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Thyroid hormone concentrations only become sufficient to maintain a euthyroid state 
through appropriate stimulation by pituitary thyroid-stimulating hormone (TSH). In such 
a dynamic system under constant high pressure, guarding against overstimulation 
becomes vital. Therefore, several defensive mechanisms protect against accidental 
overstimulation, such as plasma protein binding, conversion of T4 into the more 
active T3, active transmembrane transport, counter-regulatory activities of reverse T3 
and thyronamines, and negative hypothalamic–pituitary–thyroid feedback control of 
TSH. TSH has gained a dominant but misguided role in interpreting thyroid function 
testing in assuming that its exceptional sensitivity thereby translates into superior 
diagnostic performance. However, TSH-dependent thyroid disease classification is 
heavily influenced by statistical analytic techniques such as uni- or multivariate-defined 
normality. This demands a separation of its conjoint roles as a sensitive screening test 
and accurate diagnostic tool. Homeostatic equilibria (set points) in healthy subjects are 
less variable and do not follow a pattern of random variation, rather indicating signs of 
early and progressive homeostatic control across the euthyroid range. In the event of 
imminent thyroid failure with a reduced FT4 output per unit TSH, conversion efficiency 
increases in order to maintain FT3 stability. In such situations, T3 stability takes priority 
over set point maintenance. This suggests a concept of relational stability. These 
findings have important implications for both TSH reference limits and treatment targets 
for patients on levothyroxine. The use of archival markers is proposed to facilitate the 
homeostatic interpretation of all parameters.
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inTRODUCTiOn

Maintenance of body composition and its internal milieu both over long periods of time and 
during varying imposed external conditions is a primary goal for attaining human health. This 
is expressed as biological normality, which is more narrowly defined as a perceived optimal state 
for an individual rather than through a reference range for a population (1–3). In contrast, the 
statistical definition of normality is inferred by the Gaussian distribution of the variation or 
measurement error frequently observed in a population (4). Biological variation is not expressed 
by an error term, but has an important evolutionary role (5).
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The human body is essentially a highly complex, interactive 
biological system where normality and variation are tightly con-
trolled by various mechanisms (6, 7). Typically, the hypothala-
mus–pituitary–thyroid–axis is closely concerned with energy 
metabolism and multiple specific functions within the organism. 
Gaining control over energy expenditure independently of 
environmental short-term supply offers major systemic advan-
tages (8). It is therefore unsurprising that the thyroid, within 
the broader biological complex, embodies these basic biological 
necessities, showing also associations with longevity in older 
populations (9–13). By nature, such systems tend to operate far 
away from their unstimulated resting point, and being metastable 
require considerable energy and systemic pressure in order to 
avoid collapse and to maintain a desired equilibrium point. Subtle 
variations in responding to challenges either by an individual or 
among populations provide stabilization against adventitious 
reactions that could otherwise cause wide fluctuations and tur-
bulences in the control outputs (14).

In this short review, we will examine the expression of nor-
mality, variation, and control of thyroid function in humans and 
draw some conclusions on their practical use for diagnosis and 
treatment.

