptin 
resistance, α2-AR expression, and inflammation (43, 44). Yet 
the contribution of catecholamine resistance to the defects in 
thermoregulation awaits future investigation.

The Preoptic Area integrates Thermal 
information

Cold exposure and subsequent SNS activation have a profound 
effect on brown and beige adipocytes. Upon cold exposure, 
cutaneous transient receptor potential (TRP) cation channels, e.g. 
TRPM8, sense skin temperature and transmit signals to primary 
sensory neurons in the dorsal root ganglia (28). This thermal 
information is delivered to third-order sensory neurons in the 
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lateral parabrachial nucleus (LPB) and then finally to the median 
preoptic (MnPO) subnucleus of the hypothalamic preoptic area 
(POA). The medial preoptic area (MPA) of the POA contains 
warm-sensitive neurons, which receive inhibitory projections 
from the MnPO (26, 30). Cooling of both distal skin and local 
hypothalamus reduces the discharge of these warm-sensitive 
neurons, suggesting that the POA is a central temperature sensor.

Neurons in the POA control SNS activity and thermogenesis 
by projecting to the dorsomedial hypothalamic area (DMH) and 
rostral raphe pallidus (rRPa) in the rostral ventromedial medulla, 
and finally to the sympathetic preganglionic neurons in the inter-
mediolateral nucleus (IML). The neuroanatomical blueprint and 

FiGURe 1 | Functional neuroanatomical model of the hypothalamic control of adaptive thermogenesis. Differential regulation of the hypothalamic circuits 
during fasting and feeding is shown. Positive and negative regulators of the adaptive thermogenesis are shown in green and red, respectively. Dashed lines and gray 
letters indicate inactive or diminished signals.

neurotransmitters involved in POA regulation of thermogenesis 
have been reviewed in detail elsewhere (26, 28, 30). Direct cooling 
of the POA elicits BAT activation (45). Glutamatergic activation 
of the MnPO and lesions in the inhibitory MPA region both 
evoke thermogenesis in BAT (46, 47). Conversely, inhibition of 
MnPO blocks BAT thermogenesis induced by skin cooling (47).

These data demonstrate that the POA integrates thermal infor-
mation to regulate cold-induced thermogenesis. Febrile responses 
are also mediated by the POA, which will not be discussed in this 
review (26, 30). The POA provides efferent signals to WAT depots 
as well (35); however, roles of the POA in the regulation of WAT 
browning have not been characterized.

http://www.frontiersin.org/Endocrinology/archive
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org


September 2015 | Volume 6 | Article 1494

Yang and Ruan Neuronal control of adaptive thermogenesis

Frontiers in Endocrinology | www.frontiersin.org

Hypothalamic Hormone Sensing in 
Thermoregulation

In the late 1970s, seminal experiments performed by Rothwell 
and Stock demonstrated that cafeteria diet increased the activity 
of SNS and BAT (48). Diet-induced thermogenesis has since been 
considered as an important compensatory mechanism that offsets 
energy surplus. A series of diets such as cafeteria diet and high-fat 
diet (HFD) induce metabolic inefficiency and BAT recruitment, 
thus being called as “recruiting diets” (1). Several factors have been 
proposed to be important for the thermogenic effect of recruiting 
diets, including the protein-dilution effect, adipocyte-derived 
leptin, and hypothalamic neurons (1). Parasagittal hypothalamic 
knife-cuts and medial hypothalamic lesions in rats impaired caf-
eteria diet-induced thermogenesis in BAT (49, 50). The PVN was 
later demonstrated as one of the important hypothalamic nuclei 
mediating diet-induced thermogenesis (51).

In addition, caloric restriction and daily feeding–fasting cycles 
also control body temperature and thermogenesis in BAT and 
beige fat (52, 53, 39). Importantly, cold-induced thermogenesis 
induces and requires food consumption (39, 54). These data sug-
gest that feeding or sufficient nutrient supply provides permissive 
signals to adaptive thermogenesis. Leptin secreted by adipocytes 
in proportion to the fat mass and insulin secreted by pancreatic 
β cells in response to blood glucose have been proposed as these 
permissive signals.

Preoptic Area
The POA, as a temperature central sensor, is also under the 
hormonal regulation. Leptin-responsive neurons are abundant 
in the POA (55). Cold induces the activity of the leptin receptor 
(LepR)-expressing neurons in the POA, which project to rRPa to 
regulate sympathetic BAT inputs (56). The insulin receptor is also 
detectable in the POA. Insulin injection into the POA decreases 
the firing rate of warm-sensitive neurons, which results in BAT 
thermogenesis and elevated core body temperature (57). To 
understand the molecular mechanisms underlying the integra-
tion of various thermogenic cues in the POA will be a promising 
avenue for future research.

