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The architectural transcription factor high-mobility group AT-hook 1 (HMGA1) is a chro-
matin regulator with implications in several biological processes, including tumorigenesis, 
inflammation, and metabolism. Previous studies have indicated a role for this factor in 
promoting the early stages of adipogenesis, while inhibiting adipocyte terminal differ-
entiation, and decreasing fat mass. It has been demonstrated that hypoxia – through 
the hypoxia-inducible factor 1 (HIF-1) – plays a major role in triggering changes in the 
adipose tissue of the obese, leading to inhibition of adipocyte differentiation, adipose 
cell dysfunction, inflammation, insulin resistance, and type 2 diabetes. To examine the 
possible cooperation between HMGA1 and HIF-1, herein, we investigated the role of 
HMGA1 in the regulation of Visfatin and VEGF, two genes normally expressed in adipose 
cells, which are both responsive to hypoxia. We demonstrated that HMGA1 enhanced 
Visfatin and VEGF gene expression in human embryonic kidney (HEK) 293 cells in 
hypoxic conditions, whereas HMGA1 knockdown in differentiated 3T3-L1 adipocytes 
reduced these effects. Reporter gene analysis showed that Visfatin and VEGF transcrip-
tional activity was increased by the addition of either HMGA1 or HIF-1 and even further 
by the combination of both factors. As demonstrated by chromatin immunoprecipitation 
in intact cells, HMGA1 directly interacted with the VEGF gene, and this interaction was 
enhanced in hypoxic conditions. Furthermore, as indicated by co-immunoprecipitation 
studies, HMGA1 and HIF-1 physically interacted with each other, supporting the notion 
that this association may corroborate a functional link between these factors. Therefore, 
our findings provide evidence for molecular cross-talk between HMGA1 and HIF-1, and 
this may be important for elucidating protein and gene networks relevant to obesity.
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inTrODUcTiOn

Obesity is a pathological condition often associated with insulin 
resistance, type 2 diabetes, cardiovascular disease, and even 
certain types of cancers (1, 2). Because of its alarming rise in 
incidence, and consequences in health care, interest in under-
standing the pathophysiological role of adipose tissue has con-
sistently increased in the last decades. A major, relatively recent 
advancement in this field has been the concept that adipose tissue 
is not just an inert reserve of lipids, but a source of biomolecules, 
collectively called adipocytokines, with important implications 
in insulin sensitivity, inflammation, and angiogenesis (3–5). As 
adipocytokines are differentially expressed in the adipose tissue 
of obese versus lean individuals, a pro-inflammatory, insulin 
resistant, pro-atherogenic pattern typically prevails in the obese 
state. For example, it has been recognized that, in obesity, hyper-
trophic adipocytes produce monocyte chemotactic protein-1 
(MCP-1), a factor favoring the infiltration of macrophages into 
fat tissue, while these immune cells produce pro-inflammatory 
cytokines, including the tumor necrosis factor α (TNFα), which 
sustain, in turn, adipose cell dysfunction (6, 7). However, the 
initial events leading to these changes in adipose tissue are still 
poorly understood.

An important issue is that the adipose tissue from obese 
individuals may become poorly oxygenated as adipocytes 
become larger, and distant from the vasculature (8–12). Hypoxia-
inducible factors (HIFs) are important mediators of cellular 
adaptive response to hypoxia and play a role in the regulation 
of genes implicated in anaerobic metabolism, cell growth and 
survival, angiogenesis, and immune response (13, 14). In this 
regard, a master regulator that mediates hypoxic response is the 
HIF-1, a heterodimer constituted by α and β subunits. While HIF-
1β is a constitutively expressed subunit, HIF-1α is continuously 
translated and degraded through ubiquitination under normoxic 
conditions (15, 16). In contrast, in hypoxic conditions, HIF-1α 
accumulates in the cytosol, being subsequently translocated 
into the nucleus, where it dimerizes with the HIF-1β subunit. 
As a transcription factor, the HIF-1α/β dimer binds to hypoxia 
responsive elements located within O2-regulated genes (17, 18), 
modulating a wide range of adaptive responses at low oxygen 
conditions, including glucose utilization, angiogenesis, apoptosis, 
extracellular matrix remodeling, and inflammation (12–14, 19, 
20). Several other transcription factors have been recognized to 
be implicated in this scenario, including NF-kB, C/EBP homolo-
gous protein (CHOP), and the cAMP response element binding 
protein (CREB), all of which may interact and cooperate with 
HIF-1, in particular in the context of inflammation (21–23).

