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Obesity is a complex metabolic disorder associated with the development of non-
communicable diseases such as cirrhosis, non-alcoholic fatty liver disease, and type 2 
diabetes. In humans and rodents, obesity promotes hepatic steatosis and inflammation, 
which leads to increased production of pro-inflammatory cytokines and acute-phase 
proteins. Liver macrophages (resident as well as recruited) play a significant role in hepatic 
inflammation and insulin resistance (IR). Interestingly, depletion of hepatic macrophages 
protects against the development of high-fat-induced steatosis, inflammation, and IR. 
Kupffer cells (KCs), liver-resident macrophages, are the first-line defense against invading 
pathogens, clear toxic or immunogenic molecules, and help to maintain the liver in a 
tolerogenic immune environment. During high fat diet feeding and steatosis, there is an 
increased number of recruited hepatic macrophages (RHMs) in the liver and activation of 
KCs to a more inflammatory or M1 state. In this review, we will focus on the role of liver 
macrophages (KCs and RHMs) during obesity.

Keywords: obesity, insulin resistance, inflammation, hepatocytes, Kupffer cells, immunometabolism

inTRODUCTiOn

The rising prevalence of obesity represents a major global health challenge, not least because it 
is considered a significant risk factor for a wide array of non-communicable diseases. Prominent 
among these are diseases of the liver, ranging from steatosis through to cirrhosis, collectively termed 
non-alcoholic fatty liver disease (NAFLD) (1). However, the etiology linking obesity with liver 
pathology is incompletely understood, hindering attempts to treat these conditions.

A landmark discovery offering therapeutic potential for the metabolic syndrome was the find-
ing that the adipose tissue of obese mice and humans displays hallmarks of an inflammatory state, 
including increased concentrations of tumor necrosis factor alpha (TNF-α) and increased mono-
cyte/macrophage infiltration (2–4). Indeed, TNF-α is sufficient to induce features of the metabolic 
syndrome, such as insulin resistance (IR), and many chemical and genetic depletion studies have 
demonstrated the importance of inflammation and inflammatory macrophages in this process 
[recently reviewed in Ref. (5)]. Macrophage accumulation also occurs in other key metabolic tissues 
including muscle (6–9), liver (10–12), and pancreas (13, 14), which contribute to the dysregula-
tion of glucose homeostasis. In this review, we focus on the composition and behavior of hepatic 
macrophage populations in obese mice and highlight recent advances that could aid in the targeting 
of this axis to treat aspects of the metabolic syndrome.
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THe LiveR AT THe inTeRFACe BeTween 
MeTABOLiSM AnD iMMUniTY

The liver is a key metabolic organ, which regulates a variety of 
processes vital for maintaining metabolic homeostasis. These 
include control of glucose production and lipid metabolism, dys-
regulation of which are symptomatic of the metabolic syndrome. 
The liver also plays key roles as part of the immune system secret-
ing acute-phase proteins, complement components, cytokines, 
chemokines, and being positioned, along with the gastrointestinal 
tract, at the major interface between ourselves and our external, 
even microbial environment (15, 16). This unique position where 
metabolism and immunity are intertwined is reflected in the liver 
architecture, whereby immune cells are intimately connected to 
hepatocytes and liver sinusoidal endothelial cells (LSECs) (17, 
18), as well as the cross-regulation whereby metabolic stress 
can result in hepatic immune activation leading to metabolic 
dysregulation (19, 20).

The liver maximizes nutrient absorption as blood flows 
through a system of sinusoidal vessels and fenestrations through 
beds of hepatocytes (17). The majority of blood within the 
sinusoid derives from the intestines via the hepatic portal vein 
and is rich in both nutrients, and also potentially immunogenic 
microbial molecules, or in cases of opportunistic infection 
microbes themselves (17). Therefore, in addition to facilitating 
nutrient absorption, sinusoids must also enable the removal of 
immunogenic material and allow the immune system to com-
bat of infection. Kupffer cells (KCs) are located in the hepatic 
sinusoids and play a key role in this process (18). They bind a 
range of microbes or microbial ligands via microbe-associated 
molecular patterns (MAMPs), and by phagocytosis prevent them 
penetrating into the general circulation (18). Lipopolysaccharide 
(LPS), for example, is readily detectable in portal blood, but 
only rarely detectable in systemic circulation (21). Compared 
with macrophages from other locations, KCs are predisposed 
to respond to activation signals in a less inflammatory fashion 
and are especially characterized by producing high concentra-
tions of the anti-inflammatory cytokine, interleukin 10 (IL-10) 
(22). Furthermore, KCs, along with other antigen-presenting 
cells in the liver, express low levels of co-stimulatory molecules 
required to initiate an adaptive immune response and high levels 
of molecules that suppress T cell activation, such as programed 
death-ligand 1 (PDL-1) (17). Thus, during homeostasis KCs in 
collaboration with other hepatic immune cell populations clear 
microbial material while maintaining the inflammatory tone of 
the liver at a level sufficient for essential functions such as patho-
gen killing, tissue remodeling, and sinusoidal permeability, but 
below that which would result in overt inflammation and tissue 
damage (5, 18, 23). The factors maintaining KCs in this tolero-
genic state are not completely clear but are critically important 
when we consider how these cells and the hepatic macrophage 
pool in general are altered during obesity.

