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Pituitary tumors, that origin from excessive proliferation of a specific subtype of pituitary 
cell, are mostly benign tumors, but may cause significant morbidity in affected patients, 
including visual and neurologic manifestations from mass-effect, or endocrine syndromes 
caused by hormone hypersecretion. Dopamine (DA) receptor DRD2 and somatostatin 
(SS) receptors (SSTRs) represent the main targets of pharmacological treatment of 
pituitary tumors since they mediate inhibitory effects on both hormone secretion and cell 
proliferation, and their expression is retained by most of these tumors. Although long-act-
ing DA and SS analogs are currently used in the treatment of prolactin (PRL)- and growth 
hormone (GH)-secreting pituitary tumors, respectively, clinical practice indicates a great 
variability in the frequency and entity of favorable responses. The molecular basis of the 
pharmacological resistance are still poorly understood, and several potential molecular 
mechanisms have been proposed, including defective expression or genetic alterations 
of DRD2 and SSTRs, or an impaired signal transduction. Recently, a role for cytoskeleton 
protein filamin A (FLNA) in DRD2 and SSTRs receptors expression and signaling in PRL- 
and GH-secreting tumors, respectively, has been demonstrated, first revealing a link 
between FLNA expression and responsiveness of pituitary tumors to pharmacological 
therapy. This review provides an overview of the known molecular events involved in SS 
and DA resistance, focusing on the role played by FLNA.
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iNTRODUCTiON

Pituitary tumors are generally benign tumors that represent 10–25% of all intracranial neoplasms, 
and may cause visual field deficits and neurologic manifestations from mass effect, and/or endocrine 
syndromes caused by excessive pituitary hormone secretion, signs and symptoms depending from 
specific pituitary cell subtype origin of the adenoma. Prolactin (PRL)-secreting tumors are the most 
common of all functional pituitary tumors and cause amenorrhea, infertility, and galactorrhea in 
females, and impotence or infertility in males. Excessive secretion of growth hormone (GH) by 
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FiGURe 1 | Schematic representation of the possible molecular mechanisms involved in drug resistance of pituitary tumors. DA-resistance in 
PRL-secreting tumors might be related to a defective expression of DRD2 or to an altered expression of specific splice variants. Genetic alterations of DRD2 or 
possible alterations in the molecules involved in receptor internalization or signal transduction culminating in the inhibitory action on PRL secretion and cell 
proliferation might also be involved. SS-resistance of GH-secreting tumors, besides to reduced SSTR2 and/or SSTR5 expression, rarely associated with mutations 
of SSTR2 and SSTR5 genes, but it has been correlated with the expression of truncated variatns of SSTR5 (SST5TMD4). Asterisk indicates the only mutational 
change found in the SSTR5 gene (R240W, in the third intracellular loop). Alterations in signal transduction may include G proteins, AIP, or arrestins.
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tumorigenic somatotroph cells is the cause of gigantism during 
childhood and acromegaly in adults, with significant morbidity 
due to clinical complications involving cardiovascular, respiratory, 
and metabolic systems. Adenocorticotroph hormone (ACTH)-
secreting tumors cause Cushing’s disease (hypercortisolism), 
and TSH-secreting tumors present with signs and symptoms of 
hyperthyroidism. Non-functioning pituitary tumors (NFPAs) 
are hormonally inactive, and patients with this tumor type often 
present with neurological symptoms due to the mass effect.

Pituitary tumors frequently preserve responsiveness to hypo-
physiotropic factors, including dopamine (DA) and somatostatin 
(SS), ubiquitous peptides that physiologically inhibit hormone 
secretion and cell proliferation at both the pituitary and the 
periphery levels, and thus are considered as molecules with 
therapeutical potential (1).

