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Bone fragility is recognized as one of the major comorbidities in Turner syndrome (TS). The 
mechanisms underlying bone impairment in affected patients are not clearly elucidated, 
but estrogen deficiency and X-chromosomal abnormalities represent important factors. 
Moreover, although many girls with TS undergo recombinant growth hormone therapy to 
treat short stature, the efficacy of this treatment on bone mineral density is controversial. 
The present review will focus on bone fragility in subjects with TS, providing an overview 
on the pathogenic mechanisms and some prevention strategies.
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inTRODUCTiOn

Turner syndrome (TS) is a congenital disease caused by partial or complete loss of one sex chromo-
some, which occurs in 1:2500 female live births. Monosomy 45,X0 is present in about 45% of cases 
(1), while the remaining TS patients show mosaic patterns with one or more additional cell lines and 
structural aberration (mostly Xq isochromosomes) (1).

The major phenotypic characteristics of TS subjects are short stature, ovarian dysgenesis, cardiac 
anomalies, and neurocognitive problems (2). Additionally, a low bone mineral density (BMD) and 
an increased risk of fractures have been described (3–5). The pathogenic mechanisms responsible 
of bone impairment in TS have not been completely elucidated. It is not clear whether the bone 
fragility is due to X-chromosomal abnormalities or is caused by estrogen deficiency that occurs 
during developmental age and in adulthood (3, 6, 7). Moreover, although many girls with TS undergo 
recombinant growth hormone (rGH) therapy to treat short stature in childhood, the efficacy of this 
treatment on BMD is controversial.

The present review will focus on bone fragility in subjects with TS, providing an overview on the 
underlying mechanisms and some options for management of bone impairment.

BOne FRAGiLiTY in TS

Low BMD and osteoporosis are clinical features in women with ovarian failure caused by TS, affect-
ing these subjects often two to three decades earlier than that noted in postmenopausal osteoporosis 
(3, 8). According to a large epidemiological study, the risk of fractures for TS women seems to be 
about two times higher than general population, especially at metacarpal bones, femoral neck, lower 
spine, and forearm (9).
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A fracture prevalence of 32.2%, and the forearm as the site 
most affected, has been reported by other authors (4). Two peaks 
of incidence have been observed, during childhood (non-osteo-
porotic fractures) and after 45 years (osteoporotic fractures) (4).

However, the fracture data in TS are controversial. In particular, 
the fracture prevalence may have been overestimated in studies 
on older patients, who had never been treated with estrogens or 
had received a delayed and suboptimal therapy (9).

Several studies have demonstrated that the detection of a low 
BMD in TS subjects by dual-energy X-ray absorptiometry (DXA) 
has some limits, as the influence of body size on areal BMD 
(aBMD) interpretation (10). Smaller bones project less density 
on the measured surface than bigger ones, resulting in lower 
T- and Z-scores in short individuals (11). In fact, the apparent 
BMD deficit in TS subjects is reduced when the reduced size of 
bones has been taken into account (3, 11).

The development of new bone imaging diagnostics, as periph-
eral quantitative computed tomography (pQCT), has allowed 
the evaluation of bone geometry and bone compartmental 
characteristics of TS subjects. In fact, pQCT provides precise 
measurements of three-dimensional bone density without the 
influence of bone size, and leads to assess trabecular and cortical 
bone density independently (12).

In this respect, using pQCT, a low cortical BMD, with marked 
thinning of the bone cortex, and normal trabecular BMD of 
radial bone have been observed in TS adolescents (12), and 
similar results were found in TS young adults (13). These find-
ings suggested that selective decrease of cortical bone may confer 
biomechanical disadvantage and predispose TS subjects to bone 
fragility and fractures (12).

Nevertheless, other studies have documented a reduction of 
both cortical and trabecular bone in TS subjects during and after 
puberty by using pQCT (14), whereas a normal (15) or increased 
cortical BMD (16) has been observed by using high-resolution 
pQCT (HR-pQCT). Table  1 collects the principal studies on 
BMD measurements in TS subjects.