As reported (9), over thousand genes change their expres-
sion in adipose tissue hypoxia. However, how HIF-1 acts in the 
regulation of fat tissue-specific target genes, and which molecular 
partners are involved, need to be further characterized. We have 
hypothesized that the high-mobility group protein AT-hook 1 
(HMGA1) may be a player in the gene expression networks that 
involve HIF-1 in adipose tissue. HMGA1 is an architectural tran-
scription factor that functions as a dynamic regulator of chromatin 
structure (24–26), and is implicated in a variety of biological pro-
cesses, including development, tumorigenesis, inflammation, and 

metabolism (25, 27–30). Several evidences have demonstrated a 
role for HMGA1 in the development of adipose tissue, both in 
pathological and physiological conditions. HMGA (HMGA1 
and HMGA2) gene rearrangements, due to chromosomal trans-
locations, have been described in human benign neoplasias of 
mesenchimal origin, including lipomas (31), whereas a truncated 
form of HMGA1 has been reported to induce proliferation in 
3T3-L1 preadipocytes (32). In a more physiological context, it 
has been reported that in vitro, in 3T3-L1 cells, HMGA1 is highly 
expressed during the first phases of adipose cell differentiation, 
while its deficit precludes terminal adipocyte conversion (27). 
Coherently, in vivo, in transgenic mice, HMGA1 overexpression 
in adipose tissue impairs adipogenesis and reduces fat mass by 
upregulating pre-adipocyte gene markers, and downregulating 
genes involved in adipocyte differentiation (33). At a molecular 
level, by binding to AT-rich sequences in the promoter region of 
the gene, HMGA1 modulates gene transcription either facilitating 
the binding of other transcription regulators to DNA, or interact-
ing with other transcription factors that directly influence gene 
transcription (24, 34, 35). For example, HMGA1 has been shown 
to physically and/or functionally interact with NF-kB, PPARγ, 
and CEBP/β (36–38), which are abundantly expressed in adipose 
tissue. Previous findings indicate that hypoxia induces HMGA1 
expression in  vitro, and that this response is evolutionarily 
conserved (39, 40). However, up to now, a relationship between 
HMGA1 and HIF-1 has not been reported and the examination 
of this link could give further insights into our understanding 
of the regulation of genes involved in adipogenesis and obesity.

In the present study, we investigated two known HIF-1 target 
genes: the vascular endothelial growth factor (VEGF) gene and 
the Visfatin gene, both of which are normally expressed in adipose 
tissue (41–44). We show that HMGA1 physically interacts with 
HIF-1, and this interaction is required for proper transcription 
of these genes.

MaTerials anD MeThODs

cell cultures
HEK-293 cells and 3T3-L1 mouse fibroblasts were cultured in 
Dulbecco’s modified Eagle medium (DMEM) (Sigma Aldrich) 
supplemented with 10% fetal bovine serum, 2  mM glutamine, 
penicillin (100  U/ml), and streptomycin (100  μg/ml), in a 
humidified 37°C, 5% CO2 incubator. Differentiation of 3T3-L1 
fibroblasts into adipocytes was induced as described previously 
(45). Hypoxic conditions were obtained by placing cells for 
24  h at 2% O2 in a hypoxic chamber (New Brunswick Galaxy 
48R, Eppendorf), or by chemical induction with 100 μM cobalt 
chloride (CoCl2).