The inhibitory actions of DA in pituitary tumors are medi-
ated by DA receptor subtype 2 (DRD2) [reviewed in Ref. (2)] 
that inhibits both synthesis and secretion of PRL, by coupling 
with inhibitory heterotrimeric G proteins, Gi and Go, that in turn 
inhibit adenylyl cyclase and calcium channels. Moreover, DRD2 
exerts antiproliferative effects through regulation of ERK1/2 
activity (Figure 1). An alternative splicing generates two isoforms 
of this receptor, D2S (short) and D2L (long), possessing addi-
tional 29 residues in the third intracellular loop. DRD2 agonists, 
among which cabergoline is the most effective and best tolerated, 
are first-line therapy for prolactinomas as they are effective in 
controlling clinical symptoms, PRL levels, and tumor volume (3) 

and are used to a lesser extent in the treatment of ACTH-secreting 
tumors (4) and NFPAs (5).

Somatostatin binds to a family of G-proteins coupled recep-
tors (SSTR1-5), among which subtypes 2 and 5 are expressed at 
high density in most GH-secreting pituitary tumors (6, 7). By 
coupling with multiple PTX-sensitive G proteins, SSTRs inhibit 
adenylyl cyclase activity and some subtypes reduce calcium entry 
by modulating L-type Ca2+ and K+ channels, all these events being 
involved in the reduction of hormone secretion [reviewed in Ref. 
(8)] (Figure 1). Both SSTR2 and SSTR5 mediate the antiprolifera-
tive effects of SS by tyrosine phosphatase activation and ERK1/2 
phosphorylation inhibition, respectively, whereas only SSTR2 
and SST3 subtypes mediate apoptotic effects (9–12). SS analogs, 
such as long-acting octreotide and lanreotide, are currently used 
in the treatment of pituitary tumors, particularly GH- and TSH-
secreting tumors (13, 14).

DRUG ReSiSTANCe OF PiTUiTARY 
TUMORS: MOLeCULAR MeCHANiSMS

Despite the demonstrated inhibitory effects on cell proliferation 
and hormone secretion of DA and SS analogs, a subset of patients 
(10% of patients with prolactinoma and 30% of acromegalic 
patients) are resistant to cabergoline and octreotide, respectively, 
while the large majority of patients with NFPA and ACTH-
secreting pituitary tumors are unresponsive to both drugs (15–17).
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Pharmacological resistance of PRL-secreting tumors is gener-
ally defined as failure to normalize PRL levels, and to achieve 
tumor size reduction of at least 50%, although this definition is 
still controversial and a variety of definitions of DA-resistance 
have been used (15, 18).

As far as acromegalic patients were concerned, definition 
of pharmacological resistance to SS analogs includes both bio-
chemical remission (normal IGF1, random GH <1 μg/l, and a 
nadir GH after 75-g oral glucose tolerance test <0.4  μg/l) and 
tumor shrinkage (<20% of baseline volume) (17, 19).

Drug resistance of pituitary tumors might play a major 
impact on mortality, morbility, and quality of life. Moreover, 
prolactinomas resistance to cabergoline has been associated with 
invasive and more aggressive tumors, and with the increased risk 
to develop a carcinoma (15, 20).

Intensive investigations in the past years have discovered 
different molecular alterations possibly involved in this variable 
responsiveness to DA and SS, including defective expression 
or genetic alterations of DRD2 and SSTRs, alterations in their 
signaling pathways, and cytoskeleton proteins involvement 
(Figure 1) but much remains to be clarified about this complex 
phenomenon.

Reduction of SSTRs and DRD2 expression 
in Resistant Tumors
Generally, a reduced expression of functional DA and SS recep-
tors in pituitary tumors has been associated with a poor response.

In particular, this event has been documented in prolac-
tinomas, where a reduced density of DRD2 has been found in 
DA-resistant tumors vs. DA-sensitive tumors (21, 22). Lower 
expression of a specific isoform of DRD2, D2S (23, 24), or D2L 
(25) has also been documented in resistant vs. sensitive tumors.

More controversial is the association of SS resistance with 
the reduction of SSTRs expression, since data from literature 
suggest on the one hand that some GH-secreting tumors are 
resistant to therapy despite high SSTR2 expression, and on the 
other hand that the in vivo GH suppression and tumor shrinkage 
induced by SS analogs correlates with SSTR2 mRNA and protein 
levels (26–34).

Anyway, the molecular events responsible for reduced DRD2 
and SSTRs expression are still largely unknown. Both genetic 
alterations and posttranslational mechanisms have been exam-
ined, and recently a key role for cytoskeleton proteins-mediated 
regulation has emerged, as discussed below.

