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Structure model index (SMI) is widely used to measure rods and plates in trabecular 
bone. It exploits the change in surface curvature that occurs as a structure varies from 
spherical (SMI = 4), to cylindrical (SMI = 3) to planar (SMI = 0). The most important 
assumption underlying SMI is that the entire bone surface is convex and that the curva-
ture differential is positive at all points on the surface. The intricate connections within the 
trabecular continuum suggest that a high proportion of the surface could be concave, 
violating the assumption of convexity and producing regions of negative differential. We 
implemented SMI in the BoneJ plugin and included the ability to measure the amounts 
of surface that increased or decreased in area after surface mesh dilation, and the ability 
to visualize concave and convex regions. We measured SMI and its positive (SMI+) and 
negative (SMI−) components, bone volume fraction (BV/TV), the fraction of the surface 
that is concave (CF), and mean ellipsoid factor (EF) in trabecular bone using 38 X-ray 
microtomography (XMT) images from a rat ovariectomy model of sex steroid rescue of 
bone loss, and 169 XMT images from a broad selection of 87 species’ femora (mam-
mals, birds, and a crocodile). We simulated bone resorption by eroding an image of 
elephant trabeculae and recording SMI and BV/TV at each erosion step. Up to 70%, and 
rarely <20%, of the trabecular surface is concave (CF 0.155–0.700). SMI is unavoidably 
influenced by aberrations induced by SMI−, which is strongly correlated with BV/TV 
and CF. The plate-to-rod transition in bone loss is an erroneous observation resulting 
from the close and artifactual relationship between SMI and BV/TV. SMI cannot discern 
between the distinctive trabecular geometries typical of mammalian and avian bone, 
whereas EF clearly detects birds’ more plate-like trabeculae. EF is free from confounding 
relationships with BV/TV and CF. SMI results reported in the literature should be treated 
with suspicion. We propose that EF should be used instead of SMI for measurements of 
rods and plates in trabecular bone.
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inTrODUcTiOn

Since Hildebrand and Rüegsegger published their structure model 
index (SMI) method in 1997 (1) it has become the de facto stand-
ard for measuring the rod- and plate-like geometry in 3-dimen-
sional trabecular bone images. “Rods” are regions of trabecular 
bone characterized by being elongated and cylindrical, whereas 
“plates” are extensive, flatter regions. The relative proportion 
of rods to plates in trabecular bone is thought to be important 
for bone’s mechanical competence, with plates considered to be 
mechanically superior to rods. SMI is straightforward to imple-
ment and is built into X-ray microtomography (XMT) analytical 
software, including that of commercial vendors (notably SkyScan 
and SCANCO) and the free BoneJ plugin for ImageJ (2). The 
principle of SMI is very simple: it compares the surface area of a 
structure before and after an infinitesimal dilation, to its volume. 
For primitive, convex geometries such as flat planes (SMI = 0), 
cylindrical rods (SMI =  3), and spheres (SMI =  4) SMI works 
well. Unfortunately, SMI does not account for concave surfaces, 
possibly making it unsuitable for use on bone geometries. For 
trabecular bone to form a network of two distinct and continu-
ous phases, bone and marrow space, it must contain abundant 
concave surfaces joining the elements in addition to convex 
surfaces forming the elements themselves. Concave surfaces can 
exist as saddle curves (concave in one direction and convex in 
the other), troughs (concave in one direction and linear in the 
other), or bowls (concave in two orthogonal planes). To calculate 
SMI, a mesh of triangles is fitted to the bone surface and its area is 
calculated as the sum of the areas of all the triangles (S). The mesh 
is then dilated a short distance (r) away from the surface in the 
direction of the triangles’ vertex normals and surface area meas-
ured again. An approximal surface area derivative is calculated by 
dividing the change in surface area (S′) by r, and multiplied with 
bone volume (V) to give a final SMI value (Eq. 1).
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′

⋅
⋅

S
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Crucially, triangles on concave surfaces shrink in area when 
the volume is dilated, leading to a negative change in area and a 
negative contribution to S′. The negative contribution is an aber-
ration from the mathematical and conceptual formulation of SMI, 
the presence of which contaminates the final SMI determination.