The phenotype of tissue macrophages is thought to be depend-
ent on their respective ontogeny, as well as their respective polari-
zation state in the tissue environment (24). Polarization was most 
clearly described by in  vitro studies, which used cytokines to 
induce different extremes of macrophage phenotype classified as 

M1 or classically activated macrophages, considered more pro-
inflammatory, and M2 or alternatively activated macrophages 
that have an anti-inflammatory tone (25). M1 macrophage dif-
ferentiation can be induced by interferon gamma (IFN-γ), alone 
or with microbial products such as LPS or inflammatory cytokine 
TNF-α. In contrast, interleukin 4 (IL-4), interleukin 10 (IL-10), 
interleukin 13 (IL-13), interleukin 33 (IL-33), transforming 
growth factor beta (TGF-β), and granulocyte colony-stimulating 
factor (G-CSF) activate macrophages to differentiate to M2. 
However, given the range of factors now known to influence 
macrophage polarization, including cellular metabolic state 
(26), it is likely that a spectrum of macrophage phenotypes occur 
in vivo even within the same tissue macrophage pool (25). In lean 
mice, KCs have an M2-like phenotype maintained by the type 2 
cytokine, IL-4, and the nuclear hormone receptor peroxisome 
proliferator activator receptor delta (PPAR-δ) (27, 28). Thus, KCs 
are specialized by virtue of their derivation from the yolk sac 
early in development (24, 29), and by factors in the liver environ-
ment, which maintain them in a less inflammatory, M2-like state 
(27, 28).

PARenCHYMAL AnD  
nOn-PARenCHYMAL CeLLS in LiveR

Hepatocytes are the major parenchymal cells, while the non-
parenchymal cells integrate five cell populations including resi-
dent macrophages or KCs (30), recruited hepatic macrophages 
(RHMs), resident innate lymphocytes or natural killer cells (NKs) 
(31, 32), fat storing cells termed Ito or stellate cells (HSCs) (33), 
and LSECs (34) (Figure 1).

These non-parenchymal cell populations can be identified 
by a variety of cell surface markers. In general, KCs and RHMs 
both express epidermal growth factor-like module-containing 
mucin-like hormone receptor-like 1 (F4/80) (35), NKs form two 
pools distinguished by mutually exclusive expression of CD49a or 
DX5 (36), HSCs express glial fibrillary acidic protein (GFAP) (37, 
38), and LSECs express CD34 (39). In addition, these liver cell 
populations can also be distinguished by their physical location 
within the liver and specific ultrastructural characteristics. For 
example, hepatocytes contain many microvilli, which project into 
space of Disse (perisinusoidal space) between the endothelial 
cells and hepatocytes. KCs (~15% of all liver cells) represent the 
largest population of tissue macrophages (80–90% of resident 
macrophages in the whole body) (40). KCs are found attached to 
the luminal surface or inserted in the endothelial lining of hepatic 
sinusoids (41, 42), which make them the first macrophages to 
come into contact with gut-derived foreign and potentially nox-
ious material. The size and function of KCs also depend on their 
specific location in the liver (43) with KCs in periportal regions 
being larger and more phagocytic with higher lysosomal enzyme 
activity than KCs in midzonal and perivenous locations (44). 
Unlike hepatocytes, KCs are amoeboid in shape. Fenestrae form 
open connections between the lumen of the sinusoid and the 
space of Disse (45). The transport and exchange of fluid, solutes, 
and particles between the sinusoidal lumen and the space of Disse 
containing the parenchymal cell surface are believed to occur 
through these open fenestrae (46). While KCs utilize phagocytosis 
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FigURe 1 | Schematic diagram showing parenchymal and non-parenchymal cells in liver. (A) Lean liver showing parenchymal hepatocytes (HC) and 
non-parenchymal anti-inflammatory Kupffer cells (M2-KC), natural killer cells (NK), hepatic stellate cells (HSC), and liver sinusoidal endothelial cells (LSEC). (B) High 
fat diet-induced obese liver showing activated pro-inflammatory Kupffer cells (M1-KC), recruited hepatic macrophages (RHM), and lipid droplets (L). CV, central vein; 
E, erythrocyte; GA, Golgi apparatus; Mt, mitochondria; N, nucleus; S, sinusoid.