SSTRs and DRD2 Genetic Alterations
Published studies searching for genetic alterations of DRD2 
and SSTRs have demonstrated that mutations in their coding 
sequence and/or loss of heterozigosity (LOH) in loci where they 
are located are very rare events.

In particular, no mutation of the DRD2 gene has been found 
in 79 prolactinomas (35), and a recently whole-exome sequenc-
ing on bromocriptine-resistant and -responsive prolactinomas 
demonstrated no sequence variants in DRD2 gene (36, 37). By 
genotyping about 200 patients with prolactinomas and controls 
for common DRD2 polymorphisms, DA-resistance has been 

correlated only to a common polymorphism, a synonymous 
cytosine to thymine transition at position 957, a change that has 
been associated with susceptibility to migraine and schizophre-
nia, and that might alter the predicted mRNA folding, leading to 
a decrease in mRNA stability and translation (38).

Similarly to DRD2, no mutations of SSTR2 and SSTR5 genes 
are usually found in resistant patients (39, 40). In fact, the only 
mutational change so far reported involving a SSTR is the ger-
mline R240W mutation in the SSTR5 gene, that was found in one 
acromegalic patient resistant to octreotide (41).

This missense mutation is located in the third intracellular 
loop of SST5, a critical region for G protein coupling, and func-
tional studies have demonstrated that mutant R240W receptor 
failed to mediate the inhibition of GH release and cell prolifera-
tion induced by SSTR5 agonist, although it retained the ability to 
inhibit intracellular cAMP levels, as the result of a loss of coupling 
with GoA protein but not with the other G proteins activated by 
wild type SSTR5, e.g., Gi1, i2, i3 and GoB (11, 42).

Polymorphic variants in SSTR2 gene seem to have no role in 
determining SS resistance of GH-secreting tumors. Two single 
nucleotide substitutions detected in the SSTR2 promoter sequence 
at positions −83 and −57 from the major transcription initiation 
site were not associated with differences in clinical characteristics, 
hormonal profile, or responsiveness to SS (43). Regarding SSTR5 
gene, it has been found that T allele of rs34037914 single nucleo-
tide polymorphism predisposes to resistance to antiproliferative 
effects of SS, increased aggressiveness, and post-surgical reoccur-
rence of pituitary tumors (44). However, LOH at the SSTR5 gene 
locus, located at chromosome 16p13.3, is a rare phenomenon, 
occurring in about 10% of pituitary tumors (45) and no muta-
tional change in the retained allele was found in the GH-secreting 
tumor with LOH at the SSTR5 locus, LOH resulting associated 
with a normal responsiveness to octreotide (45).

Finally, the expression of a truncated variant of SSTR5 
(SST5TMD4) that shows a preferential intracellular localization 
but is able to mediate signal transduction (46) has been found 
to correlate with a reduced ability of octreotide at normalizing 
hormone secretion in poorly responsive tumors in vivo (47) and 
with aggressive features, including SS-resistance and tumor inva-
siveness (48, 49). High levels of SST5TMD4 are correlated with 
poor responsiveness to SS analogs even in the presence of a high 
expression of SSTR2 (49), suggesting a dominant-negative effect 
of this truncated isoform of SSTR5 on SSTR2-mediated signaling.

Post-Receptor Alterations
Beside alterations in SS and DA receptors, defects in the down-
stream signaling pathways activated by these receptors might be 
involved in the pharmacological resistance of pituitary tumors. 
The hypothesis of post-receptor alterations involved in resist-
ance to SS analogs is supported by the dissociation between the 
antisecretory and antiproliferative effects of SS analogs observed 
in vivo in some acromegalic patients and in in vitro experiments 
in tumoral somatotroph cells where SS analogs exert antiprolif-
erative effects without inhibition of GH secretion (50–52). Since 
SSTRs couple to different members of the inhibitory G proteins 
family to inhibit hormone secretion and cells proliferation, it 
is possible to hypothesize that alteration in the coupling with a 
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specific G protein, or in a specific downstream effector, could 
determine the lack of activation of a specific pathway without 
affecting the other signaling cascades. In this regard, it has been 
shown that SSTR5 exerts antiproliferative and antisecretory 
effects in somatotroph by coupling with the inhibitory G protein 
GoA, independently of cAMP reduction, suggesting a dissociation 
between these pathways (11, 42).

