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Since the discovery 60 years ago of the “long-acting thyroid stimulator” by Adams and 
Purves, great progress has been made in the detection of thyroid-stimulating hormone 
(TSH) receptor (TSHR) autoantibodies (TRAbs) in Graves’ disease. Today, commercial 
assays are available that can detect TRAbs with high accuracy and provide diagnostic 
and prognostic evaluation of patients with Graves’ disease. The present review focuses 
on the development of TRAbs bioassays, and particularly on the role that Leonard D. 
Kohn had in this. Indeed, 30 years ago, the Kohn group developed a bioassay based 
on the use of FRTL-5 cells that was characterized by high reproducibility, feasibility, and 
diagnostic accuracy. Using this FRTL-5 bioassay, Kohn and his colleagues were the 
first to develop monoclonal antibodies (moAbs) against the TSHR. Furthermore, they 
demonstrated the multifaceted functional nature of TRAbs in patients with Graves’ dis-
ease, with the identification of stimulating and blocking TRAbs, and even antibodies that 
activated pathways other than cAMP. After the cloning of the TSHR, the Kohn laboratory 
constructed human TSHR–rat luteinizing hormone/chorionic gonadotropin receptor 
chimeras. This paved the way to a new bioassay based on the use of non-thyroid cells 
transfected with the Mc4 chimera. The new Mc4 bioassay is characterized by high 
diagnostic and prognostic accuracy, greater than for other assays. The availability of a 
commercial kit based on the Mc4 chimera is spreading the use of this assay worldwide, 
indicating its benefits for these patients with Graves’ disease. This review also describes 
the main contributions made by other researchers in TSHR molecular biology and TRAbs 
assay, especially with the development of highly potent moAbs. A comparison of the 
diagnostic accuracies of the main TRAbs assays, as both immunoassays and bioassays, 
is also provided.
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FiGURe 1 | Milestones in history of TSH receptor antibody assays.
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iNTRODUCTiON

Thyroid-stimulating hormone (TSH) receptor (TSHR) autoanti-
bodies (TRAbs) are the pathogenic hallmark of Graves’ disease. 
They are detected in nearly all untreated patients with Graves’ 
disease and are responsible for the pathological features of this 
disease (i.e., stimulation of thyroid growth and function, onset of 
orbitopathy, and/or dermopathy) (1). Several varieties of TRAbs 
have been described: stimulating (TSAbs), blocking (TBAbs), and 
neutral (N-TRAbs). Their relative concentrations define the clini-
cal picture and the progression of Graves’ disease. Indeed, quanti-
tation of TRAbs is of clinical use not only to confirm the diagnosis 
of Graves’ disease but also to predict the evolution of the disease 
and its complications, such as orbitopathy (2, 3). Furthermore, 
TBAbs are involved in the pathogenesis of hypothyroidism in the 
atrophic form of Hashimoto’s thyroiditis (4).

Since the discovery by Adams and Purves in 1956, of a thyroid-
stimulating factor in the serum of some thyrotoxic patients (5), 
remarkable progress has been made in the knowledge of the bio-
logical properties of TRAbs. Furthermore, very sensitive assays 
are now commercially available to detect TRAbs (Figure  1). 
The purpose of this article is to review the development of these 
TRAbs bioassays, with a focus on the contributions made here by 
the late Dr. Leonard D. Kohn.

HiSTORiCAL BACKGROUND

In 1956, Adams and Purves noted that sera from thyrotoxic 
patients induced abnormal prolonged responses in their TSH 
bioassay that used guinea pigs (5, 6). They initially named the 
unknown substance that was responsible for this effect as the 
“abnormal thyroid stimulator,” and then later as the “long-acting 
thyroid stimulator” (LATS) (6, 7). Soon after its discovery, it 
became apparent that this LATS was distinct from endogenous 
TSH and that it was not produced by the pituitary (7). In 1964, 
LATS was identified as a protein with the biological characteris-
tics of an antibody (8), and further studies unequivocally dem-
onstrated its identification with immunoglobulin G (IgG) (9, 10).

