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Bone consists of the mineralized component (i.e., cortex and trabeculae) and the 
non-mineralized component (i.e., bone marrow). Most of the routine clinical bone imag-
ing uses X-ray-based techniques and focuses on the mineralized component. However, 
bone marrow adiposity has been also shown to have a strong linkage with bone health. 
Specifically, multiple previous studies have demonstrated a negative association between 
bone marrow fat fraction (BMFF) and bone mineral density. Magnetic resonance imaging 
(MRI) and magnetic resonance spectroscopy (MRS) are ideal imaging techniques for 
non-invasively investigating the properties of bone marrow fat. In the present work, 
we first review the most important MRI and MRS methods for assessing properties 
of bone marrow fat, including methodologies for measuring BMFF and bone marrow 
fatty acid composition parameters. Previous MRI and MRS studies measuring BMFF 
and fat unsaturation in the context of osteoporosis are then reviewed. Finally, previous 
studies investigating the relationship between bone marrow fat, other fat depots, and 
bone health in patients with obesity and type 2 diabetes are presented. In summary, 
MRI and MRS are powerful non-invasive techniques for measuring properties of bone 
marrow fat in osteoporosis, obesity, and type 2 diabetes and can assist in future studies 
investigating the pathophysiology of bone changes in the above clinical scenarios.

Keywords: bone marrow, magnetic resonance imaging, magnetic resonance spectroscopy, osteoporosis, 
diabetes, obesity

inTRODUCTiOn

Bone consists of the mineralized (i.e., cortex and trabeculae) and the non-mineralized component 
(i.e., bone marrow). The interaction of the mineralized and non-mineralized components plays 
an important role in bone loss pathophysiology. Quantitative measurements of the mineralized 
component have been traditionally performed by using dual-energy-X-ray-absorptiometry 
(DXA) or quantitative computed tomography (QCT) assessing bone mineral density (BMD) (1). 
BMD is used in clinical routine to determine osteoporosis-associated fracture risk. Osteoporosis 
is defined as a skeletal disorder characterized by compromised bone strength predisposing an 
individual to an increased risk for fractures (2). It is classified as a public health problem, since 
osteoporosis-related fractures are associated with a reduction in quality of life and an increased 
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morbidity and mortality (3, 4). However, BMD accounts for 
only 60–70% of the variation in bone strength (5) and the 
BMD values of subjects with and without osteoporotic fracture 
overlap (6). Measurements of trabecular bone microstructure, 
based on high-resolution imaging techniques, in addition to 
BMD have shown to improve the prediction of the variation in 
bone strength (7–9).

Despite the focus on the mineralized bone component for 
osteoporosis diagnostics, recent studies have highlighted the 
potential role of the non-mineralized bone component in bone 
health (10–14). Bone marrow fills the cavities of trabecular bone 
and it primarily consists of adipocytes (yellow marrow regions) 
or adipocytes and hematopoietic red blood cells (red marrow 
regions). It is well known that osteoporosis is associated with an 
increased bone marrow fat mass due to a shift of differentiation of 
mesenchymal stem cells to adipocytes rather than to osteoblasts 
(11, 13, 15). Multiple studies have shown that higher bone mar-
row fat fraction (BMFF) values are associated with lower BMD 
values (12, 14, 16–26).

Bone marrow fat has a distinctly different function compared 
to other white and brown adipose tissue depots or ectopic fat 
depots in the human body (27) and might play a role in the 
pathophysiology of metabolic disorders. Metabolic diseases, 
including obesity and diabetes, are known to have a complex and 
still poorly understood relationship to bone health. There seems 
to be a higher fracture-related morbidity in obese than in non-
obese women (28), and more fractures in diabetic than in healthy 
subjects (29–32). In addition, there is a growing interest to study 
the relationship between bone marrow fat mass and fat in other 
depots regarding obesity and type 2 diabetes mellitus (T2DM).