BACKGROUnD

The human thyroid gland produces and then releases into the 
circulation, a large amount of thyroxine (T4) and a lesser pro-
portion of triiodothyronine (T3). Hormone concentrations in 
the circulation depend on both specific and unspecific binding 
to proteins, such as TBG, transthyretin, and albumin. Only 
very small concentrations exist as the respective unbound free 
forms. The free molecules are biologically active, free T3 (FT3) 
significantly more so than free T4 (FT4). The two hormones 
are interrelated by conversion of T4 into T3 by enzymatic 5′ 
monodeiodination (15, 16). Most of T4 circulates throughout 
the body, whereas T3 is predominantly found within cells. 
T3 transport in and out of the cell is potentiated via specific 
transport mechanisms and not by passive diffusion (17, 18). 
Within the cell, T3 is eventually transported to the nucleus 
where it binds to thyroid hormone receptors to exert its mostly 
genomic actions (19–21). Non-classical actions include bind-
ing of thyroid hormones to membrane receptors (22). The 
basal unstimulated glandular output of thyroid hormones is 
relatively low (23). It potentiates the euthyroid state only upon 
stimulation by pituitary thyroid-stimulating hormone (TSH). 
This puts the system of T4 and T3 production under constant 
high pressure. Consequently, such a high pressure system 
requires defensive mechanisms to protect the cells from the 
dangers of being flooded and overwhelmed by an over-supply 
of thyroid hormones. This includes binding of thyroid hormones 
to plasma proteins, prior activation of the pro-hormone T4 
(T4–T3 conversion), gate control at cell entry (active transport 
across the cell membrane), and production of locally expressed 
counter-regulatory derivatives such as reverse T3 and thyron-
amines that exert short loop inhibitory control (17, 24–26). 
There is additionally a systemic negative feedback control at 
the pituitary and hypothalamic level that both controls thyroid 

hormone production and sets an appropriate internal reference 
point for pituitary TSH secretion (27).

Modern assays allow readily available measurements of all 
three thyroid parameters, TSH, FT4, and FT3 (28–30). This does 
not apply to TRH whose circulatory concentrations are too low 
for reliable detection and result from multiple sources including 
hypothalamus, spinal cord, and gastrointestinal tract. At the 
present time, there are 27,184 publications on TSH in PubMed. 
However, most studies have focused exclusively on TSH, or 
examined the parameters in isolation, downplaying the interre-
lationships with the other thyroid hormones. TSH has assumed 
a dominant and statistically independent role as the result of 
its exceptional sensitivity, compared to thyroid hormones, thus 
divorcing it from its physiological roots as an indirect controlling 
element (27, 29, 31, 32). This, in turn, has fostered a widely held 
belief that its exceptional sensitivity in response translates into 
superior diagnostic performance, thereby making the additional 
consideration of thyroid hormones largely redundant (33). We 
have examined the validity of this tenet below.

nORMALiTY OF THYROiD PARAMeTeRS

Statistical normality applies to FT4 and FT3 in a sufficiently 
large and healthy population sample, thus making it easy to 
define appropriate 95% confidence limits or reference intervals 
for a population. For TSH, which is not normally distributed, a 
logarithmic transformation was used as an accepted statistical 
procedure (34). This method has had limited success and the 
remaining skewness of the logarithmically transformed TSH was 
explained by the putative presence of clinically hidden patholo-
gies such as thyroid autoimmunity that are highly prevalent in the 
population (35–38). Further investigations showed considerable 
unexpected variation in the upper limit of the reference range 
(39–41). This hiatus in defining the TSH reference range has 
been widely discussed and various influences, among others, 
methodology, geography, ethnicity, and age have been suggested 
to explain the discrepancies (34–54). However, the disagreement 
has not been resolved. This may indicate an important underlying 
problem.