Arcuate Nucleus
The ARC is considered as the primary mediator of leptin signal-
ing in the regulation of energy balance and glucose metabolism 
(33). Injection of leptin into the ARC increases sympathetic drive 
to BAT (58), and GABAergic RIP-Cre neurons in the ARC may 
mediate the ability of leptin to stimulate thermogenesis (59). 
Orexigenic neuropeptides AgRP and NPY inhibit BAT function, 
while anorexigenic α-MSH increases SNS activity and BAT func-
tion (60, 61).

However, it was not known whether neuronal circuits in the 
ARC also control WAT browning until recently. Acute activation 
of hunger-promoting AgRP neurons in the hypothalamus sup-
presses the browning process. O-linked β-N-acetylglucosamine 
(O-GlcNAc) modification of cytoplasmic and nuclear proteins 
is a nutrient-sensitive pathway (62, 63). The levels of O-GlcNAc 
modification and O-GlcNAc transferase (OGT) are enriched in 

AgRP neurons and are elevated by fasting and the hunger hor-
mone Ghrelin (39). Genetic ablation of OGT in AgRP neurons 
inhibits neuronal excitability, promotes WAT browning, and 
protects mice against diet-induced obesity and insulin resistance 
(39). On the other hand, insulin and leptin act synergistically on 
POMC neurons to promote WAT browning and prevent diet-
induced obesity (64). Phosphatases PTP1B and TCPTP attenu-
ate leptin and insulin signaling in POMC neurons, and double 
knockout of PTP1B and TCPTP in POMC neurons promotes 
WAT browning (64). These two complimentary stories demon-
strate that the hunger and satiety neurons in the ARC control 
browning of fat depending on the body’s energy state. Activation 
of POMC neurons during caloric intake protects against diet-
induced obesity whereas activation of AgRP neurons informs 
the body to store energy during fasting.

Dorsomedial Hypothalamic Area
Neurons in the DMH receive GABAergic inputs from warm-
sensitive neurons in the MPA (28). Derepression of DMH 
neurons by infusing an antagonist to the GABAA receptor rapidly 
and profoundly increases BAT and core body temperature (65, 
66), which is dependent on the activation of downstream rRPa 
neurons (67, 68).

A population of neurons in the DMH expresses the LepR. The 
intra-DMH injection of leptin increases BAT temperature, in a 
β3-AR-dependent manner (56, 69). Moreover, blockage of leptin 
signaling in the DMH blunts the increase in BAT temperature 
elicited by intraperitoneal injection of leptin (69). Recently, 
Rezai-Zadeh and colleagues demonstrated that selective activa-
tion of DMH neurons by DREADD technique promotes BAT 
thermogenesis and decreases body weight (70). Conversely, the 
deficiency of the LepR in the DMH reduces thermogenesis and 
promotes weight gain (70).

Neuropeptide Y is also expressed by neurons within the DMH, 
besides the ARC of the hypothalamus. Npy expression in the 
DMH is induced in the conditions where animals demand more 
energy, for example, chronic food restriction and exercise (71, 
72). Similar to that in the ARC, NPY in the DMH promotes food 
intake and body weight (73). Using viral-mediated knockdown 
approach in rat, the same group recently showed that DMH 
knockdown of Npy increases BAT activation and the browning 
of WAT through the SNS (74). Collectively, these data suggest 
that the DMH is another hypothalamic locus where orexigenic 
and anorexigenic signals converge to regulate thermogenesis in 
fat tissue.

ventromedial Hypothalamic Area
The ventromedial hypothalamic area (VMH) is one of the first 
hypothalamic sites that have been identified to regulate ther-
mogenesis. Although the anatomical linkage between the VMH 
and adipose tissue is controversial (35), electrical and glutamate 
stimulation of the VMH has been extensively shown to activate 
BAT thermogenesis via the SNS (30, 75, 76). Moreover, genetic 
manipulation of steroidogenic factor-1 (SF-1) neurons, the major 
population in the VMH, has also demonstrated the importance of 
the VMH in thermoregulation (77, 78).
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Leptin microinjection into the VMH increases glucose 
uptake in BAT, although thermogenic effect was not tested in 
the study (79). Selective deletion of the LepR in SF-1 neurons 
reduces Ucp1 expression in BAT, suppresses thermogenesis, and 
produces obesity (80, 81). It has been suggested that the action 
of leptin on BAT thermogenesis is preferentially mediated by 
the PI3K/AKT/FOXOI pathway (82, 83). By contrast, insulin 
suppresses the firing frequency of SF-1 neurons in the VMH 
(84). Microinjection of insulin to the VMH suppresses BAT 
thermogenesis in response to cold and glutamate stimulation 
(85, 86). More interestingly, the magnitude of the suppression 
shows diurnal rhythm, which is greater at noon than at night 
in rats (87).

