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The major physiological regulators of aldosterone production from the adrenal zona 
glomerulosa are potassium and angiotensin II; other acute regulators include adrenocor-
ticotropic hormone (ACTH) and serotonin. Their interactions with G-protein coupled hor-
mone receptors activate cAMP/PKA pathway thereby regulating intracellular calcium flux 
and CYP11B2 transcription, which is the specific steroidogenic enzyme of aldosterone 
synthesis. In primary aldosteronism (PA), the increased production of aldosterone and 
resultant relative hypervolemia inhibits the renin and angiotensin system; aldosterone 
secretion is mostly independent from the suppressed renin–angiotensin system, but is not 
autonomous, as it is regulated by a diversity of other ligands of various eutopic or ectopic 
receptors, in addition to activation of calcium flux resulting from mutations of various ion 
channels. Among the abnormalities in various hormone receptors, an overexpression of 
the melanocortin type 2 receptor (MC2R) could be responsible for aldosterone hyper-
secretion in aldosteronomas. An exaggerated increase in plasma aldosterone concen-
tration (PAC) is found in patients with PA secondary either to unilateral aldosteronomas 
or bilateral adrenal hyperplasia (BAH) following acute ACTH administration compared 
to normal individuals. A diurnal increase in PAC in early morning and its suppression 
by dexamethasone confirms the increased role of endogenous ACTH as an important 
aldosterone secretagogue in PA. Screening using a combination of dexamethasone 
and fludrocortisone test reveals a higher prevalence of PA in hypertensive populations 
compared to the aldosterone to renin ratio. The variable level of MC2R overexpression 
in each aldosteronomas or in the adjacent zona glomerulosa hyperplasia may explain 
the inconsistent results of adrenal vein sampling between basal levels and post ACTH 

Abbreviations: β-AR, β-adrenergic receptors; 5-HT4R, serotonin receptor; AC, adenylate cyclase; ACTH, adrenocorticotropin 
hormone; APA, aldosterone-producing adenoma; APA, aldosterone-producing adenoma; APCCs, aldosterone-producing cell 
clusters; AT-1 receptor, angiotensin II type 1 receptor; ATP, adenosine triphosphate; AVS, adrenal venous sampling; BAH, 
bilateral adrenal hyperplasia; cAMP, cyclic adenosine monophosphate; CREB, cAMP response element binding protein; 
CYP11B1, cytochrome P450 family 11 subfamily B member 1 encodes 11-beta hydroxylase; CYP11B2, cytochrome P450 
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iNTRODUCTiON

Primary aldosteronism (PA) was first described in patients with 
unilateral aldosterone-producing adenomas (1). It is character-
ized by increased aldosterone secretion causing salt retention, 
increased urinary potassium excretion, relative hypervolemia, 
suppressed plasma renin activity (PRA), and hypertension. PA 
is the most common curable form of secondary hypertension as 
it affects 4.3% of the general hypertensive population, 9.5% of 
patients referred to hypertension clinics (2), and up to 20% of 
those with resistant hypertension (3). PA is most often second-
ary to bilateral adrenal hyperplasia (BAH; 50–70% of cases) or 
to an aldosterone-producing adenoma (APA; 30–50% of cases) 
(4). The classical concept that a unique unilateral aldosteronoma 
is the causative lesion responsible for a high proportion of this 
surgically curable form of PA was recently challenged by the iden-
tification of zona glomerulosa (ZG) hyperplasia and nodulation 
adjacent to aldosteronomas when resected adrenals are examined 
carefully (5–7).

In order to prevent cardiovascular, metabolic and renal mor-
bidities, early diagnosis and management of PA are mandatory 
(8–10). Unilateral adrenalectomy (UA) provides superior benefit 
compared to medical therapy in lateralized PA in terms of car-
diovascular outcomes (11, 12), quality of life (12), and all-cause 
mortality (13); however, in BAH, pharmacological blockade of 
aldosterone excess using mineralocorticoid receptor antagonists, 
such as spironolactone or eplerenone, is the recommended treat-
ment (4). Therefore, subtyping of PA is required to direct patients 
to surgical vs. medical therapy (4). To date, adrenal vein sampling 
(AVS) is the gold standard to differentiate lateralized from bilat-
eral sources of PA (4) because adrenal imaging provides poor 
specificity in detecting lateralized cases (14) except in patients 
<35 years old (15).