Plasmids, small interfering rna, and 
Transient Transfection
Reporter plasmids were as follows: p2025-Visfatin-Luc (a gift 
from A. Fukuhara, Osaka University, Osaka, Japan) and VEGF 
2.6-Luc (a gift from N. Sheehy, University College Dublin, 
Dublin, Ireland). Expression plasmids were as follows: pcDNA3/
HA-HMGA1 (32) and pcDNA3.1/HA-HIF-1α (a gift from G.L. 
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Semenza, Johns Hopkins University, Baltimore, USA). For gene 
silencing experiments, a pool of three target-specific 20–25  nt 
siRNAs targeting mouse HMGA1 (Santa Cruz Biotech) was 
used. In all knockdown experiments, cells were transfected with 
250  pmol of HMGA1 siRNA in six-well plates, and incubated 
without further treatment for 72 h before being used in subsequent 
analyses. Cell transient transfections were carried out using the 
Lipofectamine 2000 method (Invitrogen), and luciferase activity 
was assayed 48  h later, using the dual-luciferase reporter assay 
system (Promega).

real-Time Pcr
For quantitative RT-PCR (qRT-PCR), total cellular RNA was 
extracted from 3T3-L1 cells using the RNAqueous-4PCR kit 
(Ambion), subjected to DNase treatment, and cDNAs were syn-
thesized from 1 μg of total RNA using the RETROscript first strand 
synthesis kit (Ambion). Primers for mouse HMGA1, Visfatin, 
VEGF, and Rps9 were designed according to sequences from 
the GenBank database. A real-time thermocycler (Eppendorf 
Mastercycler ep realplex ES) was used to perform qRT-PCR. SYBR 
Green fluorescence was measured, and relative quantification was 
made against the Rps9 cDNA used as an internal standard. All 
PCR reactions were carried out in triplicates.

Western Blot and co-immunoprecipitation 
studies
Western blots were performed in nuclear extracts from 3T3-L1 
and HEK-293 cells in both normoxic or hypoxic conditions. The 
antibodies used for these studies were: anti-HIF-1α (NovusBio), 
anti-Sp1, anti-HMGA1, and anti-Lamin A/C (SantaCruz) poly-
clonal antibodies. For co-immunoprecipitation studies, 200 μg of 
nuclear extracts from 3T3-L1 adipocytes or HEK-293 cells were 
mixed overnight with 5 μg of anti-HMGA1 antibody, as reported 
previously (38). Protein A Sepharose beads (GE Healthcare) were 
added for 90 min with rotation at 4°C. Antibody coupled protein 
A beads were washed twice with phosphate-buffered saline (PBS), 
proteins dissolved in Laemmli buffer and analyzed by SDS-PAGE 
and immunoblotting, using the polyclonal HIF-1α-specific 
antibody.

chromatin immunoprecipitation
Chromatin Immunoprecipitation was performed in 3T3-L1 cells 
as described previously (35). As soon as the cells reached full dif-
ferentiation, hypoxia was induced by treating cells with O2 2%, 
24 h. Then, cells were washed with PBS and fresh DMEM was 
added. DNA–protein complexes were cross-linked by adding for-
maldehyde for 10 min at room temperature, followed by blocking 
with glycine for 2 min. Cells were washed twice with cold PBS 
and lysed on ice using SDS lysis buffer (1% SDS, 10 mM EDTA, 
50 mM Tris pH 8). Chromatin samples were sonicated on ice and 
the formaldehyde-fixed DNA–protein complexes were immuno-
precipitated with anti-HMGA1 antibody, and sequence-specific 
primers for the mouse Vegf (and Visfatin) gene promoters were 
used for PCR amplification of immunoprecipitated DNA, using 
PCR ready-to-go beads (GE Healthcare). For the mouse Vegf 
gene, Vegf-specific primers (for 5′-GCT CTC TCT GAC CGG  

