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Social behaviors are key components of reproduction, because they are essential for 
successful fertilization. Social behaviors, such as courtship, mating, and aggression, 
are strongly associated with sex steroids, such as testosterone, estradiol, and proges-
terone. Secretion of sex steroids from the gonads is regulated by the hypothalamus–
pituitary–gonadal (HPG) axis in vertebrates. Gonadotropin-releasing hormone (GnRH) 
is a pivotal hypothalamic neuropeptide that stimulates gonadotropin release from the 
pituitary. In recent years, the role of neuropeptides containing the C-terminal Arg–Phe–
NH2 (RFamide peptides) has been emphasized in vertebrate reproduction. In particular, 
two key RFamide peptides, kisspeptin and gonadotropin-inhibitory hormone (GnIH), 
emerged as critical accelerator and suppressor of gonadotropin secretion. Kisspeptin 
stimulates GnRH release by directly acting on GnRH neurons, whereas GnIH inhibits 
gonadotropin release by inhibiting kisspeptin, GnRH neurons, or pituitary gonadotropes. 
These neuropeptides can regulate social behavior by regulating the HPG axis. However, 
distribution of neuronal fibers of GnRH, kisspeptin, and GnIH neurons is not limited within 
the hypothalamus, and the existence of extrahypothalamic neuronal fibers suggests 
direct control of social behavior within the brain. It has traditionally been shown that 
central administration of GnRH can stimulate female sexual behavior in rats. Recently, 
it was shown that Kiss1, one of the paralogs of kisspeptin peptide family, regulates fear 
responses in zebrafish and GnIH inhibits sociosexual behavior in birds. Here, we high-
light recent findings regarding the role of GnRH, kisspeptin, and GnIH in the regulation 
of social behaviors in fish, birds, and mammals and discuss their importance in future 
biological and biomedical research.
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iNtrODUctiON

Reproduction is an essential process in vertebrates, which consists of various aspects of physiologi-
cal events throughout the lifespan, including fertilization, development, puberty, social and sexual 
behaviors, maturation, and aging. Reproductive functions are controlled by the hypothalamus–pitui-
tary–gonadal (HPG) axis. The hypothalamus, a central brain region that is responsible for the control 
of reproduction, regulates pituitary hormone synthesis and release. Gonadotropin-releasing hormone 
(GnRH) or luteinizing hormone (LH)-releasing hormone is a pivotal hypothalamic neuropeptide 
that regulates vertebrate reproduction (1). In tetrapods, GnRH neurons are located in the preoptic–
hypothalamic region and project to the median eminence to regulate gonadotropin synthesis and 
release from the anterior pituitary gland, which stimulates sex steroid secretion and gametogenesis. 
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tABLe 1 | representative amino acid sequences of GnrH, kisspeptin, and GniH peptide families in mammals, birds, and teleost fishes.

vertebrates Peptide family Peptide name Amino acid sequence reference

Mammals GnRH Mammalian GnRH pQHWSYGLRPGamide Matsuo et al. (11) and Burgus et al. (12)
Guinea pig GnRH pQYWSYGVRPGamide Jimenez-Liñan et al. (13)

Kisspeptin Human KISS YNWNSFGLRFamide Lee et al. (31)
Mouse Kiss YNWNSFGLRYamide Stafford et al. (32)

GnIH Human RFRP1 MPHSFANLPLRFamide Ubuka et al. (33)
Human RFRP3 VPNLPQRFamide Ubuka et al. (33)

Birds GnRH Chicken GnRH1 pQHWSYGLQPGamide King and Millar (14) and Miyamoto et al. (15)
Chicken GnRH2 pQHWSHGWYPGamide Miyamoto et al. (20)

GnIH Quail GnIH SIKPSAYLPLRFamide Tsutsui et al. (34)
Quail GnIH-RP2 SSIQSSLLNLPQRFamide Satake et al. (35)

Teleost fishes GnRH Sea bream GnRH1 pQHWSYGLSPGamide Powell et al. (16)
Salmon GnRH3 pQHWSYGWLPGamide Sherwood et al. (22)

Kisspeptin Zebrafish Kiss1 YNLNSFGLRYamide Biran et al. (36)
Zebrafish Kiss2 FNYNPFGLRFamide Kitahashi et al. (37)

GnIH Goldfish LPXRFa3 SGTGLSATLPQRFamide Sawada et al. (38)
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It was also classically shown that central administration of GnRH 
can stimulate female sexual behavior in rats (2, 3).