In PA excess, plasma aldosterone concentration (PAC), despite 
suppressed renin activity, is not really autonomous, as frequently 
stated. It could be autonomous if it was solely or constitutively 
regulated by somatic and germline mutations of various ion 
channels genes regulating intracellular ionic homeostasis and cell 
membrane potential as reviewed elsewhere (16). In fact, several 
autocrine/paracrine hormones and regulatory mechanisms (17) 
activate variable levels of aberrant eutopic or ectopic receptors 
(18), which regulate aldosterone secretion either in unilateral 
adenomas or in BAH. In this review, we will focus on the role 
of one of these hormones, the adrenocorticotropic hormone 
(ACTH), in stimulating aldosterone secretion in normal and 

pathologic conditions and briefly mention others which play 
similar roles in PA.

NORMAL PHYSiOLOGY OF THe ReNiN–
ANGiOTeNSiN SYSTeM

Renin is an enzyme produced primarily by the juxtaglomerular 
apparatus of the kidney and its release is the rate-limiting step 
in the regulation of the RAS (19, 20); it is controlled by four 
factors: (1) the macula densa comprises chemoreceptors for 
monitoring the sodium and chloride loads present in the distal 
tubule, (2)  juxtaglomerular cells acting as pressure transducers 
that sense stretch of the afferent arteriolar wall and thus renal 
perfusion pressure, (3) the sympathetic nervous system (SNS), 
which increases the release of renin, particularly in response to 
upright posture, in addition to (4) inhibiting factors, including 
K+, Ca++, angiotensin II, and atrial natriuretic peptides (19).

The action of renin on angiotensinogen, synthesized in the 
liver, generates angiotensin I (19). Angiotensin-converting 
enzyme (ACE), localized in cell membranes particularly of the 
lung, cleaves angiotensin I into angiotensin II, which is the main 
biologically active angiotensin (19). Angiotensin II functions 
through the AT-1 receptor (AT1R) to maintain normal extra-
cellular volume and blood pressure by increasing aldosterone 
secretion from the ZG via increased transcription of CYP11B2 
(aldosterone synthase) (Figure 1) as well as constricting vascular 
smooth muscle, releasing norepinephrine, and epinephrine from 
the adrenal medulla, enhancing the activity of the SNS and finally 
promoting the release of vasopressin (19).

Zona glomerulosa cells are organized in rosette structures 
that spontaneously generate periodic depolarizing changes in 
membrane potential that are modulated in frequency by angio-
tensin II and extracellular K+ (21, 22); Angiotensin II induces cell 
membrane depolarization most probably due to a Gi-mediated 
shift in the voltage dependence of channel activation toward 
more negative potentials thereby increasing intracellular Ca2+ 
signal, which stimulates hormone-sensitive lipase and steroido-
genic acute regulatory protein (StAR). Another mechanism by 
which angiotensin II binding to AT1R stimulates aldosterone 
secretion implicates activating the phospholipase C/inositol 
1,4,5- trisphosphate pathway, releasing Ca2+ stores from the 
endoplasmic reticulum, and activation of T-type voltage-gated 
Ca2+ channels (23) (Figure 1).

Dopamine, atrial natriuretic peptide, and heparin inhibit 
aldosterone secretion. The secretion of aldosterone is restricted 

administration in the determination of source of aldosterone excess. In the rare cases 
of glucocorticoid remediable aldosteronism, a chimeric CYP11B2 becomes regulated 
by ACTH activating its chimeric CYP11B1 promoter of aldosterone synthase in bilateral 
adrenal fasciculate-like hyperplasia. This review will focus on the role of ACTH on excess 
aldosterone secretion in PA with particular focus on the aberrant expression of MC2R 
in comparison with other aberrant ligands and their GPCRs in this frequent pathology.