TCT CT-3′; rev 5′-GCA GAC TAT TCA GCG GAC TCA-3′) 
amplified a 270  bp region from −922 to −652  bp upstream of 
the ATG start site, which encompasses the consensus site for 
HMGA1. PCR products were electrophoretically resolved on 
1.5% agarose gel and stained with ethidium bromide staining 
solution. To improve the reliability of comparisons within 
multiple experiments, we performed also qRT-PCR to amplify 
ChIP-ed DNA samples and to compare the amount of each with 
total input DNA used for each immunoprecipitation. Primers 
used were as above, while dissociation curves were analyzed to 
verify the quality of the amplicon and to exclude the presence of 
primer dimers.

statistical analysis
All calculations were performed with SPSS 20.0 statistical soft-
ware (SPSS Inc.). The non-parametric Mann–Whitney test was 
used for comparisons of data with a control, as foreseen in the 
Dunnett test approach (46). Results are shown as mean  ±  SE. 
A p-value <0.05 (two-tailed) was considered significant.

resUlTs

hypoxia and hMga1 increase Visfatin 
and VEGF gene expression
To test the hypothesis that HMGA1 could play a functional role 
in the transcriptional regulation of genes activated in hypoxic 
conditions, we first examined two genes, VEGF and Visfatin, 
which are both naturally expressed in adipose cells, and regu-
lated by hypoxia. HMGA1 and HIF-1 consensus binding sites 
within the regulatory region of both these genes were identified 
by using the TRANSFAC database searched with MatInspector 
as informatic support (version 8.1, Genomatix, http://www.
genomatix.de/). As shown in Figure  1, bioinformatic analysis 
predicted putative binding sites for HIF-1 and HMGA1 nuclear 
proteins in both human and mouse VEGF and Visfatin gene 
promoters.

We next tested Visfatin and VEGF gene expression, and 
their response to hypoxia, in murine differentiated 3T3-L1 
adipocytes, which express high levels of HMGA1 protein, and 
in human HEK-293 cells, a cell line ideally suited for studying 
the effects of HMGA1 on transcription since it does not express 
appreciable amounts of HMGA1. As shown by qRT-PCR, 
Visfatin and VEGF cDNAs were detectable in these cell lines 
in normal growth conditions, whereas both genes were further 
activated in cells under hypoxic conditions, as obtained by 
incubating cells in 2% O2 or when exposed to chemical hypoxia 
with CoCl2 (Figure  2A). When HMGA1 was overexpressed 
into HEK-293 cells, the expression of both VEGF and Visfatin 
genes increased in both normoxic and hypoxic conditions 
(Figure 2B). Conversely, knockdown of endogenous HMGA1 
with HMGA1-specific siRNA inhibited Vegf and Visfatin gene 
expression in 3T3-L1 adipocytes in normoxic and hypoxic 
conditions (Figure 2C), thereby indicating a role for HMGA1 in 
the regulation of these hypoxia-inducible genes, and suggesting 
that HMGA1 is required for full activation of these genes during 
hypoxia.
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FigUre 1 | schematic representation of the human and mouse VEGF and Visfatin promoter regions. HMGA1- and HIF-1α-binding sites are shown in 
each region. The numbers indicate positions in base pairs relative to the transcriptional start site (+1). Mouse Vegf and Visfatin promoter regions encompassing 
binding sites for HMGA1 and used in ChIP are indicated.
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Transcriptional regulation of Visfatin and 
VEGF genes by hMga1 and hiF-1
To explore the possibility that Visfatin and VEGF genes were 
transcriptionally regulated by a functional cooperation between 
HIF-1 and HMGA1, we transiently transfected HEK-293 cells with 
luciferase reporter plasmids containing the full-length sequence 
of the mouse Visfatin or the human VEGF gene promoter, in the 
absence or presence of recombinant plasmids expressing either 
HMGA1, HIF-1α, or both. As shown in Figure 3, forced expres-
sion of HMGA1 or HIF-1α in HEK-293 cells induced Visfatin 
and VEGF gene promoters, while concomitant overexpression 
of HMGA1 and HIF-1α yielded a synergistic increase in both 
Visfatin and VEGF promoter activities, thus indicating that, in 
hypoxic conditions, HMGA1 is required for full transactivation 
of these genes by HIF-1.