Because SMI is set up to report a single figure summarizing 
an entire bone surface, an SMI of 0 (ostensibly plate-like) can 
result from a surface that has an SMI of +1 on its convex por-
tions and −1 on its concave portions. Sometimes, the SMI sum 
is less than its defined minimum bound of 0 (3–15), which casts 
serious doubt upon the biological interpretation that is possible 
from any SMI result. The limitations in SMI have been known 
since its inception: Hildebrand and Rüegsegger (1997) wrote that 
“the intersections between structure elements, e.g., between rods 
and plates, are not accounted for,” and their Figure 2 displays a 
consistent (but not discussed) negative relationship between SMI 
and bone volume fraction (BV/TV) (1). Despite these inherent 
shortcomings, SMI has been used as core experimental evidence 
by the bone community, having been cited over 800 times to date 

according to Google Scholar1. SMI data have been used in sup-
port of denosumab (16), bisphosphonates (3, 17–21), teriparatide 
(21–24), strontium ranelate (25), rosiglitazone (26), propranolol 
(27), and newly discovered molecules (28, 29) as treatments to 
improve bone architecture in human patients. It is well known 
that SMI is strongly confounded by BV/TV (1, 30) [r = −0.80 (31, 
32), r = −0.76, −0.93 (33), R2 = 0.86 (34), R2 = 0.94 (10), R2 = 0.80 
(4), R2 = 0.91 (35)], so that comparisons of SMI values can be 
valid only if BV/TV is identical among specimens. This raises 
problems for studies where BV/TV variation is a prominent fea-
ture, for example, those of mechanical (un)loading, osteoporosis, 
or ovariectomy animal models. Our concern is that the pervasive 
use and misunderstanding of SMI has lead to many erroneous 
conclusions relating to plate-rod transitions in bone physiology 
and pathology. Until recently, there has been no widely available, 
validated and meaningful alternative to SMI, and so its use has 
continued despite its severe limitations.

Ellipsoid factor (EF) has been developed as a method for meas-
uring rod- and plate-like geometry, independent of other geo-
metric parameters, by fitting maximal inscribed ellipsoids inside 
3-dimensional continua (36). Early experience suggests that EF 
effectively identifies rods and plates directly by fitting elongated 
(prolate) or flattened (oblate) ellipsoids, respectively, and identi-
fies transitional regions with rounder, intermediate ellipsoids. EF 
at each point is calculated from the ellipsoid of greatest volume 
that encloses the point and that fits inside the structure. EF is 
calculated from the maximal ellipsoid’s semi-axes a, b, c:

 
a b c, a

b
b
c

≤ ≤ = −EF  (2)

Bony plates are approximated by discus-shaped ellipsoids, 
where a ≪ b ≤ c and EF → −1; rods are approximated by javelin-
shaped ellipsoids where a ≤ b ≪ c and EF → 1, whereas transitional 
regions have less extreme geometry and are rugby ball-shaped 
where a ≤ b ≤ c and EF → 0. A special class of ellipsoid exists for 
which a/b = b/c, where a = qb = q2c; spheres have q = 1.

We aim to investigate the source of the relationship between 
SMI and BV/TV, to determine whether SMI measures rods and 
plates in real trabecular bone geometries, and to quantify the 
amount of concave bone surface typically present in trabecular 
bone. Additionally, we use this opportunity to perform further 
testing of BoneJ’s new EF feature to determine whether it is free 
of significant confounding effects and could be used in place of 
SMI when rod/plate geometry needs to be measured.

MaTerials anD MeThODs

Two image data sets from the authors’ previous work were ana-
lyzed using SkyScan’s CTAn (v1.4; Bruker, Kontich, Belgium) and 
BoneJ [v1.4.1 (37); bonej.org (2)] in ImageJ [v1.49q (38)]. The 
data composed XMT images of trabecular bone in rat femoral 
metaphyses (n  =  38) from a study investigating sex steroid 
rescue of ovariectomy-induced bone loss (39), and XMT images 
(n = 169) of trabecular bone in the femoral head and/or condyle 

1 https://scholar.google.com/scholar?hl=en&cites=4353090427928514643
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from 87 species (69 mammals, 17 birds, and one crocodile), 
made for a study of trabecular bone scaling (40). The rat images 
were included to provide data from a large number of similar 
geometries formed under experimental conditions relevant to 
typical small animal studies on trabecular bone, which would 
test the response of SMI to generalized bone resorption and 
apposition. The taxonomically broad images were included to 
provide a diverse range of naturally occurring trabecular bone 
geometries, which would test the response of SMI to many differ-
ent real trabeculae. Specimen data are provided as Supplementary 
Material. All procedures on the rats were approved by the ethics 
committee at the University of Gothenburg and conformed to 
the National Institutes of Health Guide for the Care and Use of 
Laboratory Animals.