The early in vivo bioassays to detect LATS were performed 
using guinea pigs or mice, but these were of little use in clinical 
practice as they were troublesome and had very low sensitivity. 
Indeed, 30–40% of patients with Graves’ disease were negative 
with these assays (11). A significant breakthrough was then made 
in 1975, with the development of a radioligand receptor assay, 
which evaluated the inhibition by the sera from patients with 
Graves’ disease of the binding of radiolabeled TSH to human 
thyroid membranes in vitro (12). However, this assay was still 
burdened by low accuracy. Further improvements to the method 
were provided by the use of the partially purified TSHR instead 
of thyroid membranes and biologically active radiolabeled TSH. 
This thus led to the development of a reproducible and accurate 
radioligand assay some years later (13, 14). This assay has been 
defined as a liquid phase first-generation immunoassay, and 
it was widely used for the next 20 years. It had a specificity of 
99.2% (range, 97.5–100%) and a sensitivity of 79.8% (range, 
52–94%) (15).

In parallel with the development of the radioligand receptor 
assay, there was also an improvement in the bioassay methods, 
with the replacement of the in vivo assay with in vitro techniques, 
such as the use of thyroid slices or thyroid primary cell cultures 
(16). A further fundamental advance was obtained with the 
development of FRTL-5 cells, a non-transformed cell line of rat 
thyroid epithelial cells in continuous culture (17). Indeed, the 
Kohn laboratory at the National Institutes of Health in Bethesda 
used these FRTL-5 cells to set up an accurate assay for the 
measurement of TSAbs, which provided greater convenience 
and reproducibility compared to other bioassays (18–20). From 
that time, FRTL-5 cells became the preferred tool for TRAbs 
bioassays for more than 10 years, and as discussed below, they 
were fundamental to the determination and quantification of the 
functional properties of TRAbs.

THe FRTL-5 BiOASSAY

FRTL-5 cells are a cell line that can be grown in continuous 
culture and that retains all of the properties of normal thyroid 
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FiGURe 2 | effects of igG from patients with Graves’ disease on [3H]-thyimidine incorporation (blue) and intracellular cAMP production (red) in 
FRTL-5 cells. Data from three representative patients with Graves’ disease for each group. Basal, cells with no treatment; normals, cells incubated with a pooled 
sample of IgG from 13 non-Graves’ individuals [Data are from Ref. (29)].
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cells. Soon after their development, the Kohn group described the 
optimal conditions to measure TSAbs using FRTL-5 cells (18, 19). 
The assay was based on the ability of purified IgG preparations 
to induce cAMP production. Removal of TSH from the culture 
medium resulted in an enhanced response to acute stimulation 
by TSH and TSAbs. This assay showed a specificity of 97.6% and 
a sensitivity of 90.4%, thus providing a sensitivity that exceeded 
that of the liquid phase first-generation immunoassay (19, 21). 
The assay method was patented (22), and this paved the way to the 
commercial availability of the bioassay, and to its spread. Of note, 
all of the royalties associated with this patent were dispensed in 
the forms of grants to international researchers in the field of 
thyroidology. A further improvement in the feasibility of this test 
was provided with the direct use of the patient sera, rather than 
the purified IgG (23).

This FRTL-5 bioassay was not only important for diagnostic 
purposes but also a fundamental tool in the characterization of 
the functional properties of TRAbs and the understanding of 
their pathogenic role in Graves’ disease. The Kohn laboratory 
was particularly active in pursuing this. Indeed, it was Kohn 
and his colleagues who first developed monoclonal antibodies 
(moAbs) against TSHR, and they used the FRTL-5 cells to evalu-
ate their functional properties (24–26). The generation of moAbs 
from lymphocytes of patients with Graves’ disease was also of 
significance, as this demonstrated the multifaceted functional 
nature of TRAbs, with some stimulating and others blocking the 
receptor activity (25, 26). These data were of great importance 
for the confirmation of TBAbs in Graves’ disease, as had been 
postulated previously (27, 28).