In recent years, the role of neuropeptides containing the 
C-terminal Arg–Phe–NH2 (RFamide peptides) has been 
emphasized in vertebrate reproduction. In particular, two key 
RFamide peptides: kisspeptin and gonadotropin-inhibitory hor-
mone [(GnIH) also known as LPXRFamide peptides] emerged 
as critical regulators (accelerator and suppressor, respectively) 
of vertebrate reproduction. These neuropeptides have been 
identified in a variety of species, including non-mammalian ver-
tebrates, and shown to have evolutionarily conserved functions 
(4). Although knowledge about the role of RFamide peptides in 
social behaviors is still limited, recent studies have shown that 
Kiss1, one of the paralogs of kisspeptin peptide family, regulates 
fear responses in zebrafish (5), and GnIH inhibits sociosexual 
behavior in birds (6–9).

Social behaviors are key components of reproductive functions, 
because they are essential for successful fertilization. As social 
behaviors, such as courtship, mating, and aggression, are strongly 
associated with sex steroids, such as testosterone, estradiol, and 
progesterone (10), hypothalamic neuropeptides can regulate 
social behaviors by regulating the HPG axis. However, neuronal 
fibers containing neuropeptides that regulate the HPG axis and 
their receptors are widely distributed outside of the hypothala-
mus, including limbic brain structures in the brain. Investigation 
of the neural mechanisms and functions of neuropeptides that 
regulate gonadotropin secretion in the regulation of social behav-
ior has a potential to uncover fundamental regulatory mechanism 
of social behavior. Therefore, we highlight traditional and recent 
findings regarding the function of GnRH, kisspeptin, and GnIH 
neuropeptides in the regulation of social behaviors in fish, birds, 
and mammals and discuss their importance for further biological 
and biomedical researches in this article.

GONADOtrOPiN-reLeAsiNG HOrMONe

In the early 1970s, Schally’s and Guillemin’s groups independently 
reported the amino acid sequence of mammalian GnRH peptide 

that was extracted from pig and sheep hypothalami, respectively 
(11, 12) (Table 1). Orthologous peptides to mammalian GnRH, 
categorized as GnRH1, which have few substitutions in the 
amino acid sequence, have been identified in other vertebrates, 
such as guinea pig (13), chicken (14, 15), and sea bream (16) 
(Table 1). It was shown that the expression of GnRH1 precursor 
mRNA is developmentally and seasonally regulated in songbirds 
(17, 18). In addition to the hypothalamic GnRH1, there are non-
hypothalamic types of GnRH (GnRH2 and GnRH3) and mul-
tiple GnRH receptors in most vertebrate species (19). GnRH2 
is the most evolutionarily conserved form of GnRH, which 
many vertebrate species possess the identical peptide that was 
first identified in the chicken (20) (Table 1). GnRH2 neuronal 
cell bodies exist in the midbrain in all vertebrates investigated 
(21). GnRH3 was first identified in the salmon (22) (Table 1). 
GnRH3 neurons are present in the terminal nerve ganglion, 
and neuronal fibers were localized at the junction of the olfac-
tory nerve and the telencephalon in most teleost species (23). 
As these extrahypothalamic GnRH neural populations project 
their neural fibers throughout the brain, their primary role may 
be to regulate social behavior by modulating other neurons 
in the brain. Indeed, in marmoset monkey, musk shrew, and 
white-crowned sparrows, GnRH2 enhances female reproductive 
behavior (24–27). In goldfish, both GnRH2 and GnRH3 signifi-
cantly stimulate female spawning behavior (28). In cichlid fish, 
terminal nerve GnRH3 neurons regulate male social behaviors, 
including nest building and territorial behaviors (29). A recent 
study in Japanese medaka revealed a novel function of terminal 
nerve GnRH3 neurons as a gate for activating mating prefer-
ences based on familiarity (30).