Few data are available about a possible role of G proteins 
alterations in pituitary tumor resistance to pharmacologic treat-
ment with DA or SS analogs. A reduction in Gi2 protein, but not 
Go and Gs, expression has been described in cabergoline-resistant 
with respect to sensitive prolactinomas (53). Although a low 
expression of Gi1–3 proteins has been reported in GH-secreting 
tumors (54), a possible correlation with SS responsiveness has 
not been analyzed. The alpha subunit of stimulatory G proteins 
deserves particular attention, since somatic activating mutations 
in its gene (GNAS, also called gsp oncogene) are found in 30–40% 
of GH-secreting pituitary tumors. It is worth noting that gsp-
positive tumors are characterized by an increased responsivity to 
treatment with SS analogs, a feature up to now unexplained since 
no increase of SS receptors have been found in these tumors (40, 
55–57).

Alterations in SSTRs signal transduction might be the cause 
of typical octreotide-resistance observed in acromegalic patients 
bearing germline mutations in aryl hydrocarbon receptor inter-
acting protein (AIP) gene (58) or expressing low levels of AIP, 
even in the absence of mutations. AIP is a tumor-suppressor 
gene, which has been shown to induce tumor shrinkage via ZAC1 
(59). Moreover, it has been shown that AIP inactivation leads to 
pituitary tumorigenesis through defective Gi signaling (60). It is 
of interest to note that low AIP expression does not associate with 
resistance to pasireotide (61), the SS analog with the highest affin-
ity for SSTR5, suggesting that AIP is not involved in the signal 
transduction of this specific SSTR subtype.

Genetic analysis of AIP in 50 non-familial acromegalic 
patients resistant to treatment with SS analogs revealed a low, 
but non-negligible, prevalence of AIP germline mutations (62), 
suggesting a role for AIP alterations in SS-resistance of sporadic 
GH-secreting adenomas.

Fougner et al. reported an association of Raf kinase inhibitory 
protein (RKIP) expression with responsiveness of GH-secreting 
tumors to SS analogs. RKIP regulates Raf1 kinase activity, and 
consequently MAPK signaling, a pathway involved in mediating 
the antiproliferative effects of SS, and furthermore inhibits G 
protein receptor kinase 2, possibly affecting SSTRs internaliza-
tion and degradation (63).

Beside activation of coupled G proteins, GPCRs are known 
to directly interact through their intracellular loops with cyto-
plasmic and surface proteins involved in GPCRs stabilization, 
desensitization, internalization, and signal transduction. Among 
these proteins, beta-arrestin 1 and 2 are scaffold proteins involved 
both in desensitization and signal transduction of several GPCRs, 
including SSTRs and DRD2 (64–66). Low expression of β-arrestin 
1, but not β-arrestin 2, in GH- and PRL-secreting pituitary tumors 
correlates with a reduced recycling rate of SSTR2 and better SS 
analogs response in terms of GH suppression, both in vitro and 
in vivo (67).

A lesser amount of data is available on possible DRD2 signal 
transduction alterations. TGF-β/Smad pathway, that may in part 
mediate the antiproliferative effects of DA, was found down-
regulated in DA-resistant prolactinomas compared to normal 
human anterior pituitaries (68). A recent whole-exome sequenc-
ing analysis of six bromocriptine-resistant and six responsive 
prolactinomas, in addition to exclude genetic variants of DRD2 
gene, revealed sequence variants associated with 10 genes selected 
as potentially involved in resistance, among which PRB3 (36) and 
PRDM2 (37) were lower in resistant prolactinomas than in the 
responsive tumors, but the mechanisms involved are unknown. 
Finally, recent studies have identified a specific miRNA expres-
sion profile associated with bromocriptine-resistant prolac-
tinoma. Among the differentially expressed miRNAs, mir-93 
directly affected p21 expression in MMQ cells by targeting the 
3′-UTR (69).

