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Non-coding RNAs (ncRNAs) are a functional class of RNA involved in the regulation of 
several cellular processes which may modulate disease onset, progression, and progno-
sis. Lysosomal storage diseases (LSD) are a group of rare disorders caused by mutations 
of genes encoding specific hydrolases or non-enzymatic proteins, characterized by a 
wide spectrum of manifestations. The alteration of ncRNA levels is well established in 
several human diseases such as cancer and auto-immune disorders; however, there 
is a lack of information focused on the role of ncRNA in rare diseases. Recent reports 
related to changes in ncRNA expression and its consequences on LSD physiopathology 
show us the importance to keep advancing in this field. This article will summarize recent 
findings and provide key points for further studies on LSD and ncRNA association.
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LYsOsOMAL stOrAGe DiseAses

Lysosomal storage diseases (LSD) are a group of inherited diseases due to deficiency of lysosomal 
proteins such as hydrolases, membrane proteins, and lysosomal accessory proteins, which causes 
blockage in specific lysosomal catabolic pathways and storage of undegraded substrates. Lysosomal 
disturbance impairs relevant cellular functions, such as autophagy and vesicle trafficking, leading 
to accumulation of dysfunctional organelles and activation of secondary cascades which may affect 
several processes (1). To date, more than 50 LSD have been described, all of them inherited as 
autosomal recessive, with the exception of Danon disease, Fabry disease, and mucopolysaccharidosis 
type II, which are X-linked (2, 3).

All LSD are chronic, multisystemic, and progressive disorders, with a combined prevalence esti-
mated of 1:8000 live births (2). Almost two-thirds of patients present neurological alterations, putting 
the group of LSD among the most common causes of neurodegeneration (4). Neuropathology in LSD 
usually develops from unique temporal and spatial changes, leading to early neurodegeneration and 
inflammation in specific regions, before global brain involvement (1). Visceral, ocular, hematologi-
cal, and skeletal manifestations are also common [reviewed by Boustany (5)]. Signs and symptoms 
vary considerably depending on the disease, as well as age of onset and severity; some patients die 
before the first decade of life, whereas others may present normal lifespan. Phenotypic variability 
occurs not only between different LSD but also between patients with the same disease, even from 
the same family.

Allelic heterogeneity is a common feature of LSD; a high number of mutations have already 
been identified in the respective genes, hampering genotype–phenotype correlations. Although the 
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primary biochemical and genetic defects are currently known 
for most LSD, this monogenic view is not enough to explain 
their physiopathology. The type and amount of undegraded (or 
partially degraded) substrates, along with the type and function 
of affected cells are important factors to determine cellular conse-
quences of the specific enzyme deficiency. In addition, lysosomal 
dysfunction has an impact on several basic biological processes; 
recent studies have demonstrated the role of lysosomes in dif-
ferent cellular functions, such as vesicle trafficking, autophagy, 
nutrient sensing, cellular growth, and signaling, showing that 
they are not only catabolic organelles [reviewed by Parenti et al. 
(6)]. In fact, lysosomal alterations have been associated with 
pathogenic mechanisms in other neurodegenerative diseases 
such as Huntington’s, Parkinson’s, and Alzheimer’s, not only in 
LSD (7–9) but also due to the role of lysosomes in cellular clear-
ance pathways.

It has recently been discovered that lysosomal function is 
regulated by a gene network named Coordinated Lysosomal 
Expression and Regulation (CLEAR), mainly activated by a mas-
ter transcription factor, transcription factor EB (TFEB). TFEB is 
part of a protein complex named LYsosome NUtrient Sensing 
(LYNUS), which also comprises mammalian target of rapamycin 
complex 1 (mTORC1), and this machinery is attached to lysoso-
mal membrane. This kinase complex is able to sense lysosomal 
nutrient content and send signals to the nucleus; in nutrient-rich 
conditions, mTORC1 phosphorylates TFEB and it becomes inac-
tive in cytoplasm. Due to adverse conditions such as starvation 
or exercise, TFEB is dephosphorylated by calcineurin, enabling 
it to translocate to the nucleus and regulate expression of various 
genes related to autophagy, fatty acid beta-oxidation, lipophagy, 
and lysosomal biogenesis pathways (10–12).