3

Mayoral Monibas et al. Macrophage Populations in Liver

Frontiers in Endocrinology | www.frontiersin.org December 2016 | Volume 7 | Article 152

to incorporate large particles such as erythrocytes and bacteria, 
they take up small particles and molecules via pinocytic vesicles 
(47–50). NKs reside in sinusoids and eliminate virus-infected or 
transformed cells and regulate adaptive immune responses via 
contact-dependent signals and the secretion of cytokines (36, 
51–53). HSCs are perisinusoidal cells, which contain characteris-
tic lipid droplets. HSCs maintain vitamin A homeostasis as they 
store 80% of total vitamin A in the body. Inflammatory signals 
transform HSCs into myofibroblasts, resulting in collagen pro-
duction and development of liver fibrosis (54, 55). LSECs possess 
a high-rate, high-capacity system to remove colloids and water-
soluble waster macromolecules from the circulation (34, 56). At 
the ultrastructural level, LSECs constitute the only mammalian 
endothelial cells that combine non-diaphragmed fenestrae with a 
discontinuous basement membrane, which allows blood plasma 
to enter the space of Disse.

LiveR MACROPHAge POPULATiOnS 
DURing OBeSiTY

During the course of obesity, the adipose tissue’s ability to 
store excess energy is compromised, leading to ectopic lipid 
accumulation in non-adipose tissues such as muscle and liver 
(57). Intracellular lipid accumulation in ectopic tissues is associ-
ated with a phenomenon known as lipotoxicity, which induces 
cell death, cytokine secretion, and activation of inflammatory 
processes, especially in the liver (58, 59). Furthermore, dietary 
stress and obesity can lead to excessive activation of the hepatic 
immune system due to increased penetration of microbial mate-
rial (60–62). The response of the liver to damage and inflamma-
tion is a complex process involving parenchymal (hepatocytes) 
and non-parenchymal cells (KCs, NKs, HSCs, and LSECs), as 
well as monocyte-derived hepatic macrophages, RHMs (12, 63). 

The failure to regulate this inflammation during the progression 
of the obesity causes pathological chronic hepatic inflammation 
characterized by the advance of fatty liver to steatohepatitis, 
fibrosis, cirrhosis, and eventually liver failure (18, 64). Depletion 
of phagocytic cells in the liver (including both KCs and RHMs) 
through the administration of either liposome-encapsulated 
clodronate or gadolinium chloride protects against high-fat- or 
high-sucrose-induced steatosis, inflammation, and IR, demon-
strating critical role of hepatic macrophages in the development 
of metabolic dysfunction (65).

MACROPHAge RegULATiOn DURing 
nAFLD/nASH

Hepatic lipid accumulation and peroxidation leads to chronic 
hepatocyte endoplasmic reticulum (ER) stress, the production 
of reactive oxygen species (ROS), and toll-like receptor (TLR) 
activation, which converts KCs into an M1 phenotype defined 
by production of pro-inflammatory cytokines, oncostatin, and 
prostaglandins (Figure  2) (20, 66, 67). Circulating cytokines, 
adipokines, and free fatty acids (FFAs) released from inflamed 
adipose tissue in the obese state or immunogenic material derived 
from an altered intestinal microbiota can also contribute to KC 
polarization. M1-KCs secrete chemokine (C-C motif) ligand 2 
(CCL2), pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), 
macrophage inflammatory protein (MIP)-1a, MIP1b, RANTES, 
oncostatin, and prostaglandins (PGE2), which contribute to 
the alteration of the liver homeostasis and worsen the hepatic 
inflammatory response (29). PGE2 regulates cytokine production 
(IL-1, IL-6, TNF-α, and TGF-β) (68, 69), acts synergistically with 
IL-6 to induce IR (70), and induces production of oncostatin M 
(OSM) in KCs (71). Increased OSM contributes to hepatic IR 
and the development of non-alcoholic steato hepatitis (NASH) 
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(71). High levels of TNF-α released by M1-KCs stimulate hepatic 
expression of CCL2 (also known as MCP1), a powerful mono-
cyte chemoattractant, which recruits CCR2+Ly6Chigh monocytes 
from the vasculature into the liver (72), where they differentiate 
into Ly6Chigh macrophages. The Ly6Chigh macrophages amplify 
the severity of obesity-induced inflammation and hepatic IR 
through the secretion of TNF-α and interleukin 6 (IL-6) (12). C-C 
chemokine receptor type 2 (CCR2)-deficient mice are protected 
against weight gain and display reduced development of obesity, 
illustrating the importance of this chemokine system (73). Once 
established, this vicious circle of immune cell attraction, infiltra-
tion and activation, hepatocyte injury, and further inflammation 
promotes and defines the pathophysiology of NASH (74).