Keywords: ACTH, aldosterone regulation, melanocortin type 2 receptor, aberrant G-protein coupled receptors, 
primary aldosteronism
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FiGURe 1 | Mechanisms responsible for aldosterone synthesis in zona glomerulosa cells under normal physiological conditions and excess 
production in primary aldosteronism. The strongly negative resting membrane potential of zona glomerulosa (ZG) cells under resting physiological conditions is 
maintained by the concentration gradient of K+ between the intracellular and extracellular space, which is generated by the activity of the Na+, K+-ATPase. 
Angiotensin II and increased K+ lead to cell membrane depolarization, which opens voltage-dependent Ca2+ channels. Furthermore, Angiostensin II acts through the 
Angiotensin II type 1 receptor (AT1R) inducing Ca2+ release from the endoplasmic reticulum. Consequently, the increase in intracellular Ca2+ concentration activates 
the calcium signaling pathway, which triggers activation of CYP11B2 transcription. The role for ACTH in the regulation of aldosterone secretion whether in normal 
physiology or in PA is in part determined by the level of expression of ACTH receptors (MC2R) in ZG cells. MC2R which is a GPCR coupled to the stimulatory Gsα 
subunit may induce an increase of intracellular cAMP concentration which activates protein kinase A thereby increasing CREB phosphorylation and CYP11B2 
transcription. Aberrant expression of other GPCR may also be responsible for aldosterone excess despite a suppressed renin angiotensin system: eutopic GPCR 
include those for serotonin (5-HT4R); ectopic GPCR include those for glucose-dependent insulinotropic peptide (GIPR), luteinizing hormone/human chorionic 
gonadotropin (LH–hCG R), β-adrenergic receptors (β-AR), vasopressin (V1-AVPR) glucagon (glucagon receptor), TRH (TRH R), and Endothelin-1 ETA and ETB 
receptors. Other mechanisms implicated in PA involve somatic and germline mutations in ion channels genes regulating intracellular ionic homeostasis and cell 
membrane potentials: increase intracellular Na+ concentrations and cell membrane depolarization result from KCNJ5 gain-of-function mutations affecting GIRK4 and 
ATP1A1 mutations of the Na+, K+-ATPase. Direct increase of intracellular Ca2+ concentrations could also result from mutations in ATP2B3 encoding for the plasma 
membrane Ca2+-ATPase, mutations in CACNA1D affecting the Cav1.3 subunit of the L-type voltage-gated calcium channel or CACNA1H affecting the Cav3.2 
subunit of the voltage-gated calcium channel. Finally dysregulation in cellular proliferation/apoptosis accelerating adenoma formation could be due either to 
activation of the Wnt/β-catenin pathway or to gene mutations such as ARMC5 although the mechanism of the latter mutation is not fully elucidated.
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to the ZG because of zone-specific expression of aldosterone 
 synthase (CYP11B2), which is regulated by the activation of 
calcium signaling (24).

PATHOPHYSiOLOGY OF PRiMARY 
ALDOSTeRONiSM

The binding of free aldosterone to the mineralocorticoid 
receptor in the cytosol of epithelial cells (24), principally in the 
kidney, controls potassium homeostasis and maintains normal 
intravascular volume by increasing intestinal and renal Na+ and 
Cl− absorption and reabsorption, respectively. Increased produc-
tion of aldosterone in PA results in sodium retention, hyperten-
sion, and can also result in hypokalemia (20). In addition to 
the two most common subtypes of PA (BAH in 50–70% of the 
cases and APA in 30–50%), less frequent causes include primary 
(unilateral) adrenal hyperplasia (5%), aldosterone-producing 
adrenocortical carcinoma (<1%), familial hyperaldosteronism 
(1%), and ectopic aldosterone-producing adenoma or carcinoma 

(<0.1%). The mechanisms implicated in the pathophysiology of 
PA are not fully elucidated. Somatic and germline mutations in 
ion channels genes regulating intracellular ionic homeostasis and 
cell membrane potential were described in sporadic APA and 
type-III familial PA (25–28) (Figure 1). Somatic mutations in the 
potassium channel gene KCNJ5 are found in almost 30–40% of 
aldosteronomas and alter channel selectivity allowing enhanced 
Na+ conductance. Na+ influx results in cell depolarization, the 
activation of voltage-gated Ca2+ channels, aldosterone production, 
and cell proliferation (25, 29). Somatic and germline mutations 
in CACNA1D gene encoding a voltage-gated calcium channel 
result in channel activation and less depolarized potentials 
causing increased Ca2+ influx, aldosterone production and cell 
proliferation in affected ZG cells (27, 30). Mutations in ATP1A1 
gene (encoding the Na+/K+ ATPase α subunit) and ATP2B3 gene 
(encoding the plasma membrane Ca2+ ATPase) were identified 
in 5.2 and 1.6%, respectively of patients in a series of APA (26). 
Mutations in CACNA1H gene, which encodes a voltage-gated cal-
cium channel (Cav3.2) were discovered in children with PA; they 
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result in impaired channel inactivation and activation at more 
hyperpolarized potentials, producing increased intracellular Ca2+ 
and aldosterone excess (31). Different mutations in the genes 
described above are found in different aldosterone-producing 
nodules from the same adrenal, suggesting that somatic muta-
tions are independent events (32, 33).