In this context, imaging biomarkers are emerging to 
non-invasively study the properties of the non-mineralized 
component of bone (33). Dual-energy CT (DECT) allows to 
simultaneously determine bone marrow fat and BMD (34). 
In contrast to DECT, magnetic resonance (MR) allows the quan-
titative assessment of bone marrow without radiation exposure. 
MR enables reliable measurements of bone marrow water-fat 
and fatty acid composition with different methods including 
magnetic resonance imaging (MRI) and magnetic resonance 
spectroscopy (MRS) (35, 36).

The purpose of the present work is to review the currently 
available literature on MR-based assessment of bone marrow fat 
in the context of osteoporosis, T2DM, and obesity.

MR-BASeD ASSeSSMenT OF BOne 
MARROw FAT

Literature Research
Electronic searches in PubMed (http://www.ncbi.nlm.nih.gov/
pubmed) were performed up to March 2015 to identify relevant 
studies for this review. No starting date was entered for the elec-
tronic search to obtain the entire literature available in PubMed. 
Search terms used included “Bone Marrow,” “Bone Marrow Fat,” 
“Bone Marrow Adipose Tissue,” “Magnetic Resonance Imaging,” 
“Magnetic Resonance Spectroscopy,” “Osteoporosis,” “Obesity,” 
and “Diabetes.” The search was restricted to studies in humans. 
The reference lists of relevant articles were also screened.

MR Methods
T1-weighted imaging (T1WI), MRS, and chemical shift encod-
ing-based water–fat imaging have been previously used to assess 
BMFF.

T1-Weighted Imaging
T1-weighted imaging is not technically demanding and has been 
mostly applied on the pelvis, hip, and spine. A recent study has 
even introduced a score analog to the DEXA t-score based on the 
mean signal-to-noise ratio of the L1–L4 vertebral bodies in T1WI 
(37). Measurements of bone marrow fat volume have been also 
proposed by applying thresholds on T1WI to extract bone marrow 
fat voxels (25). The applied threshold was usually set at the same 
gray-scale level as subcutaneous adipose tissue. The intra- and 
interobserver reproducibility for the assessment of bone marrow 
fat volume in T1WI images expressed as coefficient of variation 
(CV) amounted 0.9% (intraobserver) and 2.2% (interobserver) 
(for the post-processing) (38). The main error source for the 
calculation of bone marrow fat volume based on T1WI results 
from partial volume effects and threshold selection, especially in 
regions with red marrow.

Magnetic Resonance Spectroscopy
Proton-MRS (1H-MRS) is considered as the MR gold standard 
for bone marrow fat quantification (Figure  1). Point-resolved 
spectroscopy (PRESS) and stimulated echo acquisition mode 
(STEAM) single-voxel 1H-MRS sequences have been most 
commonly used for the characterization of the fat spectrum 
in the bone marrow at the pelvis, spine, and hip. Based on MR 
spectra, fat fraction and fatty acid composition parameters can be 
determined (36). The average CV of vertebral BMFF was reported 
to be 1.7% (on the same day with repositioning). Griffith et al. 
recruited 36 subjects who underwent MRS in the femoral neck 
and head, as well as in the subtrochanteric region of the femoral 
shaft to measure bone marrow fat content (39). They found the 
best reproducibility (between two measurements within 1 week) 
in the femoral head (interclass correlation 0.85), followed by the 
femoral shaft (interclass correlation 0.83), and the femoral neck 
(interclass correlation 0.78). Another recent study that examined 
reproducibility of 1H-MRS vertebral BMFF found a CV of 9.9% 
(SD 0.08) for a 6-week reproducibility and a CV of 12.3% (SD 
0.10) for a 6-month reproducibility (40).