Rat metaphyses were imaged at 7.66 μm isotropic pixel spacing 
in a SkyScan 1072 XMT scanner (Bruker, Kontich, Belgium). The 
interspecies trabecular series was imaged at 3.4–15 μm isotropic 
pixel spacing (depending on specimen size) in an X-Tek HMX 
ST 225 XMT scanner (Nikon Metrology, Tring, UK). Full details 
of image acquisition can be found in the original manuscripts 
(39, 40). The rat trabeculae were selected by manually drawing 
a conforming volume of interest distal to the growth plate that 
excluded cortical bone. The interspecies images were cropped 
down to cuboid stacks containing trabecular bone and marrow 
only. Binary images were produced by automatic thresholding 
with ImageJ’s default IsoData algorithm (interspecies) or an 
adaptive local thresholding algorithm (rats) (41).

The rat image series was analyzed using CTAn and again with 
BoneJ to generate a comparison of their SMI implementations. 
BV/TV was measured on the rat bones in CTAn. The interspe-
cies series was analyzed solely with BoneJ. BoneJ has the unique 
feature of calculating the positive (SMI+) and negative (SMI−) 
components of SMI by determining the triangles that increase or 
decrease in area, respectively, during surface mesh dilation. The 
SMI equation (1) can be expanded into each triangle’s contribu-
tion (s′) to the overall change in surface area (S′)
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Grouping of the positive (t′) and negative (u′) values of s′ 
allows calculation of SMI+ and SMI−, respectively
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and it follows that

 SMI SMI SMI+ -= +
 (5)

BoneJ displays in 3D the surface mesh with triangles color-
coded according to the sign and magnitude of s′ relative to 
individual triangle area. The proportion of the surface area that 
is concave (the “concave fraction,” CF) can be calculated as the 
proportion of the total surface area (S) covered by triangles that 
decrease in area during mesh dilation (U)

 
CF =

U
S

 (6)

Full details of BoneJ’s SMI implementation can be read in the 
StructureModelIndex class in BoneJ’s source code. Meshing was 
performed according to the standard marching cubes algorithm 
(42) as implemented in the ImageJ 3D Viewer (43) on binary 
images with a threshold of 128, voxel resampling of 3, and mesh 
smoothing of 0.5.

Ellipsoid factor was implemented in BoneJ with some minor 
performance enhancements on its initial release (36). Briefly, for 
each point of the structure’s medial axis, a small ellipsoid is seeded 
and iteratively dilated, rotated, and translated slightly until no 
further increase in volume is achieved. Then, the largest ellipsoid 
containing each point in the structure is determined, and the EF 
calculated for that point. Mean EF values summarizing all the 
foreground pixels in each image were calculated and used for 
comparisons.

To simulate the changes in trabecular geometry during 
generalized bone resorption, a single binary stack of trabecular 
bone from an elephant’s femoral head (chosen for having thick 
trabeculae and relatively high BV/TV) was repeatedly eroded by 
1 pixel-width across the entire bone surface with BoneJ’s Erode 
3D, and SMI, SMI+, SMI−, and BV/TV measured at each step.

Pairwise comparisons were performed in R [v3.0.2 (44)] using 
its lm() function for linear regression. Where curved relationships 
were apparent in the scatter plots, quadratic curves were fitted. 
Quadratic fits for SMI− were forced to intercept 0, because when 
CF is 0, SMI− must be 0. No adjustment was made for multiple 
comparisons because we wished to test specific pairwise hypoth-
eses, rather than gather significant results from a table of post hoc 
comparisons, or to develop a model with multiple variables and a 
single outcome. We also expect a degree of multicollinearity (e.g., 
between SMI, BV/TV, and concave fraction) and were seeking to 
define it rather than to avoid or correct for it.