Traditionally, hypothalamic GnRH (GnRH1) has also been 
shown to regulate reproductive behaviors, including female 
lordosis (39) and male mating behavior (40) in rats. In addi-
tion to sexual behaviors, hypothalamic GnRH is also known to 
modulate other social behaviors. In rhesus monkeys, treatment 
with a GnRH-receptor antagonist Antide, during neonatal 
periods, alters their social behaviors, such as group in proximity 
and grooming behaviors (41). In various mammalian species, 
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immunization or immunoneutralization against GnRH results 
in reduction of aggressiveness (42–44). These results, however, 
have traditionally been thought to be mainly due to reduction 
of gonadal hormone release and not due to reduced action of 
GnRH in the brain, as relatively longer treatment was required. 
However, accumulating evidences suggest possible direct action 
of GnRH1 within the brain as a neurotransmitter or a neuro-
modulator, because GnRH1 receptor is expressed outside of 
hypothalamus and pituitary (45–47). In male hamster, GnRH1 
enhances the main olfactory input to the medial amygdala, 
which may be important for receiving conspecific reproductive 
chemosignals (48).

In addition to reproductive functions, GnRH is also associated 
with anxiety and mood disorders, such as depression, because 
adverse effects of GnRH agonists have been observed in women 
undergoing assisted reproductive treatment (49, 50). In rodent 
models, GnRH agonists exhibit anxiolytic- and antidepressant-
like effects, whereas GnRH antagonists induce anxiogenic-like 
behavior (51, 52), although the neuronal mechanism underlying 
the role for GnRH in mediating anxiety and depression has not 
been understood well. One possibility is that GnRH may regulate 
other neuropeptides that mediate emotional behaviors and stress 
responses (53). Interactions between vasopressin, a stress hor-
mone that mediates social- and anxiety-like behaviors, neurons 
and GnRH neurons have been observed in the supraoptic nucleus 
of monkeys (54). In rats, GnRH agonist stimulates the release of 
vasopressin from the neurohypophysis (55). It was shown that 
GnRH2 inhibits food intake (56), and the anorexigenic action of 
GnRH2 neuron is regulated by various neuropeptides, including 
α-melanocyte-stimulating hormone and corticotropin-releasing 
hormone in goldfish (57).

KissPePtiN

Kisspeptin is a family of peptides encoded by the KISS1 gene, 
which includes metastin (kisspeptin-54) and kisspeptin-10 (4). 
Comparison of amino acid sequences of kisspeptin among verte-
brate species shows that the C-terminal 10 amino acid sequence is 
highly conserved, suggesting the importance of the core 10 amino 
acid region (4) (Table 1). The shortest endogenous 10 amino acid 
kisspeptin exerts equal receptor (GPR54)-binding activity as the 
other longer endogenous fragments (58, 59). In teleost fish, two 
forms of kisspeptin (Kiss1 and Kiss2) have been reported (37, 60) 
(Table 1). On the other hand, birds do not possess either kisspep-
tin or GPR54 gene (61).

Kisspeptin and its cognate receptor GPR54-signaling were 
reported to be involved in the stimulatory regulation of GnRH 
neurons (62–65). However, there are no defects in gender-specific 
sexual behaviors in GPR54-knockout mice as long as the appro-
priate sex steroid hormones are provided (66). Similarly, double-
kisspeptin (kiss1 and kiss2) and kisspeptin receptors (kissr1 and 
kissr2) gene mutant lines are capable of achieving successful 
reproduction in zebrafish (67). These observations suggest that 
the central kisspeptin–GPR54 system is not essential for direct 
regulation of sexual behaviors.