These conflicting findings are due to different diagnostic 
imaging and characteristics of TS subjects (10). In particular, 
HR-pQCT provides a refined image resolution, which permits 
detailed evaluation of bone microarchitecture, eliminating the 
partial volume artifacts that may influence cortical BMD meas-
urements, determined with pQCT (15, 16). Moreover, studies 
which assessed BMD in adolescent TS patients may not be 
appropriately matched with healthy controls (12). In fact, most 
TS individuals under 13  years of age do not have completed 
puberty, whereas the majority of age-matched healthy girls could 
have achieved menarche with a significant increase in bone mass 
accrual (28).

Therefore, different factors rather than reduced cortical BMD 
might predispose TS subjects to higher risk of fractures, such as 
altered bone geometry (bone size, shape, and microarchitecture) 
and decrease of trabecular BMD or motor dysfunction (29).

The bone microarchitecture is influenced by the continu-
ous remodeling, a coordinated process between formation and 
degradation of bone, respectively, managed by osteoblasts (OBs) 
and osteoclasts (OCs). The by-products of these processes can 
be quantified in serum and urine, and used as markers of the 

balance in bone activity (30, 31). Markers of bone formation are 
represented by alkaline phosphatase (ALP), bone-specific ALP, 
procollagen I-amino-terminal propeptide (PINP), procollagen 
III-amino terminal propeptide (PIIINP), and osteocalcin, while 
markers of bone resorption comprise C-telopeptide fragments 
of type 1 collagen (ICTP), carboxy-terminal telopeptide of type 
1 collagen (CTX), and N-terminal cross-linking telopeptide 
of type 1 collagen (NTX). In TS, analysis of these biochemical 
markers revealed an increased resorption of bone, with normal or 
decreased bone formation, suggesting imbalance in bone remod-
eling (3, 26, 32). However, little is known about the relation of 
aBMD and volumetric BMD (vBMD) to bone markers in young 
TS (8, 33, 34).

Furthermore, as skeletal muscle contraction represents a 
mechanical stimulus for bone development (35–37), it was 
suggest that impaired motor skills and reduced muscle power 
described in TS, may contribute to increased fracture rate (29).

PATHOGeneTiC MeCHAniSMS OF BOne 
FRAGiLiTY in TS

The mechanisms responsible of bone fragility in TS have not 
been completely elucidated. While some authors ascribed bone 
fragility to estrogen deficiency occurring during development 
and in adulthood (17, 20, 38), other researches sustain a direct 
or indirect effect of X-chromosomal abnormalities (14, 39, 40). 
Moreover, some comorbidities of the syndrome could be involved 
in bone loss. Finally, the effect of rGH therapy on BMD remains 
to be clarified.

Figure  1A shows the potential mechanisms of poor bone 
health in TS.

estrogen Deficiency
Ovarian dysfunction is a common complication in TS subjects, 
and estrogen replacement therapy (ERT) is needed for the induc-
tion of puberty and for the maintenance of bone and cardiac 
health (2).

The effects of estrogens on bone seem to be dose-dependent: 
low levels of exposure may increase the mechanical sensitivity 
of the periosteum, whereas higher concentrations may inhibit 
periosteal apposition, reducing cortical thickness (41). Although 
the appropriate estrogen dosage to treat hypogonadism and the 
timing of the therapy are still debated (27), estrogen replacement 
has been shown to be important to avoid a rapid decrease in BMD 
and to optimize bone mineral accretion in TS adolescents (23). 
In particular, early initiation of ERT is more effective on bone 
mass acquisition (27), and low-dose administration in childhood 
has also neurocognitive and behavioral benefits (42). The possible 
downside of early ERT is the reduction of adult height by accel-
erating epiphyseal fusion, which can be avoided by combining 
ultra-low-dose estrogen with rGH therapy.

An increased BMD due to augmented trabecular bone volume, 
and an unchanged cortical bone, has been demonstrated after 
3 years of treatment with subcutaneous estradiol implants in TS 
young women (21). These findings suggested a role of estrogens 
not only in preventing bone loss but also in increase of bone mass.

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


TABLe 1 | BMD measurements in TS patients.