NOveL MeCHANiSM iN DRUG 
ReSiSTANCe OF PiTUiTARY TUMORS: A 
ROLe FOR CYTOSKeLeTON

Recently, cytoskeleton has emerged as novel player implicated 
in the complex mechanisms of pharmacological resistance of 
pituitary tumors to DA and SS.

Cell cytoskeleton not only plays a fundamental role in cell 
morphology maintenance, cell migration and adhesion, cell 
division, and cytoplasmic organelles localization and movement 
but it also has a role in extracellular signal transduction and in 
regulation of the activity of several receptors. The three main 
structural components of the cytoskeleton are microtubules, 
intermediate filaments, and microfilaments that originate from 
the polymerization of different monomers. These polymers 
that are characterized by structural and functional differences 
undergo continual turnover and rearrangement and specifically 
bind different families of partner proteins. Microfilaments, the 
thinnest of these filaments, are involved in cell morphology and 
motility and consist of actin filaments (F-actin) that are polymer-
ized from monomeric globular actin (G-actin). Many families of 
actin-binding proteins that share an actin binding domain are 
involved in the regulation of polymerization/depolymerization 
processes and in crosslinking F-actin in bundles and networks. 
Among these, filamins (FLN) are actin crosslinking proteins that 
not only form orthogonal networks of F-actin but are also scaffold 
proteins able to bind different partner proteins.

Filamin A Structure and Functions
The family of filamins consists of three homologous high-
molecular weight proteins, filamin A, B, and C (FLNA, FLNB, 
and FLNC) that are encoded by different genes located on chro-
mosome X, 3 and 7, respectively. These three isoforms of FLN in 
mammals show a strong homology in the entire coding sequences 
and possess highly conserved genomic organization (70).

Specifically, human FLNA, mapping to Xq28, is the first actin 
filament cross-linking protein identified in non-muscle cells (71) 
and is the most abundant filamin isoform in adults. FLNA as well 
as FLNB are ubiquitously expressed, contrary to FLNC, whose 
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FiGURe 2 | The figure schematically represents FLNA structure and 
cellular functions. The actin-binding domain (ABD, blue circle) is located at 
the N-terminus of each monomer of FLNA. The circles represent the Ig-like 
repeats of FLNA, in particular red circles represent repeats 19–20, involved in 
the interaction with DRD2 and SSTR2, and yellow circles represent the 
repeats 21–24, known as scaffold region for signal transduction molecules. 
The repeat 24 is the self-association domain that allows homodimer 
formation. FLNA crosslinks actin filaments, binds different transmembrane 
proteins, anchoring them to the actin cytoskeleton, and interacts with a 
variety of proteins involved in signal transduction.
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expression is restricted to skeletal and cardiac muscle. Several 
studies suggest that FLNs are essential for normal human devel-
opment. Indeed, mutations in the respective genes cause a wide 
range of developmental malformations of the brain, bone, and 
heart with moderate to lethal consequences (72). In particular, 
FLNA mutations cause periventricular nodular heterotopia, 
a brain malformation due to abnormal neuronal migration, in 
which a subset of neurons fails to migrate into the developing cer-
ebral cortex (73) or a wide spectrum of congenital malformations, 
such as otopalotodigital syndrome, frontometaphyseal dysplasia, 
and Melnick Needles syndrome (74).

The main role of FLNA, deriving from its ability to bind 
actin and omodimerize, is to stabilize F-actin network in a 
three-dimensional structure, but its functions are not limited to 
a structural role. Indeed, FLNA can bind many different partner 
proteins, including transmembrane proteins, such as several 
GPCRs, integrins, and ion channels, allowing their anchorage to 
actin cytoskeleton (75), but also intracellular signaling molecules, 
kinases, and transcription factors [revised in Ref. (76)], playing as 
important scaffold for signal transduction.

All these interactions are regulated by FLNA phosphorylation, 
proteolysis, mechanical forces, competition, and multimerization 
of partners.