Recently, we have identified Kiss1 gene expressed in the ventral 
habenula (vHb) in the modulation of serotonin (5-HT) neurons 

and fear responses in the zebrafish (5, 68). Expression of Kiss1 
gene was also shown in the medial amygdala, a fear-regulating 
region in rodents (69). Furthermore, central administration of 
kisspeptin-13 increased basal corticosterone levels and induced 
hyperthermia upregulating motor behavior, causing anxiety 
in rats (70). In mice, kisspeptin-13 showed antidepressant-like 
effects in a modified forced swimming test via adrenergic and 
serotonergic receptors (71). It has also been shown that kisspep-
tin-13 facilitates learning and memory consolidation in a passive 
avoidance paradigm via various neurotransmitters in mice (72). 
Our very recent findings in the zebrafish suggest the interaction 
between the vHb-expressing Kiss1 and the 5-HT system in the 
modulation of alarm substance-evoked fear responses mediated 
via two serotonin receptor subtypes (73). These results suggest 
that kisspeptin can act on several brain regions to facilitate a 
variety of social behaviors via interaction with different types of 
neurotransmitters.

GONADOtrOPiN-iNHiBitOrY HOrMONe

Gonadotropin-inhibitory hormone has been discovered as a 
novel hypothalamic RFamide peptide that inhibits LH release 
in birds (34, 74). GnIH is also named RFamide-related peptide 
(RFRP) in mammals (75). GnIH orthologous peptides have 
characteristic LPXRFamide (X = L or Q) amino acid sequence 
at their C-termini. Endogenous GnIH peptides were identi-
fied in humans (33), quail (34, 35), goldfish (38), and in other 
vertebrates (74) (Table  1). The presence of orthologous GnIH 
receptor (GPR147) has also been demonstrated in various 
vertebrate species, suggesting that the GnIH–GPR147 signaling 
is evolutionarily conserved (76, 77). GnIH neurons terminate 
on GnRH neurons as well as kisspeptin neurons and these 
neurons express GPR147 (74, 78,  79) (Figure  1). In addition, 
GnIH–GPR147 signaling is regulated by various factors, such 
as natural and social environmental cues (79–81) and stress (82, 
83), suggesting that GnIH is one of the mediators of favorable 
and unfavorable external stimuli (4). GnIH and GPR147 have 
been cloned and localized, and their functions have also been 
studied in several teleost species. However, the role of fish 
GnIH–GPR147 signaling remains inconclusive, because the 
physiological properties of fish LPXRFa are variable depending 
on reproductive condition and season.