By its physiological role as discussed above, TSH is 
interlocked with FT4, being the main driving force behind 
the rise in concentration of the latter hormone to its normal 
euthyroid level. In homeostatic equilibrium, the two values 
deliver the so-called set point (55). This represents the inter-
secting point between the characteristic curves for thyroidal 
FT4 production and the pituitary response of TSH feedback 
control. The set point is less variable in an euthyroid individual, 
and, importantly, intraindividual variability of TSH is only 
about half as wide as its interindividual variability (55–59). 
TSH differs thereby from many other laboratory parameters 
where  intra-subject and  between-subject variation are nearly 
equal. A   two-dimensional or  three-dimensional distribution 
of TSH and FT4/FT3 in the euthyroid range describes clusters 
of set points appropriate for healthy individuals (60–64). 
Conceptionally, this questions the use of the presently employed 
isolated univariate reference ranges for single parameters and 
promotes a composite expression of multivariate normality 
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in the collective. Between-subject variation should therefore 
best be addressed by paired measurements of TSH and FT4 in 
healthy individuals. Using a large sample from a prospective 
study, we have derived bivariate and trivariate reference limits 
for TSH and thyroid hormones (64). We have further examined 
their diagnostic performance, compared to a univariate TSH 
reference range (64). This study revealed frequent discrepancies 
in the placement of results between composite multivariate 
reference limits and a combination of the univariate single 
reference intervals. Method-associated reclassification from 
thyroid dysfunction to euthyroidism was as high as 26% by using 
the bivariate limit or 42% for the trivariate limit, respectively 
(64). These recent findings agree with the few previous studies 
applying the concept of multivariate normality to clinical data 
(60, 63), extending the earlier findings to evaluating diagnostic 
performance (64). This demonstrates that statistical analytic 
techniques heavily influence current TSH-reliant thyroid dis-
ease classification. Hence, joint application of the dual roles of 
TSH as a sensitive screening test and an accurate diagnostic tool 
becomes highly questionable and consequently the roles must be 
separated from each other. The current classification of the dis-
ease entities of subclinical hypothyroidism or hyperthyroidism, 
which is solely based on abnormal TSH values when thyroid 
hormones concentrations remain within their respective refer-
ence ranges, seems no longer tenable (31, 32). New markers for 
clinical endpoints or tissue-based definitions of thyroid function 
are therefore urgently needed. Over-reliance on TSH as a gold 
standard has long impeded the advancement of the field, since 
the first doubts were raised and disagreements emerged on the 
setting of the reference intervals (34–54). While sole reliance 
on TSH must therefore be scaled back, good clinical practice 
taking into account the full history and symptoms displayed by 
a patient has to be re-instituted as a primary tool (65, 66).

ReLATiOnAL STABiLiTY BeTween 
THYROiD PARAMeTeRS

Although current definitions of subclinical thyroid dysfunc-
tion follow a narrow TSH-based distinction, recent studies 
demonstrated that the cardiovascular and mortality risk 
increases within the “normal” thyroid function range (67–69). 
This suggests that transition into thyroid disease occurs more 
gradually, and risks may not be reliably assessed by univariate 
TSH normality. The situation is further complicated by issues 
with TSH reference limits discussed above. A combined view 
of all thyroid parameters and their interrelationships may 
provide a more comprehensive picture as a moderately raised 
TSH could either indicate a failed attempt at restoration of 
euthyroidism or signal successful homeostatic adaptation. The 
expression of adaptive homeostatic equilibria between TSH 
and thyroid hormones may provide an early defense line 
against the abrupt onset of thyroid failure following less severe 
or temporary disruptions. Clinical studies support this view 
showing no adverse outcomes for mortality, cardiovascular 
events, fracture risk, or cognitive impairment in association 
with mildly elevated TSH levels (5–10 mIU/l) (70). In elderly 
patients with subclinical hypothyroidism, in contrast, life 

expectancy was found to be compromised with lower, not 
higher TSH values (9–13).

We hypothesized that early adaption under system stress 
should be testable by studying the expression of homeostatic 
equilibria across the spectrum of euthyroid subjects (71). The 
concept was termed relational stability, describing adaptive 
interrelations between the parameters rather than univariate 
expression of normality of a single component maintaining 
system stability. We found an inverse correlation between TSH-
standardized T4 production and T4–T3 conversion across the 
euthyroid reference range (71). This contradicts the assumption 
that variation between thyroid hormones and TSH may be 
randomly defined in euthyroid subjects by genetic variation 
in the formation of set points (72–74), rather indicating early 
homeostatic control across the euthyroid spectrum (71). The 
euthyroid reference range for FT3 becomes dependent on a 
progressive alteration in the controlling interplay between 
TSH, FT4, and FT3 across the range. The concept extends to 
the diseased state, e.g., in patients with autoimmune thyroiditis 
where the observed pattern of control was similar, albeit shifted 
at a lower level (71).