Transcription factor EB activation seems to be a response 
to lysosomal stress; this lysosome-to-nucleus signaling allows 
lysosomes to adapt to different physiological and pathological 
conditions (10, 13). As an example of these adverse conditions 
in LSD, deficiency of α-l-iduronidase in mucopolysacchari-
dosis type I destabilizes lysosomal Ca2+ and H+ homeostasis, 
leading to lysosomal membrane permeabilization (14, 15), 
which triggers different pathogenic cascades. In addition, 
autophagy blockage has also been described in many LSD, since 
autophagosome–lysosome fusion is impaired due to lysosomal 
dysfunction (1). This context of lysosomal alterations in LSD 
may be regarded as chronic lysosomal stress, which is likely to 
be associated with changes in TFEB signaling and regulation of 
CLEAR network genes.

Direct binding of TFEB to a 10-base site (TCACGTGA) found 
in promoters of several lysosomal genes is required for the expres-
sion of CLEAR genes. TFEB expression has already been shown to 
be downregulated by a miRNA (miR-128) (10), emphasizing the 
importance of these molecules for the regulation of CLEAR genes 
expression and, consequently, lysosomal function. Furthermore, 
expression of each CLEAR gene may be regulated by different 
miRNA [and/or by other non-coding RNA (ncRNA)], bringing 
additional layers of complexity to this system.

Therefore, as lysosomal function depends on this gene net-
work, it seems very likely that ncRNA play an important role in 
fine tuning of lysosomal genes expression, modulating disease 

onset, severity, and progression. In the next session, we will 
discuss current data on the literature regarding the association 
of ncRNA and LSD.

LsD AND ncrNA stUDies

The paradigm DNA–RNA–protein has been modified long time 
ago, since the discovery of RNA molecules capable of acting at 
transcription, translation, and RNA modification processes 
[reviewed by Cech and Steitz (16)]. These RNA molecules, the 
so-called ncRNA, are a functional class of RNA involved in the 
regulation of several cellular processes, such as repression or 
enhancement of gene expression, protection against deleterious 
nucleic acids, and histone and DNA modifications [reviewed by 
Yang et al. (17)]. They have also been implicated in a number of 
human diseases as cancer, neurodegenerative and autoimmune 
disorders, modulating disease onset, progression, and prognosis. 
The most known classes of regulatory ncRNA are miRNA, siRNA, 
piRNA, and lncRNA, each having their own characteristics and 
functions [reviewed by Zhou et al. (18)].

To date, all studies regarding the association of ncRNA and 
LSD available in the literature have focused only on miRNA, 
which are small ncRNA (19–24 nucleotides transcripts) that 
direct posttranscriptional silencing of complementary mRNA 
targets, through assembling with Argonaute proteins in the 
miRNA-induced silencing complexes (miRISC). This mecha-
nism regulates gene expression by repressing translation or 
destabilizing the mRNA molecule. It has been demonstrated 
that one miRNA is able to regulate the expression of hundreds 
of genes, making these molecules crucial for almost all biological 
processes (19, 20).