Population Sample (n) Age (years) BMD measurement Outcome Reference

40 TS patients 16–45 DXA at the lumbar spine and 
femoral neck

Subjects with TS and those with primary amenorrhea had severe 
osteopenia compared with healthy controls

Davies  
et al. (8)40 subjects with primary 

amenorrhea
40 healthy controls

9 TS patients with spontaneous 
puberty

14.9 ± 1.3 DXA at the lumbar spine BMD values were in the normal range in TS patients with 
spontaneous puberty and in the osteopenia range in puberty induced 
group.

Carrascosa 
et al. (17)

18 puberty induced TS patients 
(adolescent)

16.8 ± 0.7

10 puberty induced TS patients 
(young adult)

20.9 ± 0.7

21 GH and estrogen treated TS 
patients

19.5 ± 2.3 pQCT at the distal metaphysis 
and at the proximal diaphysis

BMC was decreased, resulting in a low total vBMD. This was due to 
decreased cortical thickness at both sites of measurement, whereas 
trabecular vBMD of the metaphysis was normal

Bechtold  
et al. (13)

40 TS patients 34.0 ± 11.0 DXA at the lumbar spine and 
femoral neck

Mean areal bone density was significantly lower at the lumbar spine 
and femoral neck in TS women than in controls

Bakalov  
et al. (11)43 controls 32.0 ± 8.0

23 GH-treated TS patients 21.5 ± 9.4 DXA at RAD-1/3, RAD-UD, AP 
spine L1–L4, total hip

There was no significant difference in the two groups in BMD or 
BMAD at the wrist, hip, spine, or whole-body BMC

Bakalov  
et al. (18)23 non-GH-treated TS patients 21.7 ± 9.4

68 TS patients belonging to 
three age groups with different 
rGH treatment

6.1 ± 2.1 Phalangeal radiographic 
absorptiometry

Most untreated young TS patients have a normal vBMD. During 
7 years of GH treatment the BMD SD score increased significantly

Sas  
et al. (19)6.7 ± 2.4

6.5 ± 2.4

60 TS patients 36.7 ± 9.6 DXA at the lumbar spine  
(L2–L4), the hip (femoral neck 
and trochanteric region), and 
the non-dominant forearm

BMC and aBMD were universally reduced in TS, whereas vBMD was 
slightly reduced in the spine

Granvholt  
et al. (3)59 controls 36.0 ± 9.5

50 TS patients 30–59 DXA at the lumbar spine  
(L2–L4); QCT at vertebral 
bodies L1–L2

Lumbar spine BMD was significantly reduced in women not taking 
ERT according to current guidelines

Hanton  
et al. (20)

21 TS patients 20–40 DXA at the lumbar spine and 
proximal femur

The bone mineral density at the lumbar spine and proximal femur 
increased after 3 years of HRT

Khastgir  
et al. (21)

16 TS patients 29.1 ± 5.2 DXA at the lumbar spine  
(L1–L4) and of whole body

BMD of lumbar spine and whole body of TS were significantly lower 
than age-matched normal subjects

Suganuma  
et al. (22)

83 TS patients 12.76 ± 4.4 TB, LS, and FN DXA The results show a height-independent prepubertal decrease in bone 
mass accrual, which ceased with puberty

Högler  
et al. (23)

22 TS patients 12.7 ± 3.8 DXA at the lumbar spine and 
femur and pQCT scanning of 
the non-dominant forearm, 
distal metaphyseal site, and the 
proximal diaphysis of radius

TS is associated with reduced BMAD at the femoral neck; pQCT 
data suggest that cortical density is reduced with sparing of 
trabecular bone

Holroyd  
et al. (12)21 controls 12.9 ± 3.8

67 TS patients 6.0–19.4 pQCT at the non-dominant 
radius

Cortical vBMD was decreased in all TS patients. Height-, age-, and 
cortical thickness-adjusted cortical vBMD were positively correlated 
with the duration of GH therapy and to estrogen administration. Girls 
with a history of fractures had lower total vBMD at the metaphysis 
compared to non-fractured TS girls

Soucek  
et al. (14)

32 TS patients 35 (20–61) HR-pQCT at non-dominant 
distal radius and tibia

TS patients had compromised trabecular microarchitecture and lower 
bone strength at radius and tibia

Hansen  
et al. (16)32 controls 36 (19–58)