However, most of the above studies did not account for the 
difference in T2 relaxation times between the water- and fat 
components and measured a signal-weighted fat fraction at a 
single echo time (TE), dependent on the employed TE value and 
field strength. A multi-TE MRS measurement combined with T2 
estimation routines instead removes the confounding effects of 
water–fat T2 differences and results in the proton density fat frac-
tion (PDFF), which is independent of the employed experimental 
settings (41).

In addition, bone marrow spectra are characterized by 
strongly overlapping water and fat peaks due to susceptibility 
effects from the trabecular bone (41, 42): water and olefinic fat 
peaks overlap significantly, especially in the spine. The a priori 
knowledge of the chemical structure of triglycerides can be 
employed to improve the robustness of water peak extraction 
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FiGURe 1 | Lumbar vertebral bone marrow PDFF maps (first row) and single-voxel MR spectra (second row) in a young subject (25 years), an old 
subject (60 years) with normal BMD (spine t-score = 3.7) and an old subject (60 years) with osteoporosis (spine t-score = −3). Bone marrow PDFF 
increases with age and lower BMD: the young subject had a PDFF on the L5 vertebral body (red box) equal to 32.4%, the old subject with normal BMD had a PDFF 
on the L3 vertebral body (red box) equal to 48.9% and the old subject with osteoporosis had a PDFF on the L5 vertebral body (red box) equal to 67.5%.
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by constraining the area of the olefinic fat peak to the main fat 
peaks (41–43). However, the quantification of fat unsaturation 
relies on the extraction of the olefinic fat peak on an individual 
spectrum basis and remains a major technical challenge in the 
presence of a strong water peak (i.e., in the spine). Previous stud-
ies measuring vertebral bone marrow fat unsaturation based on 
short-TE spectra have reported moderate reproducibility values 
(same day, with repositioning) (36). Increasing the TE (44) or 
adding diffusion-weighting (45, 46) have been recently proposed 
to reduce the water peak height and more robustly extract the 
olefinic peak in vertebral bone marrow spectra.

Water–Fat Imaging
In contrast to single-voxel MRS, chemical shift encoding-based 
water–fat imaging allows the spatially resolved assessment of 
the BMFF (Figure 1). High-resolution BMFF mapping is highly 
advantageous due to the heterogeneous distribution of bone 
marrow in most regions (e.g., proximal femur, spine). However, 
several confounding factors have to be considered when measur-
ing bone marrow PDFF by using water–fat imaging, including 
the presence of multiple peaks in the fat spectrum (47, 48), 
T1-bias (49, 50) and T2*-decay effects (47, 51). The presence of 
trabecular bone most importantly shortens the T2* of water and 
fat components, inducing a rapid decay of the measured gradient 
echo signal with echo time (42, 52). After correcting for T2* decay 
effects, a good agreement was reported in  vivo between MRS-
based and imaging-based PDFF in both the proximal femur (42) 
and spine (52).

An ex vivo study was performed in trabecular bone specimens 
filled with water–fat emulsions of different fat fractions, showing 
an excellent agreement between imaging-based PDFF and the 

known PDFF of the emulsions (53). To validate the results of bone 
marrow water–fat imaging with a non-MRI reference, Arentsen 
et al. (54) and MacEwan et al. (55) performed studies comparing 
water–fat imaging with histological examinations. Water–fat 
imaging in both studies resulted in vertebral BMFF and water 
fraction values, which showed good correlation (r = 0.76–0.77) 
with the histological results.

As water–fat imaging methodologies become more broadly 
available, studies have been recently performed to evaluate the 
significance of a spatially resolved fat fraction map (56–60). In a 
recent study, Baum et al. investigated whole body spine water–fat 
imaging on 28 healthy subjects (56). They found an increased 
BMFF from the cervical to the lumbar level. Absolute precision 
error amounted to 1.7% on the average.

Despite a considerable amount of literature using MR meth-
ods to assess bone marrow properties in the pelvis and the long 
bones, vertebral bone marrow remains the region most exten-
sively investigated in bone marrow studies of aging, osteoporosis, 
diabetes, and obesity (Table 1).