These multiple functions of FLNA derive from its unique 
structure, schematically represented in Figure  2. FLNA is 
composed of two subunits of 280  kDa each that self-assemble, 
each monomer possesses an actin-binding domain (ABD) at the 
N-terminus, that consists of two calponin homology domains, 
followed by 24 immunoglobulin (Ig)-like repeats of about 96 
amino acid residues. Two calpain-sensitive hinge regions (H1 and 
H2) separate the 24 repeats in a rod-1 domain (repeats 1–15), 
rod-2 domain (repeats 16–23), and repeat 24. A secondary ABD 
of lower affinity is located in the rod-1 domain, whereas rod-2 is 
involved in the interaction with partner proteins. The repeat 24 is 
the self-association domain that mediates FLNA homodimeriza-
tion, allowing the formation of V-shaped flexible structures that 
results in the perpendicular cross-linking of actin filaments.

The diversity of the FLN family is increased by alternative 
splicing of FLN mRNA. Alternative poly(A) signals are employed 
and in some variants, there are internal deletions in some of 
the domains. In particular, previous studies have reported and 
alternative splicing of sequences encoding a region of eight 
amino acids in repeat 15 of FLNA, and an internal deletion of 
41 amino acids between repeats 19 and 20 (residues 2127–2167) 
that identify FLNA variant-1 (77) that is widely expressed at low 
levels (70).

FLNA involvement in PRL-Secreting 
Pituitary Tumors Resistance to DRD2 
Agonists
The interaction of FLNA with DRD2 was first demonstrated 
by Li and colleagues by a yeast two-hybrid screen and protein 
binding assays (78). Interestingly, this binding increased coupling 
efficiency of DRD2 to adenylate cyclase and plays a role in cell 
surface receptor clustering. Almost simultaneously, another study 
using the third intracellular loop of the DRD2 as bait in a yeast 

two-hybrid approach to screen a human brain cDNA library, 
confirmed a specific DRD2/FLNA association, better defining 
the specific regions of FLNA (repeat 19) and DRD2 (aminoacids 
211–241 in the N-terminal region of the third intracellular loop) 
involved (79). FLNA and DRD2 colocalized in cell cultures of 
rat striatum. The authors found that DRD2 was predominantly 
intracellular in M2 cells, a human melanoma cell line does not 
express FLNA, whereas it localized at the plasma membrane in 
A7 cells, the same line stably transfected with FLNA, suggesting 
that FLNA is required for the cell surface localization of DRD2, as 
also demonstrated by using a dominant negative truncated form 
of FLNA (repeats 18–19, containing the DRD2, but not the actin, 
binding domain) (80).

Similar effects of FLNA on DRD2 regulation were also found 
in PRL-secreting pituitary tumors (Figure 3). First, it has been 
shown that in DA-resistant tumors the reduction of DRD2, pre-
viously associated with resistance, is accompanied by a low level 
of FLNA (81). In vitro experiments starting from this experi-
mental observation demonstrated that alterations of FLNA 
levels in primary cultured prolactinoma cells by gene silencing 
or overexpression resulted in corresponding modifications of 
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FiGURe 3 | FLNA is required for DRD2 and SSTR2 expression and signal transduction. FLNA, schematically represented in yellow, bind DRD2 (third 
intracellular loop) and SSTR2 (first intracellular loop). In PRL-secreting tumors (left), FLNA binding is crucial for the correct localization at plasma membrane and 
expression of DRD2. In GH-secreting tumors (right), SSTR2 does not require FLNA for membrane localization, but in the absence of FLNA, SSTR2 expression is 
downregulated after prolonged agonist stimulation. Moreover, FLNA is required for both DRD2 and SSTR2 intracellular signaling leading to inhibitory effects on 
hormone secretion and cell proliferation.

December 2015 | Volume 6 | Article 1876

Peverelli et al. Dopamine and Somatostatin Resistance of Pituitary Tumors

Frontiers in Endocrinology | www.frontiersin.org

DRD2 levels, demonstrating that these two events are causally 
related. Furthermore, reduction of PRL release and ERK1/2 
phosphorylation mediated by DRD2 agonist were impaired 
after FLNA silencing, whereas DA-resistant prolactinomas 
lacking FLNA recovered responsiveness when transfected with 
FLNA (81).