The use of the FRTL-5 cells also provided the possibility to 
further study the functional heterogeneity of TRAbs, as they 

allowed the separate assessment of the effects of an individual 
IgG on two distinct cellular activities: those of the production 
of cAMP and of cell growth. Indeed, Kohn and colleagues per-
formed both cAMP assays and thymidine-incorporation assays 
in cells incubated with sera from patients with Graves’ disease. 
Through this, they demonstrated that these patients with Graves’ 
disease fell into one of three groups (Figure 2): those where the 
IgGs had strong cAMP-stimulating activity together with strong 
growth-promoting activity (group 1); those where the IgGs 
had strong growth-promoting activity, but little or no cAMP-
stimulating activity (group 2); and those where the IgGs had 
strong cAMP-stimulating activity, but low growth-promoting 
activity (group 3) (29). This study demonstrated the separate and 
distinct effects of TRAbs on cAMP production and cell growth, 
which suggested that other transduction mechanisms as well 
as cAMP might be involved in their interactions with TSHR. 
This assumption was later confirmed by several studies, most of 
which were performed in the Kohn laboratory, which showed 
that the growth and function of thyroid cells were dependent 
on the ability of TSH to activate not only cAMP signaling but 
also other signaling pathways, such as those of phospholipase 
C and phospholipase A2/arachidonic acid (30,  31). A further 
confirmation came from studies, which showed that a subpopu-
lation of IgGs from patients with Graves’ disease activated the 
phospholipase A2 pathway without affecting the cAMP signal 
(32, 33). These studies were fundamental to the correlation of the 
clinical heterogeneity of Graves’ disease with its pathogenesis.

Today, the heterogeneity of TRAbs is well recognized, and in 
addition to the classical TSAbs and TBAbs, which act as TSH 
agonists and antagonists, respectively, other forms of TRAbs have 
been described, in terms of the neutral antibodies (N)-TRAbs 
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FiGURe 3 | Schematic representations of the extracellular regions of the three chimeric TSHR–LH/CGR mutants. The Mc1 + 2, Mc2, and Mc4 chimera 
receptors. Green, human TSHR sequence (WT); red, homologous regions of the rat LH/CGR that were used to substitute for the deleted TSHR sequences. The 
numbers assigned to the amino acids are determined by counting from the methionine start site.

TABLe 1 | Summary of the functional characteristics of TRAbs.

Antibody effect on 
TSH binding

effect on 
cAMP levels

interference with cAMP-
independent signaling

Stimulating Inhibition Increase Yes
Blocking Inhibition Inhibition Yes
Neutral No effect No effect Yes
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(Table 1). The N-TRAbs are so called because their binding to 
TSHR does not influence the binding of TSH and the cAMP 
levels, although they can activate other signaling cascades (1, 34, 
35). Moreover, some of the antibodies that have been regarded as 
TBAbs have shown some growth-promoting activity independ-
ent of cAMP signaling (36).

THe CLONiNG OF THe TSH ReCePTOR

A major breakthrough in thyroid research arrived with the 
cloning of TSHR in 1989 (37–39). The cloning allowed the use 
of the recombinant human (rh-)TSHR, both for the radioligand 
receptor assay and the bioassay (40, 41). This led to an increase 
in the sensitivity of the radioligand receptor assay to 96% (41), 
which was higher than that of the FRTL-5 bioassay. The clon-
ing also improved the feasibility of the use of the bioassay, as it 
was possible to transfect rh-TSHR into non-thyroid cell lines 
that were characterized by simpler culture conditions than the 
FRTL-5 cells (42, 43). The new transfected rh-TSHR bioassay 
was also characterized by better sensitivity than the FRTL-5 
bioassay. Indeed, a comparative study performed using purified 
IgGs from 58 patients with Graves’ disease showed that a bioas-
say based on Chinese hamster ovary (CHO) cells transfected 
with rh-TSHR had a higher sensitivity than the FRTL-5 bioassay 

(93 vs. 75.8%, respectively) (42). These data were confirmed by 
an independent study that showed a similar sensitivity for these 
two bioassays (92.2 and 74.5%, respectively) (43).