No mutations of any of the above ion channel genes were 
found in BAH or in ZG hyperplasia adjacent to the dominant 
aldosteronomas (26, 29, 32, 33); these findings suggest that 
nodule formation and excess aldosterone production are two 
dissociated events, implying a two-hit hypothesis for APA forma-
tion (16, 34). The first hit causing a unilateral aldosteronoma or 
a dominant nodule adjacent to ZG hyperplasia may result from 
a somatic mutation in one of the genes described above, at least 
in approximately 60% of cases. Possible causes of the second hit 
that results in dysregulation in cellular proliferation/apoptosis 
accelerating adenoma formation could be due either to activa-
tion of the Wnt/β-catenin pathway (35, 36), PKA pathway, or to 
gene mutations such as ARMC5 (37) (Figure  1). However, the 
pathophysiology of progression from normal adrenal to APA 
and the causes of diffuse bilateral hyperplasias, either as BAH or 
in mild form adjacent to the dominant aldosteronoma, are still 
unknown. Aldosterone-producing cell clusters (APCCs), which 
have increased expression of CYP11B2, are nests of cells below 
the adrenal capsule. They protrude into cortisol-producing cells 
that are usually negative for CYP11B2 expression. Nishimoto 
et  al. found that APCCs are common in normal adrenals, and 
they harbor a different mutational spectrum compared to APA 
suggesting that APCCs could be a precursor for APA (38). In 
addition, several hormones activating variable levels of eutopic or 
ectopic aberrant receptors (18) (Figure 1) as well as autocrine and 
paracrine regulatory mechanisms (17) can increase aldosterone 
secretion in PA (either APA or BAH) independently from the 
suppressed RAS (see later section).

ROLe OF ACTH iN ALDOSTeRONe 
PRODUCTiON iN NORMAL PHYSiOLOGY

Adrenocorticotropic hormone can stimulate aldosterone secre-
tion acutely and transiently under normal conditions, but to 
a lesser extent than angiotensin II and potassium. ACTH is 
a 39-amino-acid peptide, which results from the cleavage of 
its proopiomelanocortin (POMC) precursor by prohormone 
convertases PC1/3 and may be further cleaved by PC2 to gener-
ate α-melanocyte-stimulating hormone (α-MSH) (39, 40). It 
is mainly produced in the anterior pituitary corticotropes, but 
is also produced in brain, adrenal medulla, skin, and placenta 
(41–43). ACTH can induce aldosterone production at lower 
doses than the ones needed for cortisol and DHEA production 
(44). Furthermore, ACTH stimulates aldosterone production 
acutely and sometimes chronically.

Acute effects of ACTH
The initial binding of ACTH to its specific melanocortin type 2 
receptor (MC2R) stimulates both cortisol and aldosterone secre-
tion. MC2R (45) is a seven transmembrane domain receptor that 
belongs to the family of melanocortin receptors (MCRs) (45). 

Five MCRs constitute a distinct family of G-protein coupled 
hormone receptors (GPCR); MC2R is the smallest MCR and 
GPCR (45, 46). MC2R is expressed in zona fasciculata (ZF) and 
ZG cells (47). The binding of ACTH to its MC2R induces the 
dissociation of Gs-α subunit and activation of adenylate cyclase 
(AC) that generates cAMP from ATP (48) (Figure  1). cAMP 
molecules bind to specific domains of the regulatory subunits 
of protein kinase A (PKA) thereby dissociating the tetramer and 
releasing the catalytic subunit (PRKACA) from its inactivating 
regulatory subunits. Activated PRKACA phosphorylates and 
activates steroidogenic acute regulatory protein (StAR) as well 
as cAMP response element binding protein (CREB), thereby 
increasing StAR expression. On the other hand, activation of 
the PKA pathway induces a slow but sustained calcium influx 
through the L-type calcium channels. The subsequent increase 
in intracellular calcium activates calcium/calmodulin-dependent 
protein kinase and steroidogenesis (49, 50).