The first report of a connection between LSD and ncRNA was 
published by Ozsait et al. (21), in which they performed a miRNA 
array in fibroblasts of patients with Niemann–Pick type C (NPC), 
a lipid storage disease caused by mutations in NPC1 or NPC2 
genes. The miRNA profile revealed that among 365 evaluated 
miRNA, 3 of them were upregulated and 38 were downregulated 
in NPC cells. The differentially expressed miRNA are predicted 
to control the expression of genes involved with metabolism 
of cholesterol and other lipids, also involved with endocytosis, 
cytoskeleton organization, and ubiquitin pathways. Interestingly, 
only few miRNA (miR-26b, miR-19a, and miR-19b) target genes 
which are directly related to metabolism of cholesterol, consider-
ing that the prior cause of NPC disease is the cholesterol storage. 
A similar study was performed by Arora et al. (22), in which a 
screening of siRNA was carried out in order to identify modula-
tors of cholesterol accumulation in two NPC cell lines. Cells were 
transfected with selected siRNA individually and were stained 
with filipin, a fluorescent marker of cholesterol accumulation. 
Changes in filipin staining were found in NPC fibroblasts trans-
fected with siRNA that targeted low-density lipoprotein receptors 
(LDLR, APOL1, NPC1, NPC1L1, NPC2, STARD3, STARD4, and 
RAB9A) and sphingomyelin phosphodiesterase 1, evidencing the 
role of these genes in lipid metabolism.

Gaucher disease, a relatively frequent LSD caused by defi-
ciency of lysosomal glucocerebrosidase (Gba), a GBA1 encoded 
enzyme that degrades glucocerebroside into glucose and 
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ceramide (23), has already been evaluated under the ncRNA 
perspective. Siebert et al. (24) performed a screening of miRNA 
involved in the modulation of Gba in fibroblasts of Gaucher 
patients and showed that enzyme activity was specially upregu-
lated by five and downregulated by three miRNA. Then, cells 
were transfected with these selected miRNA in order to evaluate 
gene transcription and protein expression when compared to 
negative control transfected cells. Two miRNA (miR-195-5p 
and miR-16-5p) strongly upregulated GBA1 expression, while 
three miRNA (miR-127-5p, miR-19a-5p, and miR-1262) down-
regulated SCARB2, an important membrane receptor involved in 
Gba availability. One of them, miR-127-5p, downregulated Gba 
activity and also its levels, since it was also able to downregulate 
SCARB2 expression.

On the other hand, Ginns et al. (25) studied a murine model 
of Gaucher disease, treated with a Gba inhibitor (conduritol 
β-epoxide). It is known that patients with Gaucher disease pre-
sent a significant risk factor for the development of Parkinson 
disease, which is reinforced by previous data showing α-synuclein 
accumulation and signs of neuroinflammation in Gaucher 
animal models. Authors have detected changes in the expres-
sion of miRNA in ventral mesencephalon of the animal model: 
two miRNA were upregulated (miR-29b and miR-142) while  
miR-let7b was downregulated, all involved with the modulation 
of genes related to inflammatory response. The study suggested 
that Gba deficiency may influence signaling cascades involving 
neuroglia, α-synuclein, and miRNA, all contributing to early 
pathogenesis, synaptic dysfunction, and neurotoxicity, common 
both to Gaucher and Parkinson diseases.

Frankel et  al. (26) demonstrated that miR-95 controls the 
expression of sulfatase-modifying factor 1 (SUMF1) gene, which 
encodes an activator of sulfatases. These enzymes are essential 
for the catabolism of glycosaminoglycans and are deficient 
in multiple sulfatase deficiency (MSD), as a consequence of 
mutations in SUMF1 gene. They have observed an increase in 
SUMF1 expression and in its enzymatic activity as a result of 
miR-95 inhibition. In addition, miR-95 transfected cells showed 
higher GFP-LC3II positive cells and the accumulation of early 
endosomes, multivesicular bodies, autophagic substrates, and 
autophagic vacuoles, which reinforces the interference caused 
by miR-95 in endocytic and autophagic mechanisms. These data 
were confirmed in cells of MSD patients, since authors proved 
that inhibition of miR-95 could raise residual SUMF expression 
and also SUMF1 activity.