Fatty acid metabolism is essential for neuronal function 
(88). AMPK-regulated lipogenesis in the VMH is an important 
regulator of BAT thermogenesis and controller of body weight 
(89). Recently, Lopez and colleagues further showed that 
various hormones, including thyroid hormones, estradiol, and 
glucagon-like peptide-1 (GLP-1), activate BAT thermogenesis 
through relieving the suppression on lipogenic genes by AMPK 
in the VMH (89–91). These studies strongly argue that the VMH 
senses hormonal cues to regulate BAT function; however, the 
involvement of the VMH in the regulation of WAT browning 
has not been explored.

Paraventricular Nucleus
The PVN is strongly susceptible to trans-synaptic infection 
by RPV from BAT (35); however, its effect on thermogenesis 
has been controversial. Electrical stimulation of the PVN does 
not affect BAT function (92). Microinjection of N-methyl-d-
aspartate (NMDA) or bicuculline to activate neurons in the PVN 
blocks sympathetic drive to BAT induced by cold, indicating that 
the PVN negatively regulates thermogenesis (93). Paradoxically, 
stimulation of the PVN with glutamate is shown to activate BAT 
thermogenesis (94).

There is a large population of MC4R-expressing neurons 
in the PVN, and the MC4R agonist melanotan II (MTII) 
induces BAT thermogenesis (95). Single-minded 1 (Sim1) is 
necessary for development of the PVN, and ablation of Sim1 
neurons reduces Ucp1 expression, BAT temperature, and energy 
expenditure (96). Restoration of MC4R in the Sim1 neurons fails 
to rescue reduced energy expenditure in Mc4r knockout mice, 
suggesting that MC4R elsewhere controls energy expenditure 
(97). However, a recent study of Mc4r deletion in Sim1 neurons 
showed that Sim1 neurons are important in the regulation of 
energy expenditure (98).

Leptin regulates the synaptic activity of neurons in the 
PVN that project to BAT (99). Viral administration of leptin in 
the PVN stimulates the expression of Ucp1 in BAT (100). The 
orexigenic peptide NPY reduces energy expenditure; however, 
its site of action was not identified until recently (101). Shi et al. 
demonstrated that ARC-derived NPY decreases tyrosine hydroxi-
nase (TH) expression in the PVN to down-regulate BAT Ucp1 
expression and energy expenditure (61). On the other hand, the 
anorexigenic peptide CART, when injected in the PVN, induces 
the Ucp1 expression in both BAT and WAT (102).

Suprachiasmatic Nucleus
Core body temperature, like all vital aspects of physiology 
and metabolism, shows circadian rhythm (103). Thermogenic 
plasticity in BAT is also rhythmic and under the control of cell-
autonomous clock machinery (104–107). Directly entrained by 
light, the suprachiasmatic nucleus (SCN) in the hypothalamus 
has been established as a circadian pacemaker that synchronizes 
peripheral clocks across the body to adjust behavior and physiol-
ogy in accordance with the day/night cycle (108, 109). Both BAT 
and WAT receive sympathetic flow that can be tracked back to 
the SCN (35, 110). Glutamate injection to activate the neurons in 
the SCN stimulates BAT thermogenesis, and this effect is greater 
during the dark phase (111). Nevertheless, it is still unknown 
whether the SCN controls the circadian rhythm of thermogenesis 
and if WAT browning is also under circadian regulation.

LepR-expressing neurons exist in the SCN, and leptin 
phase-advances the circadian rhythm of SCN on brain slices 
(112). In vivo analysis revealed that leptin modulates clock gene 
expression in the SCN and the sleep/wake cycle (113). It will 
be of interest to determine whether leptin in the SCN regulates 
the circadian rhythm of thermogenesis. In addition, intra-SCN 
injection of insulin to rats decreases the sympathetic activity on 
BAT at noon (fasted state) and increases the activity at night (fed 
state), indicating a circadian control of BAT function by insulin 
action on the SCN (87). These data suggest that the SCN may 
receive peripheral satiety cues to modulate the circadian rhythm 
of energy expenditure to maintain homeostasis.