To determine whether SMI and EF can discriminate between 
birds’ and mammals’ distinctive trabecular geometries, we 
applied a Wilcoxon–Mann–Whitney test [R’s wilcoxon.test() 
method] to SMI, BV/TV, CF, and EF results, with data categorized 
as “Mammalian” or “Avian.”

resUlTs

Color-coded surface images (Figure 1) show that SMI+ regions 
(yellow) localize to rod-like features, ridges, and saddle curves 
with a strong convex component. SMI− regions (blue) localize to 
depressions and junction regions.

Structure model index values are highly correlated between 
CTAn and BoneJ implementations (Figure 2), so BoneJ’s results 
can be placed in the context of those published using commercial 
software with reasonable confidence.

Strong, significant correlations implying confounded relation-
ships, and weak correlations implying no relationship between 
variables, were detected in both rat (Figure 3) and interspecies 
(Figure 4) bone image data (Table 1). Measurements from the 
interspecies data were substantially more dispersed than those 
from the rat data, evidenced by much broader spread of points on 
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FigUre 2 | sMi calculation by BoneJ and skyscan. A high level of 
agreement exists between BoneJ and CTAn implementations of SMI 
(R2 = 0.999) when run on the same image data, although BoneJ consistently 
overestimates SMI relative to CTAn (SMIBoneJ = 1.111 × SMISkyScan + 0.192).
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scatter plots, lower correlation coefficients, and higher p-values. 
SMI was strongly negatively correlated with BV/TV (Figures 3A 
and 4A) and CF (Figures 3B and 4B), and CF was strongly posi-
tively correlated with BV/TV (Figures 3E and 4E), indicating that 
high BV/TV structures tend to have high CF and consequently 
low SMI, due to an increased contribution from SMI−. SMI+ is 
independent of BV/TV in the interspecies data (R2 < 0.001). EF 
is nearly independent of concave fraction, BV/TV, and SMI, with 

very low correlations for rat and interspecies data (Table 1). EF 
is weakly correlated with SMI+ in the rat data; however, the dis-
tribution of the data points (Figure 3F) and lack of relationship 
between EF and SMI+ in the interspecies data cast doubt on the 
ability to interpret this any further.

There was no significant difference in SMI between mammal 
and bird trabecular bone (p = 0.65), whereas EF and BV/TV were 
significantly different (p < 0.001) between mammals and birds 
(Figures  4C,D). Concave fraction is not significantly different 
between birds and mammals (p = 0.09) (Figures 4D,E), perhaps 
in part explaining the lack of discriminating ability of SMI. 
Sequential erosion of elephant trabeculae resulted in a nearly 
linear increase in SMI− and SMI, and relatively stable SMI+, as 
BV/TV decreased (Figure 5).

DiscUssiOn

Structure model index is very strongly confounded by BV/TV 
through the fraction of the surface that is concave, and the mag-
nitude of the concavity. Results from our simulation and two large 
datasets raise the possibility that SMI does not function as intended 
when applied to real bone structures, and that published SMI 
results should not be used for assessment of plate/rod geometry. 
A very common interpretation of SMI results is that decreasing 
BV/TV is accompanied by a trend toward rod-like trabeculae, but 
this “trend” is merely an artifact of the design and implementa-
tion of SMI. Many studies show plots of SMI and BV/TV side by 
side indicating how the negative correlation can be missed and 
presented as though the variables are independent (9, 14, 19, 26, 
27, 45–54). If a real relationship exists between decreasing BV/TV 
and plate-to-rod transition, SMI is too biased by concave fraction 
and BV/TV to measure it. A shape measure that is independent 
of BV/TV, such as EF, should be used instead. Because SMI does 
not measure rod and plate geometry in real bone structures, prior 