Experiments in rat MMQ cells, a cell model of prolactinoma 
endogenously expressing functional DRD2 and FLNA show that 
FLNA is not only required for DRD2 targeting to the cell mem-
brane but also protects DRD2 against lysosomal degradation, 
suggesting a role for FLNA in the control of DRD2 fate toward 
recycling processes or lysosomal degradation (81). Since FLNA 
directly interacts with beta arrestins (82) that are involved in 
DRD2 trafficking (66), it is possible to hypothesize the formation 
of a complex receptor-FLNA–arrestin involved in the regulation 
of DRD2 stability. These data demonstrated a protective effect of 
FLNA from receptor instability, as also demonstrated for other 
receptors, including calcium-sensing receptor, calcitonin recep-
tor, cystic fibrosis transmembrane conductance regulator, and the 
high-affinity IgG receptor FcgammaRI (83–86).

Beside a structural role in anchoring DRD2 to actin cytoskel-
eton and regulating receptor localization and stability, FLNA 
plays an additional functional role as scaffold for signaling 
molecules involved in DRD2 signal transduction. Indeed, since 
the pituitary has a substantial DRD2 reserve for PRL inhibition, 
and PRL response reaches the plateau at about 40% receptor 
occupancy in rat pituitary cells (87), the 60% reduction of DRD2 
levels measured in prolactinomas and MMQ cells after FLNA 
knockdown might not entirely account for the loss of D2R effects 
on PRL release and cell proliferation (81).

Since FLNA is crucial for both DRD2 expression and signaling 
in lactotrophs, the loss of FLNA expression may be one of the 
mechanisms involved in loss of DA responsiveness previously 
documented in human prolactinomas.

Further studies are required to clarify the molecular events 
underlying FLNA reduced expression in resistant tumors. To 
date, no alterations in the FLNA gene CpG island with the highest 
probability to have regulatory functions have been found, exclud-
ing an epigenetic silencing (81).

FLNA Regulates SSTR2 expression and 
Signaling in GH-Secreting Pituitary Tumors
In addition to DRD2, FLNA seems to have a critical role also 
in the regulation of SSTR2, with important implications for SS 
responsiveness in acromegalic patients.

A direct interaction of FLNA with SSTR2 has been first 
demonstrated by surface plasmon resonance (88). Specifically, 
this interaction involve SSTR2 first intracellular loop and FLNA 
repeats 19–20 and plays a role in SSTR2 stabilization at the cell 
membrane. Contrary to what observed for DRD2, SSTR2 was 
correctly targeted to the plasma membrane in M2 cells lacking 
FLNA, but after agonist stimulation SSTR2 internalization rate 
in M2 cells is increased with respect to A7 cells. The authors also 
found that FLNA is required for SSTR2 mediated inhibition of 
cell survival, and the molecular mechanism involves a competi-
tion of FLNA with p85, the regulatory subunit of PI3K, for direct 
binding to SSTR2. Ligand-stimulated FLNA binding results in 
the disruption of the SSTR2-p85 complex and the subsequent 
inhibition of PI3K (88).
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The importance of FLNA in SSTR2 regulation in GH-secreting 
pituitary tumors has recently been examined (89) (Figure 3). In 
contrast to DRD2 in prolactinomas, the expression of FLNA in 
GH-secreting tumors did not correlate with SSTR2 levels, and 
FLNA silencing in human tumoral cells did not affect SSTR2 
expression and membrane localization. However, by using differ-
ent FLNA dominant negative mutants that selectively abolished 
the ability of FLNA to interact with SST2 (FLNA repeats 19–20) 
or to function as scaffold for partner proteins (FLNA 21–24), the 
authors demonstrated that FLNA plays both a structural role, by 
stabilizing SST2 expression after prolonged stimulation with a 
specific agonist, and a functional role, acting as scaffold protein 
for molecules involved in signal transduction.

Using as a model pituitary GH-secreting rat GH3 cells, the 
authors showed that disrupting the FLNA/SSTR2 interaction, 
receptor stability after prolonged agonist stimulation was strongly 
compromised. The mechanism probably involve an effect of 
FLNA in regulating lysosomal degradation of SSTR2, since SST2 
ligand-induced down-regulation was abolished when lysosomal 
degradation was prevented. An effect of FLNA in regulating 
SSTR2 internalization rate was also reported (88).