Moreover, the cloning of TSHR led to a series of studies that 
were mainly based on site-directed mutagenesis, deletion mutants, 
and the construction of receptor chimeras, which provided the 
pioneering achievements in the structure–function relationships 
of TSHR (31, 44, 45). The Kohn group was particularly involved 
in these studies, and in particular, in the construction of human 
TSHR–rat luteinizing hormone/chorionic gonadotropin receptor 
(TSHR–LH/CGR) chimeras (46), as these paved the way to the 
new TRAbs bioassays. A series of TSHR–LH/CGR chimeras were 
then constructed by replacing the homologous segments of the 
extracellular domain of the human TSHR with the corresponding 
segments of the rat LH/CGR, and these were used to identify 
receptor binding sites for TSH and TRAbs. Two chimeras were of 
particular interest and are known as the Mc1 + 2 and the Mc4 chi-
meras (Figure 3). The Mc1 + 2 chimera has a large portion of the 
N-terminal extracellular region of TSHR substituted (amino-acid 
residues 8–165), and it retains TSH binding and TSH stimulation 
of cAMP levels. However, the Mc1 + 2 chimera does not have the 
TSAbs activity, i.e., TSAbs cannot stimulate cAMP production or 
inhibit TSH binding to the chimera. However, its TBAbs binding 
affinity is maintained (Table 2). The Mc4 chimera has amino-acid 
residues 261–370 substituted, and it retains the ability for TSH 
and TSAbs binding and to still promote increased cAMP levels, 
whereas it no longer shows TBAbs binding (Table 2). These data 
suggested that the TRAbs that show different functional activities, 
i.e., TSAbs and TBAbs, have epitopes that are located in distinct 
regions of the extracellular domain of TSHR. More precisely, 
TSAbs are largely directed against the N-terminus region of 
TSHR, which includes amino-acid residues 8–165, whereas TBAbs 
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TABLe 2 | Summary of functional properties of TSHR–LH/CGR chimeras.

Receptor/chimera TSH binding TSAb binding TBAb binding

TSHR wild-type Yes Yes Yes
Mc1 + 2 Yes No Yes
Mc2 Yes No Yes
Mc4 Yes Yes No
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mainly bind the C-terminal region, which includes amino-acid 
residues 261–370 (46, 47). Similar data were obtained simultane-
ously by the Rapoport group, who also demonstrated some degree 
of overlap between the epitopes for TSAbs and TBAbs (45, 48). 
Subsequent studies then showed significant overlap among these 
epitopes, while also describing more of their complex charac-
teristics (49–51). However, the functional data described above 
induced Kohn to establish a new bioassay based on the use of 
these TSHR–LH/CGR chimeras to evaluate the clinical relevance 
of autoantibody heterogeneity in patients with Graves’ disease.

THe TSHR–LH/CGR CHiMeRA BiOASSAY

The clinical use of the TRAbs bioassay based on the chimeric 
receptor was evaluated using CHO cells stably transfected with 
the rh-TSHR, the Mc1 + 2 TSHR–LH/CGR chimera described 
above, or the Mc2 chimera, in which residues 90–165 of the TSHR 
ectodomain were substituted (Figure 3). A preliminary study that 
was performed using purified IgG from 66 patients with Graves’ 
disease showed that although the TSAbs activities in the majority 
of patients was not detectable in the cells transfected with the 
Mc1 + 2 or Mc2 chimeras, in approximately 30% of the patients 
there were TSAbs that could activate these chimeric receptors 
(52). Therefore, these patients with Graves’ disease could be 
divided into two groups: a homogeneous group, with TSAbs that 
recognized only the N-terminal region of the TSHR ectodomain 
and did not activate the chimeric receptors, and a heterogeneous 
group, with TSAbs that interacted with the C-terminal region of 
the TSHR ectodomain and activated the chimeric receptors.

A very interesting observation came from the clinical correla-
tion of these data. The heterogeneous group was more responsive 
to antithyroid therapies, which meant that the patients in this 
group were more likely to become euthyroid during treatment, 
and to do so more quickly. Moreover, a following study demon-
strated that antithyroid drug therapies induced epitope hetero-
geneity, namely, during antithyroid treatment, about 50% of the 
patients with Graves’ disease who were initially negative in the 
chimera assay became positive (53). These data were confirmed in 
a larger study that was characterized by a longer follow-up, which 
indicated that heterogeneity of TSAbs is a good and independent 
marker for prediction of the clinical outcome of patients with 
Graves’ disease after antithyroid drug therapies (54).

iMPROveMeNT OF THe TRAbs ASSAY: 
New GeNeRATiONS OF iMMUNOASSAYS 
AND BiOASSAYS

In the late 1990s, a second generation of immunoassays was devel-
oped using moAbs against the C-terminus region of rh-TSHR or 

porcine TSHR. Plastic surfaces coated with these moAbs were 
used to immobilize TSHR, which was still able to bind TSH and 
TRAbs (55, 56).