FigUre 1 | surface meshes color-coded by curvature. Triangulated meshes used to calculate SMI color-coded according to whether each triangle’s area 
enlarged (yellow), shrunk (blue), or remained constant (white) during mesh dilation. These images were created using the same settings as the other analyses in this 
manuscript (voxel averaging = 3, mesh smoothing = 0.5). Yellow and white regions correspond to convex and flat curvature, respectively, that contribute to SMI+; 
blue regions correspond to concave elements that contribute to SMI−, artifactually decreasing SMI. Image data are the same as in Figure 2 of Doube (2015) (36).  
(a) Trabecular bone from an emu, Dromaius novaehollandiae. Rods, ridges, and cut edges of plates are identified in yellow indicating a positive contribution to SMI. 
Note the banding resulting from aliasing during mesh creation, despite pixel averaging, and mesh smoothing (CF = 0.407, SMI+ = 1.707, SMI− = −0.617, 
SMI = 1.090) (B) Trabecular bone from a lesser dwarf shrew, Suncus varilla. The large vertical rod in the center of the image is correctly identified in yellow, but 
merges into negatively curved blue regions (CF = 0.301, SMI+ = 2.462, SMI− = −0.493, SMI = 1.969) (c) Synthetic image of intersecting rods and plates. Rods and 
plate edges are correctly identified in yellow and plate surfaces are correctly identified in white. Junctions between rods and plates are identified in blue indicating 
negative contribution to SMI (CF = 0.152, SMI+ = 2.249, SMI− = −0.315, SMI = 1.933). Full details of the implementation are available in BoneJ’s source code and 
input image stacks are available to download from http://bonej.org/ef.
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FigUre 3 | correlations between parameters related to sMi – rat data. Scatterplots of pairs of parameters measured on trabeculae in rat femoral 
metaphyses images reveal strong and clear relationships between SMI, BV/TV and concave fraction (a,B,e), while EF is independent of BV/TV (c), concave fraction 
(D) and SMI (F). The linear correlation between SMI and BV/TV and between SMI and concave fraction results from the sum of SMI+ and SMI−, which have 
complementary curved relations with BV/TV and concave fraction. Points are labeled according to experimental treatment in [(c–e); ovx, ovariectomized; e2, 
estradiol; dht, dihydrotestosterone] and according to SMI component in (a,B,F). Regression lines are plotted where R2 > 0.20, and listed in Table 1.
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FigUre 4 | correlations between parameters related to sMi – interspecies data. Scatterplots of pairs of parameters measured on trabeculae in mammal, 
bird and crocodile femoral head and condyle images reveal strong and clear relationships among SMI, BV/TV, and concave fraction (A,B,E). EF is nearly independent 
of BV/TV (c), concave fraction (D), and SMI (F) for both mammals and birds. The linear correlation between SMI and BV/TV and between SMI and concave fraction 
results from the sum of SMI+ and SMI−, which have complementary curved relations with BV/TV and concave fraction. Note the much broader spread of data than 
in the rat data in Figure 3. Points are labeled according to phylogenetic taxon in (c–e) and according to SMI component in (a,B,F). Regression lines are plotted 
where R2 > 0.20, and listed in Table 1.
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conclusions based on SMI data are at best highly suspect. We 
propose that past studies in which SMI results were key data are 
reconsidered in the light of our new findings. New studies should  
not use SMI.

Structure model index functions as intended only in a very 
small set of cases when SMI− approaches 0. This occurs in artificial 
test images of spheres, rods and plates, such as used by BoneJ in its 
JUnit tests, and in bone structures with unusually low BV/TV and 
CF. When concave fraction approaches 0, SMI− also approaches 0 
and so the SMI sum nearly equals SMI+. The independence of SMI+ 
from BV/TV and the design of the SMI algorithm suggest that SMI+ 
could indeed measure rods and plates. Unfortunately, the original 
description of SMI (1) did not account for the very strong effect of 
SMI− on the final SMI value. To be able to interpret SMI properly, 
it must be broken into its positive and negative components and 
read alongside concave fraction. This is the first study reporting the 
concave fraction of bone surface; however, CF has little obvious use 
apart from explaining why SMI is so strongly related to BV/TV. As 
BV/TV decreases through thinning of trabeculae, concave fraction 
tends to decrease in concert. SMI is strongly related to CF because 
as because as CF increases the contribution of SMI− increases, and 
necessarily SMI+ decreases. This effect is clearer in the interspecies 

TaBle 1 | regression coefficients of determination (R2) and significance 
levels p of the regressions for linear (a = 1) and quadratic (a = 2) fits to 
data plotted in Figures 3 and 4.