Bone Marrow Fat in Aging
The BMFF is well known to increase with age (Figure  1). The 
exact age dependence has been shown to differ between male 
and female subjects (61–63). A recent study has also emphasized 
the importance of T2-correction when using MRS to investigate 
the age dependence of BMFF (41). However, less is known about 
the age dependence of bone marrow fat unsaturation. Huovinen 
et  al. recently investigated bone marrow fat unsaturation in 
young adults (15–27 years) (64). Thirty-five young adults from 
27 to 35 years were included in their study, and they showed an 
increase of bone marrow fat unsaturation with age. The results 
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TABLe 1 | Summary of MR-based studies investigating vertebral bone marrow fat properties in osteoporosis, diabetes, and obesity.

Study Subjects MR technique and bone 
marrow fat parameters

Main results for bone marrow fat

Osteoporosis

Yeung et al. (26) 53 women MRS for fat fraction and 
unsaturation

Higher fat fraction and lower fat unsaturation in osteoporotic than osteopenic and normal 
subjects

Griffith et al. (19) 90 men MRS for fat fraction Higher fat fraction in osteoporotic than osteopenic and normal subjects

Griffith et al. (20) 103 women MRS for fat fraction Higher fat fraction in osteoporotic than osteopenic and normal subjects

Patsch et al. (66) 69 women MRS for fat fraction and 
unsaturation

Fat unsaturation negatively associated with prevalence of fragility fractures

Kühn et al. (57) 51 subjects Water-fat imaging for PDFF Higher PDFF in osteoporotic than normal subjects

Karampinos et al. (21) 10 specimens MRS for fat fraction (ex vivo) Fat fraction negatively associated with failure load

Diabetes and obesity

Bredella et al. (70) 47 women MRS for fat fraction Fat fraction positively associated with visceral fat volume

Baum et al. (16) 26 women MRS for fat fraction and 
unsaturation

Fat unsaturation lower in diabetics compared to non-diabetics

Bredella et al. (67) 35 men MRS for fat fraction Fat fraction negatively associated with bone strength parameters

Bredella et al. (68) 106 women MRS for fat fraction Fat fraction positively associated with intra-hepatic and intramyocellar lipids

Bredella et al. (69) 79 women MRS for fat fraction Fat fraction increased after growth hormone therapy

Cordes at al. (72) 20 women MRS for fat fraction Fat fraction unchanged after a 4-week calorie restriction in obesity, but fat fraction changes 
associated with subcutaneous fat volume before intervention

Schafer et al. (22) 11 women MRS for fat fraction Fat fraction decreased only in diabetics after a gastric bypass surgery
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suggest an association of bone marrow fat unsaturation with age 
in early adulthood and may represent the normal maturation of 
bone marrow.

Bone Marrow Fat in Osteoporosis
Bone Marrow Fat Fraction
The MR-based vertebral bone marrow fat parameter studied 
most frequently in the context of osteoporosis is the fat fraction. 
Representative data from the authors own work, using a meth-
odology similar to Baum et al. (65) and highlighting the effect of 
age and osteoporosis on bone-marrow fat fraction, are shown in 
Figure 1.

Most previous studies evaluating the relationship between 
BMD and BMFF have been based on single-voxel MRS. Griffith 
et al. performed a study in 103 female subjects to investigate the 
association between bone marrow fat and osteoporosis in  vivo 
(20). They acquired DXA to stratify the group into healthy 
(n = 18), osteopenic (n = 30), and osteoporotic subjects (n = 55). 
MRS was performed at L3. The vertebral marrow fat fraction was 
significantly increased in osteoporotic subjects (67.8  ±  8.5%) 
compared with healthy subjects (59.2 ± 10.0%). Similar results 
were found in men. In another study, 90 men (42 subjects with 
normal BMD, 23 osteopenic, and 17 osteoporotic subjects) were 
recruited and obtained a measurement of the bone marrow fat 
content in L3 using MRS (19). The vertebral marrow fat frac-
tion was significantly increased in subjects with osteoporosis 
(58.2  ±  7.8%) and osteopenia (55.7  ±  10.2%) compared to 
subjects with normal BMD (50.5 ± 8.7%).