Chronic effects of ACTH
In contrast to in vivo studies that suggest that ACTH is a short-
term stimulator of aldosterone production, in  vitro studies 
showed that ACTH can act as a major stimulus of aldosterone 
secretion. Continuous intravenous infusion of ACTH leads to a 
transient stimulation of aldosterone secretion, whereas its pulsa-
tile administration leads to a sustained stimulation of aldosterone 
up to 72 h (51). Moreover, chronic exposure to ACTH (2 days 
or more) leads to transformation of ZG cells into ZF-like cells 
with elongated mitochondria with lamellar and tubular cristae 
becoming round with ovoid cristae; at the functional level, the 
synthesis of angiotensin II receptors, steroidogenic enzymes, and 
their products is altered (52–56).

ROLe OF ACTH iN eXCeSS 
ALDOSTeRONe SeCReTiON iN PA

Diurnal Rhythmicity of Aldosterone
In recumbent normal subjects on a regular diet, the circadian 
rhythm of PAC is regulated by the activity of plasma renin inde-
pendently of ACTH (57). In contrast, patients with PA have a 
circadian rhythm of PAC mediated by changes in ACTH rather 
than by the suppressed plasma renin–angiotensin II levels (58). 
Several groups described that PAC falls following overnight 
sleep when ACTH levels are low despite upright posture or 
angiotensin II infusion. Similarly, they noted a marked increase 
in PAC shortly after ACTH administration (59–63), which was 
higher compared to normal controls or patients with essential 
hypertension (64, 65). Furthermore, abolition of diurnal rhythm 
by dexamethasone in PA demonstrates the impact of ACTH on 
adrenal steroidogenesis (66). Administration of dexamethasone 
0.75–2.0 mg per day for 2 days decreased aldosterone levels by a 
mean of 49% in a group of 15 patients with aldosteronomas; in 
33%, the suppression was greater than 80% (67).

ACTH Role in Familial Hyperaldosteronism
Familial hyperaldosteronism (FH) type-1, previously known 
as glucocorticoid-remediable aldosteronism (GRA), was first  
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described as a form of hyperaldosteronism relieved by dexa-
methasone (68). It is suspected in young PA patients whose 
relatives suffer from cerebrovascular accidents. It is an autoso-
mal dominant disease whereby the promoter of the chimeric 
11β-hydroxylase/aldosterone synthase gene belongs to the 5′ 
end of CYP11 B1 (11β hydroxylase) and drives the expression 
of the 3′ end of CYP11 B2 (aldosterone synthase) ectopically 
in ZF cells under the main regulation by ACTH (69); in these 
patients, dexamethasone usually decreases aldosterone secretion 
by more than 80% or to <4 ng/dL (67), but the diagnosis is now 
performed using genetic analysis. In contrast to FH type-1, FH 
type-2 is defined as PA in a patient with a first-degree relative 
(parent/sibling/offspring) with established PA but without FH 
type-1 gene rearrangement. Linkage analysis has mapped FH 
type-2 to chromosome 7p22 but no responsible gene has been 
identified yet (70). The prevalence of FH type-2 in PA is higher 
(1.2–6%) than FH type-1 (≤1%). The FH type-3 and -4 are not 
regulated by ACTH stimulation, but they are caused by germline 
mutations in KCNJ5 (71) and CACNA1D/CACNA1H (30, 31) 
genes, respectively.

ACTH Suppression or Stimulation Tests 
Can Reveal the Presence of PA
Based on the rationale that ACTH plays a more important role 
in PA than in normal subjects or those with essential hyper-
tension, investigators in Athens compared the classical saline 
infusion test (SIT) to postdexamethasone SIT in 151 patients 
with single adrenal adenomas and detected almost double rate 
of aldosterone hypersecretion following dexamethasone admin-
istration (24 vs. 12%) (72). Similarly, they used a combined 
fludrocortisone–dexamethasone suppression test (FDST), 
which is a modification of the classic confirmatory fludrocor-
tisone suppression test (FST) for the diagnosis of PA; it involves 
the administration of dexamethasone to hypertensives patients 
at midnight of the last day of the FST in order to eliminate 
the stimulatory effect of ACTH on aldosterone secretion. They 
demonstrated that the prevalence of PA rises from 5 to 13% 
with the usual diagnostic tests to 28.7–31% when using FDST; 
mineralocorticoid receptor blockade resulted in significant 
improvement in blood pressure in these patients (73–75). The 
same group administered an ultralow-dose (0.03  μg) ACTH 
to 113 hypertensives without PA: the 30 patients (27%) who 
exhibited an aldosterone hyperresponse had significantly higher 
PAC, ARR, and PAC/ACTH ratio in the treadmill test; nor-
malization of blood pressure by mineralocorticoid antagonists 
in these patients was also evident compared to the group of 
hypertensive not sensitive to ACTH/stress (76). Therefore, 
the benefit of mineralocorticoid blockade could extend even 
to hypertensive patients without confirmed PA who present 
an aldosterone hyperreseponse to ACTH/stress, this category 
of hypertenives harboring a mild form of BAH. In contrast, 
another group examining the diagnostic accuracy of ACTH 
test in 158 hypertensive patients found that it was not very 
effective in differentiating between APA patients and non-PA 
patients (77).