This second-generation immunoassay, which is known as a 
“solid phase” assay, became the gold standard assay for TRAbs due 
to the high diagnostic accuracy and the use of a non-radioactive 
readout (15, 55–58). Indeed, a seminal study by Costagliola et al. 
(55) performed on 328 patients with Graves’ disease showed 
the high sensitivity and specificity of this assay (98.8 and 99.6%, 
respectively), with no differences between the radioactive or 
chemiluminescence readouts. The use of rh-TSHR or porcine 
TSHR did not affect the diagnostic accuracy of the assay (57). 
These data were confirmed by subsequent studies, as reported in 
a recent meta-analysis (15). Given this high diagnostic accuracy 
and the availability of a commercial kit, the “solid phase” assay 
became the most used assay for the detection of TRAbs.

At the same time, several researchers were involved in the 
generation of moAbs against TSHR characterized by TSAb activ-
ity (59–61). Due to the availability of rh-TSHR for both animal 
immunization and antibody screening, highly potent moAbs 
were obtained that were characterized by their higher affinities 
(reaching the order of nM concentrations), compared with the 
previous moAbs, where the concentrations used were in the 
order of μM or mM (24–26). The Davies group was particularly 
involved in these studies, and they used the moAbs as molecular 
probes to investigate further the structure–function relation-
ships of TSHR and its interactions with TRAbs (1, 35, 62–65). 
A number of new insights came from these studies: (1) TSAbs 
and most TBAbs recognize conformational epitopes in the α 
subunit of TSHR (i.e., involving the first 316 amino acids), with 
these epitopes either distinct or overlapping; (2)  some TBAbs 
bind epitopes in the N-terminus of the β subunit of TSHR; 
(3) N-TRAbs bind linear epitopes that are mainly in the cleav-
age region; (4) TSHR is present on the cell surface in both its 
cleaved and uncleaved forms, and it can exit as multimers; (5) As 
opposed to TSH, TSAbs do not accelerate the cleavage of TSHR, 
and this might explain the prolonged overstimulation of the 
thyroid gland in Graves’ patients; and (6) N-TRAbs can activate 
alternative signal pathways to the classical cAMP pathway. These 
data have been fundamental in the understanding the structure–
function relationships of TSHR and its role in the pathogenesis 
of Graves’ disease. Furthermore, in 2003, this research on these 
moAbs led to the isolation and characterization of the human 
monoclonal TSAb M22 from lymphocytes of a patient with 
Graves’ disease (66).

A third-generation immunoassay was then developed based 
on the use of this M22 autoantibody (67). Indeed, given its high 
affinity binding to TSHR, the labeled M22 autoantibody was 
then used instead of labeled bovine TSH in inhibition assays, 
with significant improvements to the intra-assay coefficient of 
variation (15, 58). This new immunoassay became the preferred 
TRAbs assay due to its high diagnostic accuracy and feasibility. 
Indeed, the pooled sensitivity from all of the data reported in the 
literature is 97.4% (range, 95–99.6%), and the pooled specificity is 
99.2% (range, 95–100%). Furthermore, the M22 assay is based on 
an ELISA method, and this is available also in a fully automated 
version (15, 68).
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TABLe 3 | Comparison among sensitivity and specificity of the main 
TRAbs assays.

TRAbs assays Sensitivity (%) Specificity (%)

Mc4 bioassay 100a 98.5a

CHO–wtTSHR bioassay 97.3a 93.1a

“Solid phase” immunoassay 86.5a 97a

M22 ELISA assay 97.4b 99.2b

aData are from Ref. (76).
bData are from Ref. (15).

FiGURe 4 | Principle of the Mc4 bioassay. Cell lines lacking TSHR are 
double transfected with a luciferase reporter gene under the transcriptional 
control of multiple cAMP-responsive elements (CREs-Luc) and the Mc4 
chimeric receptor. TSAbs levels in patient sera are determined by measuring 
the increased production of luciferase.
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This availability of both stimulating (e.g., M22) and blocking 
human moAbs has also been useful for determination of the 
crystal structure of TSHR and its interactions with the TRAbs 
(49, 69). These studies confirmed the extensive overlap among 
the epitopes for TSAbs and TBAbs.