MACROPHAge RegULATiOn OF HePATiC 
FiBROSiS

Fibrosis is increasingly appreciated as a major contributor to 
metabolic dysregulation in obese humans and type 2 diabetic 
patients (75). Both KCs and recruited Ly6Chigh macrophages 
contribute to the development of hepatic fibrosis. KCs activate 
HSCs through increased production of pro-fibrotic cytokine 
TGF-β and platelet-derived growth factor (PDGF) (76) leading 
to fibrosis. Ly6Chigh macrophages also interact with HSCs to 
promote fibrosis through increased production of TGF-β, con-
nective tissue growth factor (CTGF), and PDGF (77). Therefore, 
inhibition of monocyte recruitment through depletion of the 
pro-inflammatory signal CCL2 results in attenuation of liver 
fibrosis (77–79). In addition, pharmacological inhibition of CCL2 
by the RNA-aptamer mNOX-E36 attenuates liver fibrosis, thereby 
strengthening a pro-fibrotic function of Ly6Chigh macrophages 
(80, 81).

MACROPHAge SURFACe MARKeRS

Due to the distinct functions of RHMs and KCs in suppressing or 
perpetuating the immune activation (29, 82), it is important to be 
able to clearly isolate pure populations of each cell type. However, 
distinguishing RHM from KC has proven difficult mainly due to 
technical difficulties in isolating and identifying macrophages 
from the obese liver. KCs (CXCR1−) appear histologically as 
larger cells with multiple phagocytic granules and have been 
defined by surface marker expression as CD45+/CD11c−/
F4/80high/CD11blow (12, 83). RHMs (CXCR1+) are smaller than 
KC, contain fine granules in the cytoplasm, and have been defined 
by surface marker expression as F4/80dim/CD45+/CD11b+/CCR2+ 
(10), CD11b+/Ly6Chigh/Ly6G− (83), or CD45+/CD11c−/F4/80low/
CD11bhigh markers (83) depending on the publication. However, 
these factors alone do not sufficiently identify pure KC or RHM 
populations as there is significant size and surface marker over-
lap with other cell populations, including dendritic cells (DCs), 
eosinophils, and undifferentiated monocytes (84). KCs, unlike 
RHMs, have the unique ability to survive to lethal irradiation 
(85), which has enabled studies into these distinct cell types. The 
result of these investigations suggests that the number of KCs 
remains unchanged during the course of obesity, whereas accu-
mulation of RHMs increases several-fold (12). Transcriptome 

analysis of these RHM and KC populations isolated from lean and 
diet-induced obese (DIO) mice revealed statistically marked dif-
ferences between the two cell types on both diets. Furthermore, 
the Gene Ontology analysis of these transcriptomes showed 
a restricted list of 16 KC marker genes and 11 RHM markers 
genes differentially expressed from lean to DIO mice that could 
provide the opportunity for direct isolation strategies using 
specific surface markers (12). Interestingly, factors secreted in 
the culture media from isolated high fat diet (HFD)-RHMs, but 
not from isolated HFD-KCs, can promote hepatic glucose output 
and attenuate insulin’s normal inhibitory effects on this aspect 
of hepatic metabolism suggesting that RHMs are the dominant 
immune cell type inducing hepatic IR (12, 82).