Use of ACTH to identify the Source of 
Aldosterone excess
Many efforts were conducted to find an easier and cheaper test 
than adrenal vein sampling (AVS), which is available only in 
tertiary care center with experienced angioradiologists to dis-
tinguish between lateralized and bilateral sources of aldosterone. 
Differential increase in PAC during upright posture was sug-
gested to be a valuable tool to distinguish APA from BAH, but 
further studies showed that several APA and BAH had similar 
rise in PAC to upright posture (78). APA whether responsive or 
not to angiotensin II was found to be more sensitive to ACTH 
stimulation resulting in larger increase of PAC than in patients 
with BAH or essential hypertension (79–81). BAH patients also 
displayed increased response of PAC to ACTH administration 
than normal subjects or patients with essential hypertension 
(82). PAC increased more after ACTH bolus in the APA group 
compared with BAH group, which had an intermediate increase 
compared to normal controls (18, 66). A study in which patients 
received dexamethasone (1 mg) the evening before receiving i.v. 
injection of 50 IU of ACTH showed that the exaggerated PAC 
response was higher after 120 min in patients with APA than in 
BAH (83). It was suggested that this could be used for identifying 
the etiology subtype; however, significant overlap was present 
between APA, unilateral hyperplasia, and BAH cases and using 
an optimal cutoff value of the aldosterone >78 ng/dL for APA, 
provided a sensitivity of 76.8% and a specificity of 87.2% (83).

Kline et  al. studied 65 patients with confirmed PA who 
were divided by histology into confirmed lateralized and non- 
lateralized; PAC in inferior vena cava (IVC) sampled during AVS 
before and after cosyntropin infusion was analyzed. Baseline and 
peak IVC aldosterone was higher in lateralized patients (APA) 
but incremental aldosterone rise was much greater in subjects 
with bilateral hyperplasia (84). This shows that ACTH can regu-
late APA as well as BAH, but that the effects are more pronounced 
in APA.

Role of ACTH Stimulation during Adrenal 
venous Sampling
The usefulness of ACTH stimulation in the conduct of AVS pro-
cedure is controversial and remains a matter of debate because 
of conflicting results. Some centers use cosyntropin infusion 
or bolus in order to minimize stress-induced or spontaneous 
fluctuations in aldosterone secretion when performing sequen-
tial non-simultaneous AVS, to maximize the gradient of cortisol 
from the adrenal vein to the inferior vena cava, and to maximize 
aldosterone secretion from an APA (85). In contrast, other groups 
found that ACTH-stimulation of aldosterone production from 
the contralateral gland or adjacent hyperplasia may reduce the 
gradient of aldosterone production resulting in incorrect laterali-
zation (86, 87). The effect of both continuous ACTH infusion and 
bolus on the performance and interpretation of AVS in confirmed 
PA patients was investigated (88). Both methods lead to a signifi-
cant increase in selectivity index for the right adrenal vein and 
ACTH bolus for the left adrenal vein. Lateralization index was 
not significantly affected after continuous ACTH infusion and 
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i.v. bolus. In 88 and 78% of the patients, the diagnosis obtained 
was the same before and after ACTH infusion and i.v. bolus, 
respectively (88). Recently, our group demonstrated that ACTH 
increased selectivity on both sides from 66.7% in basal samples to 
91.8% poststimulation. A discordance of lateralization between 
basal and post-ACTH values was observed in 28% of cases, 
mostly lateralized cases basally that became bilateral post ACTH 
(87). The variation in the response to ACTH stimulation could be 
due to the variable expression of MC2R in APA (see later) (18). 
Careful examination of the levels of aldosterone in the adrenal 
vein contralateral to the dominant or lateralized APA and pathol-
ogy confirmed the frequent presence of bilateral background 
hyperplasia and this could predict less favorable post-operative 
outcome with residual hypertension (35, 87).