Taken together, these data emphasize the role of miRNA in 
modulating specific pathogenic cascades involved in the physi-
opathology of different LSD. As discussed in the first session, 
there is still a lot to learn about specific secondary alterations due 
to enzyme deficiency in this group of diseases, and the recent dis-
covery of CLEAR network shows us additional layers of potential 
regulators and/or modulators of gene expression in a number of 
processes associated with lysosomal function, which reinforces 
the importance of studying miRNA and other ncRNA in this 
context. The next session will describe available tools for analyz-
ing ncRNA, which could be used for studying these molecules in 
LSD models or patients.

tOOLs FOr ncrNA evALUAtiON

The discovery of ncRNA and the evaluation of their functions 
have improved significantly in the last 15 years due to the raise of 
new questions and the advance of molecular biology technologies 
(27, 28). ncRNA are already associated with important functions 
in genetic and epigenetic regulation, such as modulation of 
chromatin modification, DNA methylation, transcription, and 
translation processes. Therefore, specific techniques must be used 
in order to assess each one of the possible levels of regulation. 
The most common approach is to perform high throughput 
analysis in order to identify alterations in ncRNA profile and then 
investigate those of interest (29, 30). However, bioinformatics is 
extremely implicated in ncRNA studies since it is relevant in iden-
tification of new ncRNA sequences and in predicting their targets 
by in silico approaches [reviewed by Krzyzanowski et al. (31)].

The first step in ncRNA assessment is generally based on some 
previous data, e.g., an unknown underexpression of a gene or 
an unexpected methylation of a gene promoter, or an interest in 
evaluating their general profile under experimental conditions. 
Thus, the most common approaches to evaluate ncRNA status 
are transcriptome analysis, PCR arrays, microarrays, and other 
screening assays (29, 30). After gathering these data, bioinfor-
matics analysis must be carefully performed in order to obtain 
reliable results, since it can highlight some ncRNA molecules 
and also predict their interaction with other molecules, such as 
miRNA–mRNA base-pairing and/or lncRNA contact with his-
tones, which may turn plausible the explanation of some specific 
event (31, 32).

Once verified the possible relevance of ncRNA in a context, it 
becomes necessary to perform validation experiments. Generally, 
the most common validation method is quantitative RT-PCR 
because of its power to easily quantify RNA species from several 
samples at the same time. Alternatively, Northern blot can be 
performed in order to evaluate ncRNA profile in different condi-
tions (29). There are also specific techniques to evaluate the role 
of ncRNA in mRNA regulation, such as luciferase activity assay 
for miRNA and piRNA and the utilization of miRNA mimic, 
inhibitor, and/or sponge in cell culture (33, 34). On the other 
hand, it may be interesting to assess ncRNA importance in pro-
tein expression and in chromatin modifications by Western blot 
or chromatography approaches and RNA immunoprecipitation 
(RIP), RIP-Chip, and ChIRP, respectively (29, 33).

cLOsiNG reMArKs AND FUtUre 
PersPectives

The study of LSD and ncRNA association is just beginning. 
Until now, the primary focus of the authors was the evaluation 
of miRNA profile in the context of LSD, since there are reports 
showing that alterations of miRNA expression in several diseases 
may be involved in the modulation of their outcome, as well as 
being used as a disease biomarker (35–38). Secondarily, the uti-
lization of specific siRNA was a pronounced strategy to evaluate 
the impact of several genes in cholesterol metabolism, elucidating 
their role in NPC pathogenesis. Nevertheless, there are no articles 
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comprising the role of lncRNA, piRNA, and other important 
members of ncRNA in LSD.

Considering the plethora of secondary pathways involved in 
LSD, including CLEAR network dysregulation and neurodegen-
eration pathways, it seems very likely that ncRNA might play 
an important role in the regulation of these mechanisms and 
eventually in disease physiopathology, contributing to phenotypic 
variability. Transcriptome analysis has the potential to reveal RNA 
molecules affected by LSD, which may enlighten some poorly 
understood mechanisms and enable the comparison of mRNA 
and ncRNA profile in different LSD. Therefore, efforts in perform-
ing ncRNA analysis on well-established models of LSD should 
be taken in order to better comprehend their complexity and 
possibly discover potential biomarkers and therapeutic targets.
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