hMga1 and hiF-1 Protein–Protein 
interaction and chiP
The above results were further supported by protein–protein 
interaction experiments in whole 3T3-L1 adipocytes and 
HEK-293 cells, in both of which hypoxia was induced by either 
oxygen-deprivation in hypoxia-chamber or by the chemical 
hypoxia-mimicking agent CoCl2. While confirming that the 
HIF-1α protein product was indeed induced in nuclear extracts 
from 3T3-L1 cells in response to hypoxia (Figure 4A), we investi-
gated whether HMGA1 and HIF-1 proteins physically interacted 
with each other in the context of the intact cell by performing 
co-immunoprecipitation studies. As shown in Figure 4A, immu-
noprecipitation of HMGA1 in nuclear extracts from 3T3-L1 
adipocytes exposed to normoxia or hypoxia, followed by Western 

blot analysis for HIF-1α, revealed a protein-specific band, which 
migrated in a position corresponding to the size of HIF-1α, 
whose intensity considerably increased with hypoxia. HMGA1-
HIF1 protein–protein interaction in hypoxia was substantiated 
in co-immunoprecipitation experiments using HMGA1 overex-
pressing HEK-293 cells, a cell line that normally produces barely 
amounts of HMGA1 (Figure 4A). Overall, these results indicate 
that HMGA1 and HIF-1 physically interact in vivo in intact cells, 
thereby suggesting that this step may represent an important 
prerequisite for the functional interplay between HMGA1 and 
HIF-1 in hypoxia.

These studies were complemented by ChIP in differenti-
ated 3T3-L1 adipocytes. We found that HMGA1 bound to the 
endogenous VEGFA chromosomal locus, and that this binding 
was enhanced after incubation of cultured cells in hypoxic condi-
tions (2% O2) (Figure 4B). Of note, no binding of HMGA1 to the 
Visfatin gene was observed in parallel experiments with 3T3-L1 
cells (not shown), suggesting that HMGA1 may influence Visfatin 
gene transcription through alternative mechanisms, not neces-
sarily involving direct binding of HMGA1 to DNA. A similar 
behavior has been reported for other genes, such as the Leptin 
and the interferon beta (IFN-β) genes (27, 47).

DiscUssiOn

Cellular oxygen sensing is known to be mostly mediated by spe-
cific nuclear transcription factors, among which HIF-1 occupies 
a pivotal position. How hypoxia, through HIF-1, impacts, at the 
molecular level, fat tissue-specific target genes and gene networks, 
is only partly understood. It is plausible that in most cases, HIF-1 
modulates the transcriptional activity of target genes by regulating 
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FigUre 2 | effects of hypoxia and hMga1 on Visfatin and VEGF gene expression. (a) 3T3-L1 adipocytes (left) and HEK-293 cells (right) were treated with 
CoCl2 or incubated under hypoxic conditions (O2 2%) for 24 h. Visfatin and VEGF mRNA were measured by RT-PCR. Results are the means ± SE of triplicates from 
three independent experiments. Data are shown as fold of increment versus controls (white bars), which are assigned a value of 1. *p < 0.05 versus controls. (B) 
HEK-293 cells were transfected with HMGA1 plasmid (1 μg) under normoxic or hypoxic (O2 2%) conditions. After 48 h, VEGF and Visfatin mRNA were measured by 
RT-PCR. Results are the means ± SE of triplicates from three independent experiments. Data are shown as fold of increment versus controls (white bars), which are 
assigned a value of 1. *p < 0.05 versus controls. Representative Western blots (WB) of HIF-1α and HMGA1 are shown for each experimental condition. Lanes: 1, 
control (pcDNA3 empty vector); 2, pcDNA3–HMGA1 effector vector; 3, pcDNA3 empty vector plus hypoxia; 4, pcDNA3–HMGA1 effector vector plus hypoxia. 
Lamin A/C, control of protein loading (c) 3T3-L1 adipocytes were incubated in the absence or presence of siRNA targeting HMGA1 (250 pmol) under normoxic or 
hypoxic (O2 2%) conditions. VEGF and Visfatin mRNAs were measured by RT-PCR. Results are the means ± SE of triplicates from three independent experiments. 
*p < 0.05 versus controls (white bars); **p < 0.05 versus hypoxic conditions in the presence of scrambled siRNA (control, gray bars). Representative WBs of 
HMGA1 and Sp1 (this latter used as a control) from nuclear extracts of 3T3-L1 cells, either untreated or treated with siRNA targeting HMGA1, are shown. 
Densitometric slot blot analysis, using the ImageJ software program, is shown for HMGA1. Numbers on the peaks are the size of the corresponding slot as a 
percentage of the total size of the slots.
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and/or interacting with other known ubiquitous or tissue-specific 
nuclear factors. In this regard, in adipose tissue, HIF-1 prevents 
adipogenesis by inhibiting PPARγ2 and C/EBPβ gene expression 
(48). In addition, HIF-1 is regulated by and interacts with NF-kB, 
a transcription factor that plays a pivotal role in the regulation of 
the inflammatory and immune responses (49).