iNCReASeD BUT vARiABLe eXPReSSiON 
OF MC2R iN PA

The explanation for the increased role of ACTH in the regulation 
of aldosterone in PA may be secondary to the overexpression and 
function of MC2R in this condition. The expression of MC2R 
mRNA was shown to be upregulated in human adrenocortical 
neoplasms specifically in functional adenomas in contrast to non-
functioning adenomas and carcinomas (89). More specifically, a 
few studies have demonstrated increased eutopic expression of 
MC2R assessed by RT-PCR or transcriptome studies in resected 
aldosteronomas as compared to cortisol-secreting adenomas, 
non-functional adenomas, and adrenocortical carcinomas 
(90–92). A particularly pertinent informative study included 
15 adrenal tumors (14 APA and 1 BAH); MC2R mRNA levels 
were increased by a mean of 3.9-fold in those tissues compared 
to normal adrenal (18). However great variability existed in the 
level of expression in each tumor as 4 had lower levels than nor-
mal (0.3-fold to 0.7-fold), while those with increased expression 
varied between 1.4- and 20.6-fold compared to normal. The data 
are limited to mRNA expression without available measurements 
at the protein levels (no good specific MC2R antibody), but cor-
related well with the in vivo increased response to ACTH admin-
istration. There is almost no data on MC2R expression in BAH as 
those patients are usually not operated, but in the only case with 
BAH studied by this group MC2R was 20-fold increased. These 
data appear to be compatible with the findings that the majority 
of patients stimulated with ACTH during AVS will have concord-
ant results before and after ACTH as the majority overexpress 
MC2R; however, the 28% of discordant results we found (87) may 
be explained by cases where MC2R are relatively decreased in the 
dominant adenoma but is present in adjacent hyperplasia. This 
hypothesis remains to be validated in prospective studies.

OTHeR HORMONeS AND ABeRRANT 
ReCePTORS ReGULATiNG 
ALDOSTeRONe SeCReTiON iN PRiMARY 
ALDOSTeRONiSM

Adrenocorticotropin hormone is not the exclusive trigger of 
aldosterone secretion since several other hormones have a role in 

the pathophysiology of PA in addition to the ion channels muta-
tions. Serotonin plays a significant role in aldosterone synthesis in 
normal physiological and in PA. The administration of serotonin 
5-HT4 agonists such as metoclopramide, cisapride, and tegaserod 
resulted in higher stimulation of aldosterone in PA as compared 
to the physiological moderate increase in normal individuals 
(18, 93, 94). Whereas non-specific inhibitors of 5-HT such as 
cyproheptadine and ketanserin produced only minor and tran-
sient inhibition of aldosterone secretion in aldosteronomas (95, 
96), specific 5-HT4R antagonists such as GR113808 were potent 
inhibitors of basal- and cisapride-induced aldosterone secretion 
(93). Chromaffin cells, endothelial cells, nerve terminals, and 
cells of the immune system are localized in the immediate vicinity 
of ZG cells and can secrete various factors to control aldosterone 
secretion (97). Local release of 5-HT by perivascular mast cells 
(MC) can activate 5-HT4R expressed in ZG cells and consequently 
stimulate aldosterone production (98). A role of MC in tumo-
rigenesis was proposed (99, 100). The density of MC was found 
to be increased in APA tissues compared with normal adrenals 
(101). As the 5-HT4R have been found to be overexpressed in 
the majority of APA (but variable as MC2R) (17, 18, 102) and 
the ligand may be locally overexpressed also, a paracrine loop of 
regulation of aldosterone production appears to be present.