Hence, maintaining stable FT3 positions takes priority over 
set point fixation in expressing the TSH–FT4–FT3 relation-
ship, as the system seeks early compensation from the very 
onset of thyroid capacity stress, progressively increasing global 
deiodinase activity as thyroidal production declines (71). This 
T3-stabilizing behavior may emanate from the expression of 
TSH feedforward control on deiodinase activity (27). Phase-
shifted coupling of the circadian rhythms of FT3 and TSH 
reflects this example of physiological control (75). In vitro and 
in vivo studies on athyreotic patients under levothyroxine (LT4) 
treatment further suggested a direct role of TSH in integrating 
cooperative elements of central and peripheral control (27, 
76–80). Recent pathophysiological support from studies in the 
rat or genetically modified animals suggests that defending 
appropriate FT3 concentrations has high priority (81–83). As 
reviewed elsewhere (84, 85), invasive procedures carried out in 
the animals, not ethically possible in humans, extend many of 
our findings to tissue equilibria.

The newly proposed concept of relational stability assigns 
maintenance of T3 stability equal physiological relevance to 
central set point control. Where conflicts between the two regula-
tory elements may arise, T3 stability takes priority over set point 
maintenance. Importantly, this indicates that the set point is not 
only dramatically adjusted in extreme conditions such as the non-
thyroidal illness syndrome, as has long been recognized (86, 87), 
but may be modified as part of an early response of the system 
when challenged by minor disturbances.

Understanding the progressive variation in control responses 
has important implications for clinical decision-making. 
First, it brings a homeostatic perspective to the controversial 
debate on the validity of TSH reference limits. Lowering the 
conventional reference range for TSH to 2  mIU/l has been 
proposed by some authors, based on imposing a statistical 
normal distribution, so as to sensitively define subclinical 
hypothyroidism (40, 45). Others see no need to redefine the 
upper reference limit (39, 40). If the non-random statistical 
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pattern is explained by subtle heterogeneity in the expres-
sion of control in euthyroid individuals, the 2  mIU/l limit 
may not necessarily reflect the beginning of a diseased state, 
rather indicating a compensatory response to early capacity 
stress. This favors a more conservative approach for treatment 
decisions in patients with subclinical hypothyroidism (32, 70). 
However, given considerable individual variation, such findings 
of modest elevations in TSH should not countervail appropriate 
treatment if clinical presentation warrants it. Second, some 
unexpected outcomes may arise from balancing effects between 
the feedback and feedforward regulation. LT4 administration 
for instance may impair feedforward regulation by reducing 
stimulatory TSH levels more than anticipated from the added 
supply of exogenous T4, resulting in decreased FT3 concen-
trations in patients with autoimmune thyroiditis (88). This 
encourages further clinical study of calculated homeostatic 
parameters and interrelational measures (89).

inTeRReLATiOnAL MeASUReS 
AnD eMeRGinG new COnCePTS 
OF THYROiD HOMeOSTASiS

While TSH alone can play a role as a sensitive screening test in 
asymptomatic subjects, it cannot also simultaneously assume the 
second role of a reliable diagnostic tool (gold standard) for defin-
ing true euthyroidism. The clinical interpretation of TSH should 
therefore be appropriately scaled back. TSH reference intervals 
for euthyroidism are uncertainly defined. From a homeostatic 
perspective, all three parameters TSH, FT4, and FT3 must be 
viewed together (27, 88).

To develop this concept further, we propose archival markers 
should be laid down for the individual subject. This may serve 
as a homeostatic reference point if any disturbance or thyroid 
disease arises in the future. Such markers will be readily available 
prior to surgery and may deliver personal targets to guide dose 
titration. In situations where they are unavailable or not applica-
ble (e.g., after surgery for toxic adenoma or toxic multinodular 
goiter), reconstructing the set point from multiple TSH–FT4 
pairs may offer an alternative option (90–92). As a strength, the 
latter approach provides individual markers with less variation, 
compared to univariate or multivariate reference ranges, but it 
has the disadvantage of failing to deliver FT3 targets and being 
sensitive to variations in deiodinase activity.