Psychological Regulation of 
Thermogenesis

Psychological fever, one of the most common psychological 
diseases, is characterized by acute or persistent increase in body 
temperature when patients are psychologically stressed (101). It 
was suggested that SNS-activated BAT thermogenesis is respon-
sible for stress-induced hyperthermia (114, 115). Orexin neurons 
in the hypothalamus control multiple physiological processes, 
including arousal, wakefulness, and appetite. The orexin neurons 
are considered important for inflammatory fever and the defense 
against cold (116). It has also been shown that the orexin neu-
rons are indispensable for the stress-induced Ucp1 expression 
and thermogenesis in BAT and resultant hyperthermia (117). 
Recently, a functional neuroanatomical study using an optoge-
netic approach has identified a DMH-medullary raphe circuit 
that drives psychological stress-activated BAT thermogenesis and 
hyperthermia (118).

Environmental enrichment is the stimulation of the brain by 
physical and social surroundings. This regimen supports neuro-
genesis and could aid the treatment of neurodegenerative diseases 
(119). Intriguingly, environmental enrichment in rodents induces 
WAT browning and decreases adiposity (120). Hypothalamic 
brain-derived neurotrophic factor (BDNF) has been shown 
to increase thermogenesis and energy expenditure by acting 
on neurons in the PVN and VMH (121, 122). Environmental 
enrichment up-regulates hypothalamic BDNF, and the inhibition 
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of BDNF blocks the environmental enrichment-induced WAT 
browning (120).

Summary and Perspective

Yet to be fully defined, the developmental and functional identi-
ties of brown and beige adipocytes are distinct (16). Separate 
populations of neurons in common areas of the hypothalamus 
projecting to BAT and different WAT depots may contribute 
to the functional and regulatory differences between fat depots 
(35). The blueprint of the neuroanatomical regulation in BAT 
thermogenesis is becoming apparent; however, we just begin to 
explore the central regulation of the browning process in WAT 
(39, 64, 123).

It is not surprising that the hypothalamic areas that control food 
intake also modulate adaptive thermogenesis. In the hunger state, 
orexigenic neurons attenuate SNS-mediated heat production in 
brown and beige fat to preserve energy; conversely, in the satiety 
state, anorexigenic neurons promote energy expenditure to main-
tain homeostasis (Figure 1). However, adaptive thermogenesis is 
not efficacious to offset long-term energy imbalance, which par-
tially explains the susceptibility to diet-induced obesity and the 
difficulty of weight loss by dietary interventions in humans. It is 
important to unravel the biological logic of distinct hypothalamic 
efferent outputs. In addition to mapping the neuronal circuits con-
trolling thermogenesis in BAT and WAT, there is an urgent need 
to identify intracellular mechanisms by which neuronal activities 
are dictated by thermogenic cues. Understanding the molecular 
and cellular basis of neuronal regulation of adaptive thermogen-
esis will lay a foundation for future therapeutics against obesity. 
For example, GLP-1 receptor agonists, which have been widely 
used to treat diabetes, can be administrated centrally to stimulate 
brown adipose thermogenesis (90). ARC-specific administration 
of OGT inhibitors and PTP1B inhibitors suppress AgRP neurons 
and stimulate POMC neurons, respectively, to promote energy 
expenditure in brown and beige adipocytes (39, 64).

Hypothalamic circuits respond to both thermal information and 
nutritional cues to modulate cold- and diet-induced thermogenesis. 
It has been demonstrated that feeding provides permissive signals 
for the activation of brown and beige adipocytes upon cold challenge 
(39, 54). It is conceivable that yet-to-be-found neuronal circuits exist 
in the hypothalamus serve as an integrator of various thermogenic 
stimuli. Characterization of such integration sites will help us under-
stand how mammals, including human beings, tradeoff between 
life-history variables such as hunger and cold during the evolution.

Adaptive thermogenesis is thought to evolve slowly (in 
days) to adjust to changes in temperature and food availability/
composition; however, the activation or silencing of CNS and 
SNS respond immediately (in minutes) to stimuli, followed by 
delayed (in hours) changes in Ucp1 expression. Appropriate tools 
to manipulate neurons should be utilized to better characterize 
neuronal networks in thermoregulation. Studies using the chemi-
cal/electrical stimulation and anatomical lesions are difficult to 
control efficacy and often lead to off-target effects. Genetically 
modified animal models can continue to be used to reveal neu-
ron population-specific function. However, the caution should 
be taken because genetically modified animals may exhibit 
developmental defects due to non-specific Cre expression and 
observed phenotypes are often the results of the long-term and/or 
secondary effects. Recent advances in optogenetics and chemo-
genetics produce powerful tools to acutely and precisely control 
neuronal activity (124). These tools in combination with classical 
transgenic approaches will accelerate the progress in defining the 
functional neuronal architecture in thermoregulation.
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