Concurrent with the development of the third-generation 
immunoassay, Kohn conceived the use of the Mc4 chimera 
(Figure 2) for a new bioassay. As indicated above, the Mc4 chi-
mera retains the binding of TSH and TSAbs and the consequent 
activity but loses TBAbs binding (Table 2). Aside from arguments 
about different TSAbs and TBAbs epitopes, which as discussed 
above is a complex issue, several studies have provided the basis 
for the use of the Mc4 chimera, as reviewed by Lytton and Kahaly 
in 2010 (70). Further support for the use of the Mc4 chimera was 
provided by the finding that the shed A-subunit of the TSHR 
(spanning from approximately amino-acid residue 22–216), 
rather than the TSHR holoreceptor, is important for immuno-
genicity and for maturation affinity of TRAbs (71–74).

This new bioassay is based on a chemiluminescent method, as 
described by Watson and colleagues (75), which uses cell lines that 
are stably transformed with a reporter plasmid that contains the 
firefly luciferase gene under the transcriptional control of multi-
ple cAMP-responsive elements. These transformed cell lines were 
transfected with the Mc4 chimera (Figure 4) and were evaluated 
using sera from patients with Graves’ disease and other thyroid 
diseases, and normal subjects (76). The primary goal here was to 
create a bioassay that measured only TSAbs, without interference 
of the other TRAbs, and to have a clear cutoff between patients 
with Graves’ disease and the controls. For this purpose, the Mc4 
assay was compared with a bioassay using wild-type TSHR and 
with a second-generation immunoassay. This study showed that 
the Mc4 assay has higher sensitivity and specificity (i.e., 100 
and 98.5%, respectively) than the compared assays (Table  3). 
Furthermore, the Mc4 assay showed even higher sensitivity than 
the third-generation M22 immunoassay, although with a little 
less specificity (Table  3). The high diagnostic accuracy of the 
Mc4 assay can be attributed to the lack of interference by TBAbs 
and N-TRAbs. Indeed, contrary to what is observed with the 
conventional bioassay using wild-type TSHR, sera from patients 
with idiopathic myxedema, who have high TBAbs activity, did 
not inhibit the TSAb activity of the sera in the Mc4 bioassay (76).

An important conclusion that came from this study of Giuliani 
et al. (76) was that, given its high diagnostic accuracy, the Mc4 
assay can be used as a first-level test in the diagnosis of Graves’ 
disease. However, given the almost similar diagnostic accuracy 
and the better feasibility, the M22 immunoassay remains the 
preferred TRAbs assay worldwide to date. On the other hand, 
the specific detection of TSAbs without interference of other 
antibodies directed against TSHR makes the Mc4 assay poten-
tially useful in the follow-up of patients with Graves’ disease. 
Indeed, one of the clinical problems of Graves’ disease is the high 
possibility of relapse within the first 2 years after withdrawal of 
medical therapy (at approximately 50%). Therefore, the results 
of a prospective study are of particular interest, where the Mc4 
assay was shown to be a sensitive index of remission and relapse 
in patients with Graves’ disease (77). This study was performed 
in patients with Graves’ disease treated with antithyroid drugs 

(mainly methimazole) over a 5-year period, and it showed that the 
levels of TSAbs correlate with the clinical outcome of the disease. 
Furthermore, here, the Mc4 assay had high accuracy as a predictor 
of Graves’ disease prognosis, which was even better than the M22 
third-generation immunoassay. A reasonable explanation for this 
is that the measure of only TSAbs instead of the whole spectrum 
of the TRAbs improves the prediction of the patient prognosis. 
Hence, the Mc4 assay might become a useful tool in identifying 
at an early stage those patients who will have no benefit from the 
medical therapy and to whom alternative therapeutic options can 
be offered. Indeed, failure to reduce TSAbs levels during medical 
therapy is a negative predictor of remission.

Retrospective studies have replicated the use of the Mc4 assay 
as a better indicator of the prognosis of patients with Graves’ dis-
ease than these other assays (77, 78). Furthermore, several studies 
have shown that the Mc4 bioassay strongly correlates with the 
indices of clinical activity and severity of Graves’ orbitopathy and 
has higher diagnostic accuracy than these other TRAbs assays (2, 
70, 79–83). Indeed, a seminal study by Lytton et al. (79) showed 
that, compared with the second-generation immunoassays, the 
Mc4 assay had greater sensitivity (97 vs. 77%, respectively) and 
specificity (89 vs. 43%, respectively) for the detection of TRAbs 
in patients with Graves’ orbitopathy. Furthermore, this study 
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demonstrated a strong correlation of TSAbs with the clinical 
activities of orbitopathy. Of interest, there was the observation 
that all patients whose sera were positive in the Mc4 assay and 
negative in the TRAbs immunoassay had severe orbitopathy, 
whereas those patients who tested negative with the Mc4 assay 
and positive with the TRAbs assay did not have active orbitopa-
thy. These data confirm the superiority of the Mc4 assay in the 
detection of the subtypes of TRAbs that are directly involved 
in the pathogenesis of Graves’ disease, without the interference 
of the other subtypes, such as blocking or neutral TRAbs, that 
have little or no pathogenic role in the clinical manifestations of 
Graves’ disease. The studies that followed further confirmed these 
results and showed the usefulness of the Mc4 assay as a predictor 
of the clinical course of Graves’ orbitopathy (2, 80, 82).