HePATiC gene eXPReSSiOn CHAngeS 
DURing OBeSiTY

To identify potential mechanisms underlying the development of 
obesity and diabetes, many studies have been conducted to char-
acterize changes in hepatic gene expression (86–91). Complex 
phenotypes such as obesity and IR involve many different inter-
acting biological pathways, but recent technological advances in 
high throughput sequencing have greatly improved our ability to 
quantitatively detect gene expression changes in an unbiased way. 
Investigation of the hepatic gene expression profiles in obese db/
db (leptin receptor deficient) mice compared with control mice 
revealed significant changes in lipid metabolism, gluconeogen-
esis, mitochondrial dysfunction, and oxidative stress (88, 89). 
Similar studies using HFD feeding to generate obesity resulted 
in increased hepatic expression of genes involved in fatty acid 
catabolism and ketone body synthesis, such as acyl-CoA oxidase1 
(Acox1) and HMG-CoA lyase (Hmgcl), while genes involved in 
lipogenesis and cholesterol synthesis, such as fatty acid synthase 
(Fasn) and acetyl-CoA synthetase 2 (Acsl6), were drastically 
decreased in the HFD group (86). Further studies also identified 
upregulation of hepatic gluconeogenic genes and downregulation 
of expression of lipogenic genes in diabetic Zucker rats (92), with 
activation of distinct transcriptional regulatory networks during 
diabetic progression (93).

Due to the practical limitations in obtaining human liver tis-
sue, the most detailed hepatic expression studies have, so far, been 
conducted in rodent models (86–89, 92, 93). However, with the 
increasing use of gastric bypass surgery in obese patients, obtain-
ing liver biopsies has become more feasible (91). Comparison of 
hepatic gene expression before and after weight loss in morbidly 
obese women identified differentially expressed genes involved 
in lipid and energy homeostasis, pro-inflammatory tissue repair, 
and bile acid transport (91). Liver samples from morbidly obese 
patients with all stages of NAFLD and controls were analyzed 
by array, and NAFLD specific expression differences were seen 
for nine genes involved in intermediate metabolism including 
pyruvate carboxylase (Pc), ATP citrate lyase (Acly), and phospho-
lipase C-gamma-1 (Plcg1) as well as insulin/insulin-like signaling 
including insulin-like growth factor-1 (Igf1), insulin-like growth 
factor binding protein 2 (Igfbp2), and protein kinase C epsilon 
(Prkce) (94). In additional studies, comparison of transcriptional 
profiles from NASH patients versus non-obese controls also 
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revealed significant changes in genes involved in metabolism, 
insulin signaling, and inflammation (90). For example, high 
levels of the central enzyme controlling unesterified arachidonic 
acid levels of Acyl-CoA synthetase long chain family member 
4 (Acsl4) and lower levels of insulin signaling genes including 
Igfbp2 were observed in NASH versus non-obese controls (95).

Therefore, many hepatic gene expression studies in rodents 
and humans have been conducted at the level of the whole 
liver, but whether these changes occur within the hepatocyte or 
non-parenchymal cells is yet to be fully investigated. Increased 
understanding of the changes induced in the obese state in the 
hepatocytes, liver-resident macrophages, and each immune cell 
population may allow us to specifically target potentially harmful 
populations while promoting anti-inflammatory populations 
(96). These studies will also help clarify the molecular mecha-
nisms behind the development of IR and identify potential targets 
for therapeutic intervention. Furthermore, future integration of 
transcriptomics data with metabolomics and proteomics data will 
further our understanding of the mechanisms behind obesity-
associated liver disease and help identify biomarkers for the 
development of disease progression (89).

COnCLUSiOn AnD FUTURe 
PeRSPeCTiveS

Although KCs are reemerging in obesity and metabolic syn-
drome as a critical player in the onset of hepatic IR, as well as 
NAFLD, their role in metabolism is still largely unknown. We are 
yet to define the direct role of KCs in metabolic diseases as well 
as their interactions with neighboring cells and distant organs 

that modulate liver function and whole body metabolism. After 
a hepatic insult, KCs secrete important factors involved in the 
recruitment and transformation of blood monocytes, which 
are involved in the subsequent development of the hepatic IR. 
During obesity, the inflammatory state in the liver is associated 
with a large increase in RHMs with a M1 phenotype, targeting 
specifically these immune cells or manipulating the activation 
of KC may be an effective therapeutic strategy in obesity-related 
chronic liver and NASH. The use of new technologies such as 
next-generation or single-cell sequencing at different stages of 
obesity and IR and approaches to isolate and identify the diverse 
macrophage population and profile their transcriptomes in 
the liver could provide the opportunity for a direct targeting 
strategy using specific surface markers. Further research in the 
field of immunometabolism, including a better understanding 
of how changes in the microbiota affect the development of 
inflammation and more knowledge about the factors that direct 
the polarization state of macrophages toward either the pro- or 
anti-inflammatory state, is necessary to design new therapeutic 
strategies for treating T2D and NAFLD.
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