High-mobility group AT-hook 1 shares with HIF-1 similar 
effects on adipogenesis and inflammation by inhibiting adipose 
cell terminal differentiation and by promoting the expression 

of proinflammatory cytokines. For example, an involvement of 
both HMGA1 and HIF-1 has been reported for the regulation 
of the Leptin and Pref-1 genes in the early phase of adipogenesis 
(9,  27,  33). On the other hand, cooperation among molecular 
partners common to HMGA1 and HIF-1, such as NF-kB, has 
been reported for the upregulation of genes involved in the 
immune response/inflammation, including IL-6 (9, 50), IFN-β 
(36, 51), and several cytokine and adhesion molecule genes (9, 52). 
Furthermore, in the context of the cyclooxygenase-2 (COX-2) 
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FigUre 3 | Functional activity of hMga1 and hiF-1α on VEGF and Visfatin gene transcription. HEK-293 cells were cotransfected with 1 μg of human 
VEGF-Luc or 100 ng of mouse Visfatin-Luc reporter plasmid, in the absence or presence of effector vectors for HMGA1 and HIF-1α (1 μg each), either alone or in 
combination. Data represent the means ± SE for three separate experiments. Values are expressed relative to the VEGF- and Visfatin-Luc activities obtained in 
transfections with the reporter vector alone (control, white bars), which is assigned an arbitrary value of 1. *p < 0.05 versus control. Representative WBs of HMGA1 
and HIF-1α from nuclear extracts of HEK-293 cells, either untransfected or transfected with human HMGA1 or HIF-1α expression vectors, are shown.
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gene promoter, hypoxia has been shown to induce HMGA1 as 
part of a hypoxia-induced enhanceosome that encompasses, 
among others, the NF-kB transcription factor, and helps to 
promote transcription of COX-2 (39). Despite of these findings, 
however, no evidence of a link between HIF-1 and HMGA1 has 
been previously searched and identified.

Herein, we were interested to investigate whether HIF-1 
cooperates with HMGA1 in the functional regulation of adipose 
tissue-specific gene expression. Using VEGF and Visfatin as 
established HIF-1-target genes in 3T3-L1 adipocytes, we dem-
onstrate that HMGA1 functionally interacts with HIF-1, thereby 
inducing transcriptional activation of both target genes. Our 
findings indicate that hypoxia-induced transcription of VEGF 
and Visfatin requires HMGA1 for maximal transactivation of 
these genes by HIF-1, and that repression of HMGA1 expression 
adversely affects HIF-1 function. Using ChIP, we demonstrated 
that HMGA1 can directly interact with the endogenous VEGF 
promoter. Intriguingly, this was not the case for the Visfatin gene, 
for which no HMGA1–DNA binding was observed in ChIP 
assays, although multiple putative binding sites for HMGA1 
were detected within the Visfatin promoter. One possibility for 
the functional interrelationship between HIF-1 and HMGA1 in 
the context of the Visfatin gene, during hypoxia, is that HMGA1 
may act through protein–protein interaction mechanism, with-
out direct binding to DNA. This is the case, for example, of the 
Leptin gene (27) and IFN-β gene (47), for which HMGA1 strongly 
potentiates transactivation by C/EBPβ and NF-kB, respectively, 
through direct protein–protein contacts independent of DNA. 