The compelling evidence supporting that various aberrant 
GPCR are frequently expressed in bilateral macronodular adrenal 
hyperplasia and Cushing’s syndrome (103) led many researchers 
to investigate the presence of aberrant GPCR in PA. Adrenal 
production of aldosterone in APA and BAH was found to be 
under the influence of aberrant GPCR and their ligands, as dem-
onstrated by in vivo and in vitro studies (104, 105). The expression 
of ectopic receptors, which are usually not expressed at significant 
levels in normal ZG cells include those for glucose-dependent 
insulinotropic peptide (GIPR) (106), luteinizing hormone/
human chorionic gonadotropin (LH–hCG R) (18, 106–112), 
β-adrenergic receptors (β-AR) (113), vasopressin (V1-AVPR) 
(18, 106, 114, 115), glucagon (glucagon receptor), TRH (TRH 
R) (18, 112, 116) and Endothelin-1 ETA and ETB receptors (117). 
Using a microarray approach in 10 aldosteronomas compared 
with five normal adrenals and 13 cortisol-secreting adenomas, 
the six GCPRs with highest increase in expression included 
LHCGR, 5-HT4R, GnRHR, glutamate receptor metabotropic 3, 
endothelin receptor ETB receptors, and MC2R (92). Table 1 sum-
marizes the different types of aberrant eutopic or ectopic GPCR 
involved in aldosterone excess in PA. Co-expression of multiple 
aberrant GPCR was also reported; renin-independent stimula-
tion of aldosterone secretion was observed in  vivo following 
mixed meal, oral glucose, or administration of GIP, vasopressin, 
and tegaserod in a patient with unilateral source of PA (106). On 
the other hand, co-secretion of aldosterone and cortisol due to 
aberrant expression of GPCR was noted; in a patient with BMAH 
and β-AR-aberrant expression, isoproterenol stimulated both 
cortisol and aldosterone production (113).

Activating somatic CTNNB1 (β-catenin) mutations have now 
been identified in tumors of three women with APAs, two who 
presented during pregnancy and one after menopause (118). All 
three had heterozygous activating mutations of CTNNB1 and 
expressed aberrant LHCG and GNRH receptors at levels 100-fold 

http://www.frontiersin.org/Endocrinology/
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TABLe 1 | Types of GPCR involved in aldosterone hypersecretion in patients with PA.

Aberrant receptor Phenotype In vivo screening protocol Targeted medical therapy

MC2R (eutopic) (90–92) ACTH-dependent hyperaldosteronism Cosyntropin

GIP receptor (ectopic) (102) Food-dependent hyperaldosteronism Mixed meal Octreotide, pasireotide
Oral glucose GIPR antagonist

Vasopressin receptor (ectopic)  
(18, 102, 114, 115)

Upright posture-dependent 
hyperaldosteronism

Upright posture AVP/desmopressin Specific AVP receptors 
antagonist

β-adrenergic receptor (ectopic) (113) Upright posture Upright posture β-blockers
Insulin-induced hypoglycemia Exercise/
stress test hyperaldosteronism

Isoproterenol (β1-agonist)

GnRH receptor, LH/hCG receptor (ectopic) 
(18, 102, 107–112)

Luteal phase of ovarian cycle/Pregnancy 
(transient)

GnRH, hCG, Recombinant LH Long-acting GnRH agonist 
(leuprolide acetate)

Postmenopausal (persistent)-dependent 
hyperaldosteronism

5-HT4 receptor (eutopic) (18, 93, 94, 102) Serotonin-dependent dependent 5-HT4 receptor agonists 
(metoclopramide, cisapride, tegaserod)

5-HT4 receptor antagonist 
(GR113808)

Glucagon receptor (ectopic) (18) Hypoglycemia? Intravenous glucagon Octreotide

TRH receptor (ectopic) (18, 112, 116) Hypothyroidism

Endothelin-1 A and B receptors (ectopic) (117) 
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higher than in other APAs. It was shown that the CTNNB1 muta-
tion led to activation of the WNT pathway; it was suggested that 
could be the cause of dedifferentiation of gonadal progenitor 
cells present in the adrenal tissues with increased expression of 
gonadal receptors. It is thought that the high levels of endogenous 
human chorionic gonadotropin (hCG) during pregnancy and 
of gonadotropin-releasing hormone (GnRH) and luteinizing 
hormone (LH) after menopause led to the identification of APAs 
in these patients (118).

It is currently unclear whether these aberrant regulatory 
secretory mechanisms by ACTH and other hormones and the 
overexpression of their GPCR in PA are secondary to unknown 
proliferative mechanisms or are primary and at least partially 
responsible for the abnormal proliferation, the initiation of diffuse 
BAH. However, they clearly play a role in aldosterone secretion 
which is not autonomous.

CONCLUSiON

Our understanding of the increased occurrence and complexity 
of molecular etiology and unique signature in each case of 

PA has progressed greatly in recent years. The increased role 
of ACTH, of the variable expression of MC2R, and of other 
aberrant GPCR in PA should receive further attention in the 
future. The development of effective antagonists to MC2R and 
other aberrant GPCR could eventually offer interesting alterna-
tives in patients with bilateral sources of excess aldosterone in 
combination with better antagonists of the mineralocorticoid 
receptor.
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