A recent multicenter study (81) showed that the Mc4 assay 
is more sensitive than the third-generation immunoassay in 
diagnosing Graves’ disease in an untreated pediatric population. 
Moreover, as previously demonstrated in adult patients, the cor-
relation of the Mc4 assay with the clinical activity and severity of 
Graves’ orbitopathy was higher than seen for the third-generation 
immunoassay in these pediatric patients.

Widespread use of this bioassay will be facilitated by the 
availability of the Mc4 assay as a commercial kit, which has a 
standardized protocol and good feasibility and reproducibility 
(84, 85). Indeed, using the commercial kit, the bioassay can be 
performed in less than 24 h (70), and the concentrations deter-
mined can be converted in IU/L, with the possibility to stand-
ardize the TSAbs levels across laboratories, which provide more 
accurate comparisons of TSAbs levels (84). Of note, recently, the 
Mc4 chimera has been used to develop a new in vitro assay by 
applying Bridge technology (86). In brief, this Bridge Assay uses 
two TSH chimeric receptors: the Mc4 chimera, which is used as 
a capture receptor that is anchored on a solid phase, to bind one 
arm of the autoantibody; and a chimeric receptor formed by the 
N-terminus (aminoacids 21–261) of TSHR fused with secretory 
alkaline phosphatase as a chemiluminescence monitor, which can 
bind the other arm of the autoantibody. Preliminary data show 
good sensitivity and specificity for this Bridge Assay (99.8 and 
99.5%, respectively) (86).

CONCLUSiON

Thyroid-stimulating hormone receptor autoantibodies bioassays 
have several advantages in comparison to inhibition immunoas-
says. Bioassays can detect the functional heterogeneity of TRAbs 
in patients with Graves’ disease; i.e., the simultaneous presence 
in the same patient of TSAbs, TBAbs, and/or N-TRAbs. This 
has clinical implications, because the switching from TSAbs to 
TBAbs is responsible for the evolution toward hypothyroidism 
in a small percentage of patients with Graves’ disease. Moreover, 
a selective decrease in TSAbs is a positive prognostic feature 
for patient remission. Evaluation of TSAbs is also important in 

pregnant woman with Graves’ disease, to estimate the risk of 
fetal/neonatal thyrotoxicosis due to TRAbs transfer. Finally, the 
monitoring of the switch from TSAbs to TBAbs, and vice versa, is 
very useful in patients with alternate episodes of hyperthyroidism 
and hypothyroidism.

In the past 60  years, TRAbs bioassays have evolved from 
cumbersome and time-consuming procedures to genetically 
engineered cell-based assays that are characterized by good 
feasibility and rapid operating times, and that are also avail-
able as commercial kits. The role that Kohn had in this process 
through all of these years was fundamental. Indeed, initially, the 
use of the FRTL-5 bioassay, and then the later generation of the 
Mc4 bioassay, led to striking progress in both the knowledge of 
the functional features of TRAbs and the clinical application of 
TRAbs bioassays. Kohn perceived the advantages that the use of 
the Mc4 chimera would bring in diagnostic accuracy and prog-
nostic evaluation for patients with Graves’ disease. He devoted 
himself to the improvement of the feasibility of the Mc4 bioassay 
to promote its use in clinical practice (85). The availability of the 
Mc4 bioassay as a commercial kit is now spreading the use of 
this assay worldwide. We believe that the improved feasibility 
of the Mc4 assay, together with its high diagnostic accuracy and 
prognostic use, will now make the Mc4 assay the preferred assay 
for clinical evaluation of patients with Graves’ disease.
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