Alternatively, HMGA1 could recruit component(s) of the basal 
transcription machinery toward protein–DNA complexes, 
thereby promoting transcription, with little, if any, specificity 
for the putative target DNA sequence (53). In support of these 
non-canonical mechanisms, physical association between HIF-1 
and HMGA1 has been observed in our study, and this association 
may be a prerequisite for the HIF-1 effects in hypoxia.

While in adipose tissue the cooperation between HIF-1 and 
HMGA1 may coherently recapitulate their parallel roles in adi-
pogenesis and inflammation, other important biological effects, 
such as those on insulin action and glucose metabolism, in 
which HIF-1 and HMGA1 act in an apparently divergent man-
ner (i.e., insulin resistance versus insulin sensitivity), deserve 
future searches and explanations. Studies in adipose tissue and 
cells have shown a role of hypoxia in insulin resistance (9, 20) 
and in the impairment of insulin action (54), while adipose 
tissue-specific disruption of HIF-1 in mice fed with high-fat diet 
improves insulin sensitivity (55). In contrast, HMGA1 plays a 
positive role in insulin biosynthesis and action (29, 35, 56), as 
well as in the transcription of a number of glucose metabolism-
related genes (29, 30, 38, 57). Thus, whereas HMGA1 gene 
defects associate with insulin resistance and diabetes in humans 
and mice (29, 58, 59), HMGA1 overexpression in adipose tis-
sue prevents insulin resistance in mice (33). Therefore, studies 
aimed at investigating cross-talks between HMGA1, HIF-1, and 
their molecular partners at the level of gene transcription may 
help explaining the divergent role of these factors in insulin 
response.
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FigUre 4 | hMga1 and hiF-1 protein–protein interaction and chiP. (a) HIF-1α protein expression as shown by WB from 3T3-L1 adipocytes nuclear extracts 
in both normoxic or hypoxic (O2 2%, upper panel; CoCl2 100 μM, lower panel) conditions. Immunoprecipitation of HIF-1α from 3T3-L1 adipocytes and HEK-293 cell 
nuclear extracts under normoxic and hypoxic conditions, by using an anti-HMGA1 antibody (HMGA1-IP), followed by immunoblotting with an anti-HIF-1α specific 
antibody is shown in both panels. A negative control of immunoprecipitation (in the absence of HMGA1 antibody) is shown in the last right lane of each panel. 
Representative immunoblots are shown for each condition. Immunoprecipitations of HMGA1 followed by immunoblot analyses with the anti-HMGA1 antibody are 
shown in hypoxic HEK-293 cells, either untransfected or transfected with the HMGA1 effector vector. (B) ChIP analysis of the mouse Vegf promoter gene in 3T3-L1 
adipocytes under normoxic and hypoxic (O2 2%) conditions, using the anti-HMGA1-specific antibody (Ab). A representative ChIP assay is shown, together with 
qRT-PCR of ChIP-ed samples. Results are the mean ± SE for three independent experiments. p < 0.05 versus control (slashed bar).
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Overall, we believe our findings may contribute to elucidate 
the molecular mechanisms underlying hypoxia-induced gene 
regulation and expression in adipose cells. The identification of 
gene expression networks involved in adipose cell dysfunction 
represents a challenging field of research that may improve our 
knowledge on the pathophysiology of obesity and obesity-related 
disorders.
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