22 TS patients 10.3 ± 2.2 pQCT at forearm Trabecular BMD and bone strength index were normal in TS as well 
as SHOX-D patients. Increased total bone area and thin cortex were 
observed at the proximal radius for TS and SHOX-D patients

Soucek  
et al. (24)10 children with SHOX-D 10.3 ± 2.1

24 adolescent TS patients 17.1 ± 3.1 DXA at the lumbar spine and 
femoral neck; phalangeal QUS

Adolescents with TS had a normal lumbar vBMD and a reduced 
vBMD at the femoral neck. Phalangeal QUS represents a useful 
method to identify subjects with increased fracture risk

Vierucci  
et al. (25)

60 TS patients belonging to 
three age groups

5.94 ± 3.27 DXA at the lumbar spine 
(L2–L4)

Bone impairment was detectable by DXA in subjects aged under 10, 
although it became more evident with aging

Faienza  
et al. (26)13.51 ± 2.06

23.45 ± 6.80

(Continued)
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FiGURe 1 | (A) Potential mechanisms of bone fragility in Turner syndrome. (B) Monitoring and management of bone health in Turner syndrome.

Population Sample (n) Age (years) BMD measurement Outcome Reference

88 TS patients with primary 
amenorrhea

17–58 DXA at the lumbar spine 
(L2–L4)

TS patients receiving late initiation of HRT had a BMD significantly 
lower than the early initiation group or spontaneous menstrual cycles 
group

Nakamura  
et al. (27)

12 TS patients with 
spontaneous menstrual cycles

18–40

32 TS patients 15.3 ± 3.2 pQCT at the non-dominant 
radius and tibia

Whereas the cortical BMD was decreased in the radius, it was 
increased in the tibia. After correcting the cortical BMD for the partial 
volume effect, the mean Z-score was normal in the radius in TS. The 
corrected cortical BMD values were similar in the radius and tibia

Soucek  
et al. (15)

28 TS patients 17–45 DXA of lumbar spine, hip, and 
radius and HR-pQCT scans of 
the radius and tibia

No significant difference in DXA-derived BMD and HR-pQCT  
micro-architectural parameters was detected between childhood GH 
treatment compared to no treatment in TS

Nour  
et al. (10)

AP, anteroposterior; BMC, bone mineral content; BMD, bone mineral density; aBMD, area BMD; vBMD, volumetric BMD; BMAD, bone mineral apparent density; DXA, dual-energy 
X-ray absorptiometry; TS, Turner syndrome; FN, femoral neck; GH, growth hormone; rGH, recombinant GH; HRT, hormone replacement therapy; LS, lumbar spine; pQCT, peripheral 
quantitative computed tomography; HR-pQCT, high-resolution pQCT; QUS, quantitative ultrasound; RAD-1/3, one-third proximal radius; RAD-UD, ultradistal radius; TB, total body.

TABLe 1 | Continued
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In adult TS patients, the assumption of exogenous estrogen 
is important for prevention of osteoporosis (43) and in reducing 
risk factors for atherosclerosis (44, 45), but the optimal dose at 
the different ages, administration route, type of estrogen and 
gestagen remain to be determined (46).

Follicle-Stimulating Hormone
Follicle-stimulating hormone (FSH) has a well-established 
role in reproduction, stimulating ovarian folliculogenesis, and 
estrogen synthesis, but recently has emerged also a role in bone 
metabolism. Some studies in mouse or human cells showed a 
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positive direct or indirect FSH effect on OC differentiation and 
function (47).

In particular, FSH enhances osteoclastogenesis and bone 
resorption directly by binding to FSH receptor expressed on 
OCs and their precursors (47), and indirectly by triggering 
the production of tumor necrosis factor-α (TNF-α) from bone 
marrow macrophages, granulocytes, and T-cells (48). This pro-
inflammatory cytokine stimulates receptor activator of nuclear 
factor kappa-B ligand (RANKL) expression and synergizes with 
RANKL signaling to maximize OC formation (49).

High FSH circulating levels have been associated with bone 
loss (50) and with bone turnover markers in pre- and perimeno-
pausal women (51). Furthermore, hypergonadotropic amenor-
rheic women have low BMD because of a potential direct effect 
of FSH on bone metabolism (52), while decrease in FSH serum 
levels resulting from estrogen therapy is associated with raise in 
bone mass (53).