response 
variable

explanatory 
variable

a, for f(xa) R2 p

rat image data
SMI BV/TV

CF
EF

1
1
1

0.985
0.978
0.088

<0.001
<0.001

0.039

SMI+ BV/TV
CF
EF

2
2
1

0.943
0.968
0.268

<0.001
<0.001

0.001

SMI− BV/TV
CF
EF

2
2
1

0.995
0.989
0.003

<0.001
<0.001

0.300

EF BV/TV
CF

1
1

0.093
0.147

0.035
0.010

CF BV/TV 1 0.974 <0.001

interspecies image data

SMI BV/TV
CF
EF

1
1
1

0.249
0.555
0.096

<0.001
<0.001
<0.001

SMI+ BV/TV
CF
EF

1
2
1

<0.001
0.941
0.060

0.889
<0.001

0.001

SMI− BV/TV
CF
EF

2
2
1

0.793
0.761
0.043

<0.001
<0.001

0.004

EF (mammal) BV/TV
CF

1
1

<0.001
0.144

0.821
<0.001

EF (bird) BV/TV
CF

1
1

<0.001
0.070

0.537
0.074

CF (mammal)
CF (bird)

BV/TV
BV/TV

1
1

0.262
0.288

<0.001
0.001

data than the rat data, because the interspecies data have a much 
weaker relation between CF and BV/TV than the rat data so their 
SMI versus BV/TV and SMI versus concave fraction relations are 
much less collinear. It also relates to geometry because it is possible 
to vary BV/TV without changing concave fraction; for example, 
a bird to mammalian transition could be modeled by packing 
more parallel plates of the same thickness into the same volume, 
increasing BV/TV while concave fraction and SMI remain the 
same. Readers are invited to check their image data visually for 
contamination by concave surfaces using the 3D option in BoneJ’s 
SMI implementation (Figure 1).

The fits produced on the rat data are very much tighter 
than those on the interspecies data, perhaps reflecting a com-
mon underlying trabecular geometry that has varied only by 
thickening and thinning of elements after ovariectomy and sex 
steroid treatment. By contrast, trabecular bone geometry varies 
tremendously among species. Larger mammals, cheetah, and 
primates tend to form extensive intratrabecular osteonal systems 
(40) that create large areas of tightly concave surface, which can 
be associated with decreased SMI (22). Birds tend toward lower 
BV/TV (40) and more defined plates and fine rods than mammals 
(Figures 1A,B). The failure of SMI to detect a significant differ-
ence between these disparate classes of animals demonstrates 
that it cannot be relied upon to identify even the most major 
differences in trabecular architecture. The interspecies data help 
to capture a broad parameter space within which the range of 
possible SMI, BV/TV, concave fraction, and EF values may lie. 
The rat data illustrate the relationships between variables in a 
scenario with direct relevance to preclinical bone research.

FigUre 5 | simulated bone resorption of elephant trabeculae. 
Progressive erosion simulated bone resorption’s effect on the SMI versus  
BV/TV relationship. Although there is no fundamental difference in bone 
architecture, SMI increases from 0.51 at BV/TV of 0.44, to 2.20 at BV/TV of 
0.12 (R2 = 0.991, p < 0.001). Note the strong negative correlation between 
SMI− and BV/TV (R2 = 0.996, p < 0.001), relatively stable SMI+ (2.38–2.81; 
R2 = 0.621, p < 0.001), and the strong negative influence of SMI− on SMI.
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The very close correlation between BV/TV and SMI in our rat 
and simulation data could easily lead the naïve researcher to the 
common conclusion that decreases in BV/TV were accompanied 
by a dramatic shift from plate-like (SMI = 0) to rod-like (SMI > 2) 
trabeculae. However, it is clear when SMI is teased out into its 
positive and negative components, and after its relationship with 
concave fraction is exposed, that it is only the increasing contribu-
tion of SMI− that is responsible for the apparent linkage between 
SMI and BV/TV, and not a plate-to-rod change in bone geometry. 
Mean EF does vary slightly as a function of BV/TV, but not con-
sistently: the ovariectomized rats have a very slightly increased 
(more rod-like) EF, whereas all the other treatment groups have a 
very similar EF to the sham operated groups. The interspecies data 
show no relationship between EF and BV/TV and a much greater 
range of EF values than the rat data, reflective of the greater range 
of geometries present in the broad taxonomic sample. This is in 
clear contrast to the strong, negative, linear relationship between 
SMI and BV/TV, which does not relate to the real rod- or plate-like 
geometry of the bone structure. Increased apparent material prop-
erties associated with a rod-to-plate transition measured with SMI 
(10, 13, 17, 18, 26, 34, 54–57) can be explained by the close and 
artifactual relationship between SMI and BV/TV and the latter’s 
strong effect on volumetric material properties (12, 14, 33, 58, 59).