Karampinos et  al. recently examined ten vertebrae from 
human cadavers using MRS to assess BMFF, multi-detector com-
puted tomography (MDCT) to determine BMD and trabecular 
bone microstructure parameters, and biomechanical testing to 
assess vertebral bone strength (21). They reported significant 

correlations between the MRS-based fat fraction and MDCT-
based parameters (up to r = −0.72), and MRS-based fat fraction 
and vertebral failure load (r = −0.77). Thus, this study demon-
strated that bone marrow fat volume is negatively associated with 
both bone microstructure and bone strength. However, further 
studies with larger number of specimens are needed in order to 
investigate whether the BMFF has an effect on bone strength after 
correcting for the contribution of BMD.

Kühn et  al. performed one of the first bone marrow 
 high-resolution fat fraction mapping studies in patients with 
osteoporosis. Their study included 51 patients who underwent 
DXA as well as water-fat imaging of the lumbar spine (57). 
According to the DXA results, the participants were divided into 
three subgroups: 92 healthy, 47 osteopenic, and 34 osteoporotic. 
The obtained PDFF was greater in osteoporotic than healthy 
vertebrae (62.4 ±  11.0% versus 56.3 ±  14.8%). Thus, water–fat 
imaging could be an alternative to the most commonly used MRS 
to assess bone marrow fat in the context of osteoporosis.

Bone Marrow Fat Unsaturation
The second MR-based bone marrow fat parameter, which has 
been linked to bone matrix loss, is bone marrow fat unsaturation. 
Yeung et al. analyzed bone marrow fat composition in the context 
of osteoporosis (26). They included 53 women over 60 years of 
age and 12 young controls in their study. The subjects under-
went DXA and MRS of the lumbar spine. Interestingly, the fat 
unsaturation level was significantly decreased in osteoporotic 
(0.091 ±  0.013) and osteopenic (0.097 ±  0.014) subjects com-
pared to healthy subjects (0.114  ±  0.016) and young controls 
(0.127  ±  0.031). Patsch et  al. investigated the vertebral bone 
marrow fat composition in diabetic and non-diabetic post-
menopausal women with and without fragility fractures (66). In 
consistency with Yeung et al., the prevalence of fragility fractures 
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was associated with −1.7% lower unsaturation levels and +2.9% 
higher saturation levels.

Bone Marrow Fat in T2DM
Baum et  al. performed a study on 26 subjects, including 13 
non-diabetic and 13 treated diabetic women (16). The subjects 
underwent blood parameter analysis including plasma glucose 
and HbA1c. Images from mid T12 to mid L4 were acquired 
using MDCT to obtain SAT (subcutaneous adipose tissue), VAT 
(visceral adipose tissue), and TAT (total adipose tissue). MRS 
was obtained at L1, L2, and L3 to assess BMFF and unsaturation. 
The mean vertebral BMFF was similar in the diabetic women and 
the healthy controls (69.3 ± 7.5% versus 67.5 ± 6.1%; P > 0.05). 
However, the mean unsaturation level was significantly lower in the 
diabetic group (6.7 ± 1.0% versus 7.9 ± 1.6%; P < 0.05). Adjusted 
SAT and TAT correlated significantly with mean vertebral bone 
marrow fat content in the whole study population (r = 0.538 and 
r = 0.466; P < 0.05). Interestingly, significant correlations of mean 
vertebral bone marrow fat content with adjusted VAT and HbA1c 
were observed only in the diabetic group (r = 0.642 and r = 0.825; 
P < 0.05).