Girls with TS have a biphasic pattern of gonadotrophin levels 
with high FSH and LH serum levels during childhood and at 
the time of expected puberty, in subjects with monosomy 45,X0 
respect to those with mosaicism (54). A recent study by Faienza 
et al. demonstrated a high osteoclastogenic potential in girls and 
young women with TS, before and after puberty induction. This 
osteoclastogenic potential seems to be supported by the elevated 
FSH serum levels at prepubertal stage, before ERT, and by high 
RANKL levels in young women on continuous ERT (26). These 
results confirmed the indirect action of FSH in stimulation of 
osteoclastogenesis, through increase of TNF-α by bone marrow 
macrophages/granulocytes and T-cells (55) and by promoting 
the expression of receptor activator of nuclear factor kappa-B 
(RANK) on human monocytes (56).

X-Chromosomal Abnormalities
Haploinsufficiency of the X-linked genes (57, 58) that escapes 
X inactivation (59) is one of the key factors responsible for clinical 
phenotype of TS. In particular, haploinsufficiency of SHOX gene, 
located in the pseudoautosomal region of sexual chromosomes, 
seems to play a key role in growth failure typical of these subjects 
(27, 57). Furthermore, SHOX deficiency (SHOX-D) has been pro-
posed as the most probable gene deficit responsible for the other 
skeletal alterations in TS, such as short metacarpals, high-arched 
palate, cubitus valgus, Madelung deformity, and mesomelia 
(58, 60). Moreover, despite the exact molecular-genetic effect of 
SHOX on bone is not clear, and limited informations are avail-
able on the intracellular pathways activated by SHOX (61, 62), 
it is suggested that isolated SHOX-D may alter bone geometry 
and microarchitecture, rather than bone strength (63). Similar 
changes in bone geometry at the proximal radius (increased total 
bone area and thin cortex) have been found in prepubertal TS 
girls and SHOX-D patients, suggesting that SHOX haploinsuf-
ficiency is the causative factor leading to the changes in shape 
and geometry of the radius observed in TS. Interestingly, altered 
bone geometry parameters were more pronounced in patients 
with isolated SHOX-D respect to TS, and this can be explained 
partially by preserved SHOX function in mosaic TS subjects (24).

Others genes potentially involved in bone abnormalities 
of TS have recently been identified through analysis of the 

transcriptome profiles of human 45,X0 and 46,XX fibroblast cells 
(64). In 45,X0 karyotype, the analysis revealed a downregulation 
of different genes, directly or indirectly associated with bone 
metabolism, such as bone morphogenetic protein 2 (BMP2), 
associated with bone mineralization; insulin-like growth factor 
2 (IGF2), placental growth factor (PGF), and prostaglandin 
endoperoxide synthase 1 (PTGS1) involved in bone repair, for-
mation, and development (65–70), and secreted frizzled-related 
protein 1 (SFRP1) associated with Wnt signaling and affecting 
OB proliferation and differentiation (71, 72). Further study on 
tissue-specific gene expression profiling will help to understand 
the molecular mechanism involved in bone abnormality of TS 
subjects.

effect of rGH Therapy on Bone  
Health in TS
Recombinant growth hormone therapy is widely used for treat-
ment of growth failure in girls with TS, although TS patients are 
not GH deficient (GHD) (5).

The efficacy of rhGH therapy on BMD in TS is controversial 
(18, 73) also due to the small or lacking untreated control groups 
(12). Some studies suggest an improvement of bone density 
(19, 73) and some reported none effects (17), while others found 
decrease of BMD (18, 22).

A recent study evaluated the effects of GH treatment on bone 
in 28 young adults with TS using HR-pQCT. The bone strength 
was evaluated through measurements of finite element (FE) 
analysis and polar moment of inertia (pMOI) (10). The authors 
reported an increase in total bone size (length and cross-sectional 
area) and pMOI in GH-treated TS patients, while no significant 
differences in DXA-derived BMD, HR-pQCT microarchitectural 
parameter, and FE-estimated bone strength were found between 
treated and non-treated groups (10). These findings suggested 
that the higher pMOI and increase of bone size may reduce 
fracture risk in GH-treated TS subjects.