Ellipsoid factor lacks much bias or confounding relation-
ship with BV/TV and concave fraction, but is computationally 
much more expensive than SMI, taking hours to days to process 
1000 × 1000 × 1000 pixel images on a dual CPU, 24-core worksta-
tion (Dell T7600). Local identification of EF values allows deter-
mination of the structural source of EF summary values because 
individual strongly rod- or plate-like features can be visualized in 
the 2D stack slices or in a 3D rendering. Visualizing the spatial dis-
tribution of EF values increases confidence that the ellipsoid-fitting 
algorithm is correctly identifying geometries in the input image. 
The current implementation uses a field of 100 surface points that 
become relatively more sparse as the ellipsoid grows, which can 
mean that small features, particularly intratrabecular osteonal 
canals, can be ignored by the optimization algorithm. This has the 
effect of finding the dominant local structures but is not analytically 
correct. A version that uses scan-converted ellipses has shown in 
testing to be much more accurate but carries a significant process-
ing time penalty in its current state and is not ready for release.

Structure model index relies upon generation of a surface 
mesh from 3D pixel data, which is a step that can vary by meshing 
algorithm implementation or by user-controlled aspects such as 
averaging compared to feature size. Mesh generation is a variable 
that is difficult to control because the smoothing and downsam-
pling necessary to generate a smooth mesh might remove fine 
surface features. Even with downsampling and smoothing aliasing 
artifacts are visible as stripes in the surface. The relatively higher 
SMI values calculated by BoneJ than by CTAn may have resulted 
from a systematic difference in mesh creation. Mesh creation is 
a one-pass operation and so it should in principle scale linearly 
with increasing data size.

Alternative approaches to determining plate and rod archi-
tecture involve segmentation of the trabecular continuum into 
discrete elements, then determining the geometric qualities of 
each element separately (60, 61). This approach leads to binary 

classification of pixels into “rod” or “plate” with no recognition of 
transitional or junction regions. Recent work by the inventors of 
individual trabecula segmentation (ITS) indicates the ability 
of ITS-based finite element models to predict the anisotropic 
mechanical properties of human trabecular bone (62). An inde-
pendent group found no significant contribution of ITS-based 
metrics to apparent material properties, which were explained 
almost entirely by BV/TV with a small (~10%) but significant 
contribution from fabric anisotropy measured by mean intercept 
length (MIL) (59). The ITS determination of the fraction of bone 
that is “plate” (pBV/BV) is strongly negatively correlated with 
SMI (r = −0.81) (61). This is somewhat concerning because it 
means that high pBV/BV values (i.e., plate-dominated volumes 
according to ITS) relate to low and ostensibly plate-like SMI 
values, which our current analysis leads us to believe have little 
meaning. This relationship might occur due to an even stronger 
positive correlation between pBV/BV and BV/TV (r = 0.99), and 
the already established negative correlation between SMI and 
BV/TV. ITS-based finite elements analysis is able to predict the 
off-axis mechanical behavior more closely than predictions based 
on BV/TV alone (62), lending support to the concept that plate 
and rod geometry could have a real mechanical significance. To 
the best of our knowledge, the ITS software is restricted by patent 
and not readily available as binaries or source code for others to 
validate. In contrast, BoneJ is open source and free for anyone to 
download, use, modify and redistribute.

This study exposes a broader issue of misunderstanding 
analysis techniques and then presenting their results as mean-
ingful when they have failed to measure what they are generally 
accepted to measure. Implementation of methods by major ven-
dors and their widespread usage creates an environment where 
a consensus may form, in isolation from proper reference to the 
details of the algorithm’s design. This style of practice creates a 
danger of making false conclusions with important ramifications, 
such as the ability of pharmaceutical or exercise interventions to 
improve “bone quality.”
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