Because GnIH neurons terminate in the close proximity of 
GnRH2 neurons (78, 91) and GnRH2 neurons express GPR147 
(78), GnIH may inhibit reproductive behavior by inhibiting 
GnRH2 neuronal activity. In line with this hypothesis, Bentley 
et  al. (92) showed that centrally administered GnIH inhibits 
copulation solicitation in estrogen-primed female white-crowned 
sparrows exposed to the song of males. Ubuka et al. (6) investi-
gated the effect of RNA interference (RNAi) of the GnIH gene on 
the behavior of male and female white-crowned sparrows. GnIH 
RNAi reduced resting time, spontaneous production of complex 
vocalizations, and stimulated brief agonistic vocalizations. GnIH 
RNAi further enhanced song production in male birds when 
they were challenged by playbacks of novel male songs. Because 
these behaviors resembled behavior of breeding birds during 
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FiGUre 1 | schematic model of actions of kisspeptin and GniH in the regulation of social behavior in mammals and teleosts. Neuronal cell bodies 
producing gonadotropin-releasing hormone (GnRH), kisspeptin (Kiss), and gonadotropin-inhibitory hormone (GnIH) are located in the preoptic area (POA) and 
hypothalamic (Hyp) region. GnRH is secreted at the median eminence (ME) in mammals, whereas GnRH1 is directly secreted in the pituitary in teleosts, and they 
regulate gonadotropin (LH and FSH) synthesis and release from the pituitary gland, which stimulates sex steroid synthesis and gametogenesis in the gonads. Sex 
steroids feedback to the brain and construct neuronal architecture and modulate the activity of neurons, which regulate the expression of social behavior, such as 
courtship, mating, and aggression. Kiss neurons stimulate GnRH and GnRH1 release in mammals and teleosts, respectively. GnIH neurons inhibit the activity of 
GnRH and Kiss neurons as well as pituitary gonadotropin secretion in mammals. On the other hand, GnIH neurons terminate in the pituitary in teleosts. In addition to 
this reproductive neuroendocrine (hypothalamic) pathway, neuronal fibers containing Kiss and GnIH are found in extrahypothalamic regions, such as amygdala 
(Amyg), hippocampus, habenula (Hb), periaqueductal gray (PAG), and ventral tegmental area (VTA) in mammals and also dorsal telencephalic area (D), optic tectum 
(OT), and raphe nuclei (RN) in teleosts, which can directly regulate social behavior by acting within the brain (social behavior pathway). Neuronal fiber distributions of 
Kiss and GnIH neurons as well as locations of kisspeptin receptor (Kiss-R: GPR54) and GnIH receptor (GnIH-R: GPR147) in mammals are based on Tena-Sempere 
(84), Lehman et al. (85), Tsutsui and Ubuka (86), and Ubuka et al. (74). Neuronal fiber distributions of Kiss and GnIH neurons as well as locations of kisspeptin 
receptor (Kiss-R1: GPR54-1 and Kiss-R2: GPR54-2) and GnIH receptor (GnIH-R: GPR147) in teleosts are based on Escobar et al. (87), Qi et al. (88), Nathan et al. 
(73), Parhar et al. (89), and Grone et al. (90).
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territorial defense, it was suggested that GnIH gene silencing 
induces arousal (6). It was recently shown that GnIH directly 
activates aromatase neurons in the preoptic area and increases 
neuroestrogen synthesis beyond its optimum concentration for 
the expression of sociosexual behavior of male birds (8). Johnson 
et al. (93) showed that central administration of RFRP-3 signifi-
cantly suppresses all facets of male sex behavior in rats. Central 
administration of GnIH reduced sexual motivation and vaginal 
scent marking, but not lordosis behavior in female hamsters (94). 
On the contrary, there was no effect of GnIH on sexual behavior 
in non-human primates and ewes (95), which could be due to 
different injection conditions or social or reproductive status of 
the animals used.

reGULAtiON OF rePrODUctive 
NeUrOeNDOcriNe PAtHWAY BY 
sOciAL iNterActiON

Social interactions have significant effects on reproductive 
physiology and behavior in vertebrates (7, 96, 97). Male court-
ship behavior can greatly enhance the reproductive activity of 
female birds (98). Maney et  al. (99) investigated the effect of 
male song on the rapid changes in LH and the induction of the 
immediate early gene Egr-1 in GnRH1 neurons in female white-
throated sparrows. However, although male song induced LH 
release, it did not alter Egr-1 expression in GnRH1 neurons (99). 
Calisi et  al. (100) manipulated nesting opportunities for pairs 

of songbirds and measured GnIH mRNA and GnIH content, as 
well as GnRH1 content and plasma testosterone concentration. 
The birds with nest boxes had significantly fewer numbers of 
GnIH cells than those without nest boxes, whereas GnRH1 con-
tent and testosterone concentration did not vary with nest box 
ownership, suggesting that GnIH may modulate reproductive 
behaviors without changing the HPG axis in response to social 
environment (100).