Comorbidities Affecting Bone  
Health in TS
Different comorbidities of TS may affect bone health, such as 
obesity, diabetes, and some autoimmune disorders [celiac disease 
(CD), inflammatory bowel disease (IBD), and thyroid disorders].

Body composition is altered in TS with increased total and vis-
ceral fat mass, reduced lean mass, and augmented BMI (74, 75). 
Moreover, the risk of both type 1 and type 2 diabetes mellitus 
is increased (9), with fasting hyperinsulinemia and impaired 
glucose tolerance in 25–78% of adult TS patients (44, 76). Obesity, 
and in particular visceral adiposity, has been related to low BMD 
and greater fracture risk (77). Several evidences support this the-
sis. In particular, a strong relationship between inhibition of the 
OB formation and induction of the adipocyte differentiation has 
been demonstrated (78, 79). Moreover, the increased circulating 
and tissue proinflammatory cytokines in obesity may promote 
OC activity and bone resorption (80, 81). Diabetes is considered 
an important risk factor for fractures, even if the mechanisms 
responsible for greater bone fragility in diabetic patients remain 
to be elucidated (82, 83).
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Celiac disease and IBD represent other clinical conditions 
affecting TS patients, which may predispose them to bone fragil-
ity (28), due to malabsorption of calcium and other macro- and 
microelements essential for bone metabolism, and the presence 
of chronic inflammation (84).

Hypothyroidism affects up to 70% of TS patients, often with 
autoimmune cause (85), and it is related to the increased risk of 
fractures, although the mechanism remains unclear (86).

MAnAGeMenT OF BOne  
FRAGiLiTY in TS

Strategies to prevent osteoporosis and fractures should been con-
sidered in TS subjects, just during pediatric age (87). In the first 
instance, bone mineral status should been assessed in childhood 
to detect TS subjects at increased risk of bone impairment and 
in order to carry out preventive measures (25). In particular, it is 
preferable to use diagnostic methods that take into account for 
reduced bone size of these patients, such as pQCT or volumetric 
transformation of DXA data (88).

Moreover, the use of non-invasive and radiation-free tools, 
such as phalangeal quantitative ultrasound (QUS), can be par-
ticularly useful for routinely assessing of BMD in children and 
adolescents with TS (25).

Bone mineral density evaluation should be repeated frequently 
in TS patients who were most exposed to bone fragility, such as 
subjects undergone to glucocorticoid treatment, with experience 
of low-impact fracture or in absence of adherence to ERT (5) 
(Figure 1B).

The main measures to optimize bone health in TS are 
 represented by the timely introduction of ERT and continua-
tion of estrogen therapy through young adult life according to 
consensus guidelines (26, 27, 89) (Figure 1B).

Many studies have found low serum vitamin D levels in TS 
subjects, which may contribute to the reduction of BMD (3, 33). 
Moreover, a positive correlation between bone size and density 
in TS, and level of physical activity has been reported (90). Thus, 
supplementation of vitamin D and active lifestyle, including 
weight bearing and regular physical activity, could confer benefit 
in maintaining bone health in TS (91).

COnCLUSiOn

Although data on impairment of bone density and geometry and 
fracture risk are often controversial, bone fragility is recognized as 
one of the major lifelong comorbidities in TS subjects. The patho-
genetic mechanisms responsible of bone impairment remain to 
be well clarified, although estrogen deficiency and X chromo-
somal abnormalities represent important factors. An enhanced 
spontaneous osteoclastogenesis has been demonstrated to occur 
in girls and young women with TS before and after pubertal 
induction with ERT. This process seems to be more active in girls 
before puberty induction and supported by the high FSH serum 
levels observed at prepubertal stage, while in young women on 
continuous ERT, the effects on OCs seem to be mediated mostly 
by high RANKL levels. We recommended to consider the average 
age of 9 years as a crucial time point for the introduction of ERT. 
In the future, a neutralizing FSH antibody could be useful. In 
the meantime, a regimen combining the earlier introduction of 
ERT with rGH treatment in girls with TS could have the effect to 
reduce FSH levels and to preserve bone health in these subjects.
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