Potential treatment-related adjustments are not considered by 
this method, and the path of set points from hypothyroidism to 
euthyroidism can usually only be mapped in individuals under 
open loop conditions, i.e., under LT4 therapy in most cases. 
This becomes clinically relevant, because the set point has been 
demonstrated to differ in the same patient from health to disease, 
e.g., before and after thyroidectomy (27, 88, 93, 94). Hence, the 
equilibria in individuals appropriate for their healthy state do 
not remain unaltered and cannot act as equivalent targets for 
their diseased state. Consequently, log-linearity of the TSH–FT4 
relationship cannot be safely assumed over the entire functional 
range (27, 95–99). While linearity roughly holds true in the 
open loop situation and hypothyroid state, the relationship 

becomes progressively damped toward the euthyroid range 
(88, 95, 99–101). Within the euthyroid range, factors other 
than TSH dominate the expression of control (27). Thereby, 
this fine-tunes the response, adjusting it to the conditional and 
situational needs. While this has been convincingly shown for 
populations in cross-sectional studies, longitudinal data are 
more difficult to interpret, because most patients followed are 
treated, and LT4-treatment has in itself a dose-related influence 
on the relationships (27, 88, 101).

Athyreotic patients show particularly wide variations in their 
biochemical responses to LT4 treatment (102). This provokes 
alterations in the interlocking relationships and governing 
equilibria (27). While FT3 is uncorrelated with TSH in healthy 
subjects indicating T3 stability, it becomes TSH-related and 
unstable in LT4-treated patients (Figure 1). This flexible behavior 
precludes both the isolated interpretation of TSH levels and chal-
lenges the validity of the clinical application of fixed set points. 
Rather the balanced interrelationship between FT3 and TSH 
must be considered as a key component of control and should 
be interpreted more dynamically. FT3 as the primary target of 
stability cannot thus left be out of the equation. Neither can the 
importance of its absolute position be ignored nor can its equally 
important indirect influence on the TSH–FT4 relationship be 
neglected. However, equilibrium and optimum reference points 
may dissociate on LT4. Ingestion of a T4 load unaccompanied by 
the production of a physiologically appropriate T3-fraction may 
drive the system attempting regulatory balance into non-optimum 
positions (101). While LT4 dose escalation or the use of liquid 
formulations effectively control elevated TSH levels in various 
conditions including gastric problems, intestinal malabsorption, 
or drug interference (103, 104), this situation is different, as low 
FT3 concentrations persist in these patients despite suppressed 
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TSH levels and elevated FT4 concentrations (102). Apparently, 
a minority of patients on LT4 still fail to concomitantly raise 
their serum FT3 concentrations as the T4 excess itself impairs 
T3–T4 conversion (102, 105). The clinical relevance was recently 
confirmed as euthyroid TSH targets could not adequately raise 
resting energy expenditure (REE) adjusted for lean body mass 
in LT4-treated women, compared to healthy controls, only FT3 
levels being positively correlated with REE (106). A recent study 
using currently available evidence-based treatment options 
suggests hypothyroid patients can expect their quality of life to 
improve, but not a full recovery to a level characteristic of the 
healthy population (107). Recognizing and targeting homeostatic 
equilibria may improve future treatment strategies for hypothy-
roid patients, which remains an important goal.

COnCLUSiOn

Thyroid-stimulating hormone gains unique properties from its 
embedment into a biological system and its primary role as a con-
trolling element. Important differences thus arise exceeding the 
statistical concept of univariate normality conventionally applied 
to univariate reference ranges. Biological variation, homeostatic 

interrelations, equilibria, and set points between TSH, FT4, and 
FT3 become relevant for the observed expression of multivariate 
normality and relational stability in thyroid health. FT3 becomes 
a primary target for system stability whose absolute position 
and indirect influence on the TSH–FT4 relationship must be 
recognized. System instability may produce non-optimal equi-
libria under LT4 monotherapy in some patients. The triple roles 
of TSH as a sensitive screening test, an accurate diagnostic tool, 
and a therapeutic target require separation. A conjoint view of all 
thyroid parameters leads to the proposition of archival thyroid 
markers as future reference points.
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