Similar results to the study by Baum et al. (16) were reported 
by Patsch et al. (66): diabetes was associated with a −1.3% lower 
unsaturation and +3.3% higher saturation levels. Diabetics with 
fractures showed the lowest marrow unsaturation and highest 
saturation. Therefore, the authors suggested that vertebral bone 
marrow fat unsaturation beyond fat fraction might have a poten-
tial for assessing the BMD-independent fracture risk.

Bone Marrow Fat in Obesity
Bone marrow fat fraction has been shown to be a negative predic-
tor of bone microarchitecture and mechanical properties in obese 
men (67). BMFF has been also shown to be positively associated 
with ectopic and serum lipid levels in obese men and women (68) 
and to increase after a 6-month growth hormone administration 
in obese women (69).

To get further insight into the relationship between bone 
marrow fat and obesity, Bredella et al. performed a study in 47 
pre-menopausal women (70). The authors measured IGF-1 
and growth hormone blood levels, and performed MRS at L4 
and MDCT scans at the level of L4 for VAT determination. The 
vertebral BMFF was positively associated with VAT and inversely 
associated with IGF-1. The authors concluded that visceral fat 
might have detrimental effects on bone health, which may be 
mediated in part by IGF-1 as an important regulator of the fat and 
bone lineage. Wongdee et al. concluded in a recent review that 
obesity and insulin resistance because of hyperglycemia in T2DM 
may induce osteoblast and osteoclast dysfunction with a result-
ing lower bone turnover (71). However, the underlying cellular 
and molecular mechanisms of insulin resistance in osteoblasts, 
osteoclasts, and osteocytes remain unknown and require further 
investigation.

Cordes et al. examined a group of twenty obese women who 
underwent a 4 week calorie restriction of 800 kcal/day (72). They 
performed MRS of the bone marrow and liver. Furthermore, they 
determined blood fat values and acquired two-point Dixon images 

of the abdomen to measure SAT and VAT. Despite a significant 
reduction of the body mass index (BMI), SAT, VAT, triglycerides, 
and LDL (low density lipoproteins)-cholesterol, they observed no 
significant reduction of the vertebral BMFF. However, absolute 
BMFF changes were positively associated with SAT volume 
(r  =  0.489) and negatively associated with non-adipose tissue 
volume (r = −0.493) before dietary  intervention (67).

Schafer et  al. examined the changes of the BMFF and bone 
mass after gastric bypass surgery (22). They included eleven 
women (six diabetic, five non-diabetic) who underwent bariatric 
surgery (Roux-y-gastric-bypass) and underwent L3/L4 MRS, 
anthropometric measurements, whole body fat, and BMD meas-
urements. VAT was determined on a single slice at the level of L4 
using MDCT. In consistency with previous studies, they reported 
a positive correlation between age and bone marrow fat content. 
Interestingly, mean bone marrow fat decreased (−7.5%, p = 0.05) 
in the diabetic subjects, while the non-diabetic women showed 
only a small change (+0.9%, p = 0.84). Despite the small sample 
size, this study highlighted that bone marrow fat behaves differ-
ently compared to other fat depots in patients without diabetes 
after gastric bypass surgery.

COnCLUSiOn AnD PeRSPeCTiveS

In summary, MR-based assessment of bone marrow fat provides 
interesting insights into the pathophysiology of osteoporosis, 
T2DM, and obesity as well as the association of bone and meta-
bolic disturbances. Currently available MR methods including 
MRS and water–fat imaging enable the non-invasive extraction 
of the BMFF and unsaturation. Very little is known about the 
underlying mechanisms. Furthermore, new research questions 
are evolving on the role of bone marrow adipocytes in bone 
remodeling, hematopoietic stem cell differentiation, and whole 
body homeostasis (73, 74), on novel non-invasive MR biomark-
ers specific to the distribution, composition, microstructure, 
and function of bone marrow adipocytes requiring further 
investigations.
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