Olfactory cues significantly impact sexual attraction and 
behavior in mammals (101). The chemosignals that act between 
members of the same species and triggering short-term behav-
ioral responses or long-term physiological changes are termed 
pheromones (102, 103). When prepubertal females are exposed 
to pheromones of sexually mature males, puberty onset is 
accelerated in rodents (104). Another example of pheromonal 
stimulation of reproductive activity is the “male effect” in 
domestic ungulates, sheep, and goat (103). If anestrus females 
are exposed to a male, their HPG axis will be reactivated leading 
to ovulation. De Bond et al. (105) showed that male introduc-
tion leads to elevated LH pulse amplitude and frequency in a 
non-breeding female. However, central infusion of kisspeptin 
antagonist in advance abolished the effect of male exposure on 
LH secretion, suggesting that the “male effect” is mediated by 
kisspeptin signaling in ewes (105). Murata et  al. (106) showed 
that brief exposure of male pheromone induces multiple-unit 
activity at close proximity to kisspeptin neurons in the goat arcu-
ate nucleus, a brain region that is thought to be the site of GnRH 
pulse generator (107).
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cLiNicAL PersPectives OF 
NeUrOPePtiDes reGULAtiNG 
rePrODUctiON iN tHe treAtMeNt OF 
MOOD, PAiN, Or stress-reLAteD 
DisOrDers

During reproductive aging and reproductive cycles, plasma 
steroid levels alter considerably and cause significant influences 
on various aspects of physiological functions, including mental 
and cognitive functions. For example, it is well known that 
many women have fluctuations in mood and libido in conjunc-
tion with phases of the menstrual cycle. Accordingly, failure 
in homeostatic control of the HPG axis leads to disorders in 
mood and libido. Neuropeptides and their receptors have been 
recognized as therapeutic targets for various mental disorders, 
such as mood, depression, and anxiety (53, 108, 109). Recently, 
RFamide peptides have been recognized as new therapeutic 
targets (110, 111). Kisspeptin has recently been utilized for treat-
ment of women with reproductive dysfunctions, although there 
are still very limited clinical cases (112–115). It was reported 
that citalopram, a potent selective serotonin reuptake inhibitor 
that is used as an antidepressant but causes sexual dysfunction, 
induced inhibition of sexual behavior involves stimulation of 
GnIH neurons through serotonin receptors in the rat (116), 
suggesting the use of GnIH receptor antagonist in the treatment 
of sexual dysfunction.

It is thought that GnIH gene and NPFF, a neuropeptide that 
has a PQRFamide motif at its C-terminal and involved in pain 
modulation, gene have diverged from a common ancestral gene 
through gene duplication (117, 118). It is also thought that 
GPR147 and GPR74, NPFF receptor, are paralogous (76, 119). 
Mammalian RFamide peptides, GnIH (RFRP-1 and -3), neu-
ropeptides AF and FF, prolactin-releasing peptides, kisspeptin, 
and QRFP/26RFa peptides are considered endogenous ligands 
for NPFF1 (GPR147), NPFF2 (GPR74), GPR10, GPR54, and 
GPR103, respectively (74). Elhabazi et al. (120) showed that all 
RFamide peptides efficiently activate GPR147 and GPR74. As 
NPFF modulates morphine analgesia (121, 122), the hyperalge-
sic and anti-morphine-induced analgesic effects of endogenous 
RFamide peptides were analyzed in mice. All of the peptides 

induced hyperalgesia and/or prevented morphine analgesia 
following the central administration. These results show that 
all endogenous RFamide peptides display pain-modulating 
properties and that GPR147 and GPR74 are essential players for 
these effects (120), suggesting potential use of RFamide peptides, 
namely, GnIH and kisspeptin, for the treatment of pain and 
stress-related disorders.

sUMMArY AND cONcLUsiON

A variety of hypothalamic neuropeptides have been also identi-
fied as important regulators of social behaviors as neurotrans-
mitter or neuromodulator (123). Expression of hypothalamic 
neuropeptides or activity of hypothalamic neurons also changes 
profoundly according to social environment to increase repro-
ductive fitness (97). Social behaviors, such as affiliation, commu-
nication, and aggression, are closely associated with reproductive 
functions to ultimately achieve successful reproduction. We 
highlighted classical and recent findings regarding the role of 
GnRH, kisspeptin and GnIH, neuropeptides that are involved in 
gonadotropin secretion and in the regulation of social behaviors 
in fish, birds, and mammals and discussed their importance in 
future researches. The accumulating results suggest that these 
neuropeptides may directly regulate social behaviors by acting 
within the brain, besides regulating the HPG axis.
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