Furthermore, in vitro experiments in tumoral somatotrophs 
demonstrated that FLNA is required for SSTR2-induced reduc-
tion of cyclin D1 and caspase3/7 activation, suggesting a crucial 
role for FLNA in mediating antiproliferative and proapoptotic 
effects of SSTR2. The observation that FLNA 21–24 which does 
not abolish the interaction of SSTR2 with endogenous FLNA, was 
able to block the apototic effects of SST2 and the SST2-mediated 
ERK1/2 inhibition suggests that the FLNA scaffold properties are 
required for the assembly of signal transduction complexes.

Overall, these data support a new role for FLNA in the 
responsiveness of patients with GH-secreting pituitary tumors to 
pharmacological treatment with SS analogs. Low levels of FLNA, 
causing loss of coupling of SSTR2 with downstream signal trans-
duction molecules, might explain the resistance to SS analogs in 
GH-secreting pituitary tumors even if in the presence of SSTR2.

It is of interest to note that FLNA splice variant-1, that was 
found widely expressed at low levels, lacks 41 amino acids between 
repeats 19 and 20, the region involved in the interaction both with 
DRD2 and SST2. NMR spectroscopy analysis has revealed that 
in the splice variant the repeat 19 is intrinsically unfolded (90), 
with consequent biological effect. FLNA splice variant-1 showed 
an increased binding to integrins with respect to wild-type non-
spliced FLNA, suggesting that this alternative splicing might 
function as a regulatory mechanism for the binding of partner 
proteins to FLNA, with possible implications in pituitary tumors 
responsiveness to SS/DA analogs.

Possible Role of FLNA in Pituitary Tumor 
Aggressiveness and invasiveness
Beside its role in GPCR regulation, FLNA is involved in the 
control of cell motility. Indeed, FLNA is recruited to membrane 
protrusions of migrating cells where it functions as scaffold for 
proteins involved in cell migration and adhesion.

The observation that in periventricular heterotopia FLNA 
null mutations caused impaired neuronal migration within 

the cerebral cortex (73), together with experimental evidences 
obtained in FLNA-deficient M2 cells that are not able to migrate 
(91), suggest that FLNA is crucial in promoting cell migration. 
In contrast, it has been shown that overexpression of FLNA 
inhibited cell motility (92) and FLNA knockdown promoted 
cell migration, invasion, and metastasis (93, 94), leading to the 
conclusion that FLNA positive or negative effect on cell motil-
ity depend on the cell type and on a balanced level of FLNA 
expression.

Pituitary tumors are generally benign, but frequently present 
local invasiveness that strongly reduces neurosurgery success. 
Since DA-resistance of prolactinomas has been associated with 
increased invasiveness and aggressiveness of these tumors (15, 
20), and reduced FLNA levels correlate with resistance to dopa-
minergic drugs, it is possible to hypothesize that low levels of 
FLNA might be involved in pituitary tumors invasive behavior.

Up to now, no data are present in literature about the effects of 
FLNA expression levels on pituitary cell migration and invasion, 
and further studies are required to test a possible contribution 
of FLNA alterations in the invasiveness, aggressive behavior, and 
recurrences of pituitary tumors.

CONCLUSiON

Molecular mechanisms underlying the resistance of pituitary 
tumor to pharmacological treatment with DA and SS analogs 
might involve different steps that from the receptor activation by 
agonist lead to the final biological responses in terms of hormone 
secretion inhibition as well as tumor shrinkage. In the absence 
of genetic defect in SSTR2, SSTR5, and DRD2 genes, alterations 
have been reported in molecules involved in the intracellular 
signal transduction pathway specific of these receptors, and 
in the regulation of receptors expression. Growing evidence 
revealed that DRD2 and SSTR2 expression, localization, and 
signaling are regulated by interaction with cytoskeleton protein 
FLNA, once again emphasizing the multiple roles of cytoskel-
eton in physiological cell functions. Future works searching for 
genetic and post-translational modifications affecting FLNA 
expression and function, as well as for a possible involvement of 
other cytoskeleton proteins, might help to clarify the complex 
mechanisms involved in pituitary tumors pharmacological 
resistance.
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