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Survival of all living organisms depends on maintenance of a steady state of homeostasis, 
which process relies on its ability to react and adapt to various physical and emotional 
threats. The defense against stress is executed by the hypothalamic–pituitary–adrenal 
axis and the sympathetic–adrenal medullary system. Adrenal gland is a major effector 
organ of stress system. During stress, adrenal gland rapidly responds with increased 
secretion of glucocorticoids (GCs) and catecholamines into circulation, which hormones, 
in turn, affect metabolism, to provide acutely energy, vasculature to increase blood pres-
sure, and the immune system to prevent it from extensive activation. Sepsis resulting 
from microbial infections is a sustained and extreme example of stress situation. In many 
critical ill patients, levels of both corticotropin-releasing hormone and adrenocorticotro-
pin, the two major regulators of adrenal hormone production, are suppressed. Levels 
of GCs, however, remain normal or are elevated in these patients, suggesting a shift 
from central to local intra-adrenal regulation of adrenal stress response. Among many 
mechanisms potentially involved in this process, reduced GC metabolism and activation 
of intra-adrenal cellular systems composed of adrenocortical and adrenomedullary cells, 
endothelial cells, and resident and recruited immune cells play a key role. Hence, dys-
regulated function of any of these cells and cellular compartments can ultimately affect 
adrenal stress response. The purpose of this mini review is to highlight recent insights 
into our understanding of the adrenal gland microenvironment and its role in coordination 
of stress-induced hormone secretion.

Keywords: stress system, hypothalamic–pituitary–adrenal axis, immune–adrenal crosstalk, ACTH, glucocorticoids

inTRODUCTiOn

In order to survive all, living organisms must maintain a steady state of homeostasis. This unique 
capacity to react and adapt to various physical and emotional threats in higher vertebrates is mediated 
by a coordinated action of the nervous, endocrine, and immune systems, known as stress system (1). 
Activation of the stress system, which is composed of the hypothalamic–pituitary– adrenal (HPA) 
axis and the sympathetic–adrenal medullary system, leads to increased synthesis and release of 
glucocorticoids (GCs) and catecholamines (CAs) from the adrenal cortex and medulla, respectively 
(2–4). The main function of these hormones is maintenance and restoration of basal and stress-related 
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body homeostasis. This protective action of adrenal hormones is 
mostly accomplished by their metabolic, cardioprotective, and 
anti-inflammatory actions. In particular, both GCs and CAs are 
known to acutely enhance plasma glucose levels and promote an 
increased cardiac output and high blood pressure, while protect-
ing against excessive inflammation (5–8).

Secretion of adrenal hormones during stress-free condi-
tions is regulated centrally and is characterized by ultradian 
rhythms (9). An early morning release of adrenocorticotropic 
hormone (ACTH) into circulation is enhanced by increased 
concentrations of corticotropin-releasing hormone (CRH) and 
arginine vasopressin (AVP) in the hypophyseal portal system of 
anterior pituitary (10, 11). Consequently, elevated plasma levels 
of ACTH stimulate adrenocortical cells to produce and release 
GC hormones. In turn, as a part of negative feedback, GCs act 
directly on the pituitary gland to reduce ACTH secretion and on 
hypothalamic neurons to reduce CRH release (11, 12). Systemic 
rise in CA levels is in turn initiated by activation of the sympa-
thetic nervous system and splenic nerves innervating the adrenal 
medulla (13, 14).

One of the extreme examples of sustained and severe physical 
stress is sepsis syndrome. It is characterized by abnormal host 
response to infection, resulting in systemic inflammation that fre-
quently culminates in a life-threatening dysfunction of multiple 
organs (15, 16). Severe sepsis remains the leading cause of mortal-
ity worldwide, and its incidence is increasing (17, 18). An intact 
function of the stress system, and in particular the activation of 
GC and CA production, is critical to survive this adverse condi-
tion (19, 20). During sepsis, this homeostatic function of the stress 
system is frequently impaired with mechanisms remaining largely 
unknown (21, 22). Consequently, many critically ill patients 
demonstrate suppressed ACTH and CRH levels while having 
normal or elevated cortisol levels (22). Hence, a key involvement 
of pituitary-independent factors was proposed (2). Among these, 
reduced GC metabolism and activation of local adrenal microen-
vironment seem to play crucial role (23, 24) (Figure 1).

As regulation of the stress system and importance of impaired 
metabolism of GCs during sepsis were recently presented and 
discussed in many review articles (25–27), the main purpose of 
this mini review is to highlight recent insights into our under-
standing of the role local adrenal gland microenvironment in the 
regulation of stress-induced hormone secretion during sepsis.

ADRenAL GLAnD MiCROenviROnMenT

Within adrenal gland, two embryonically different tissues 
coexist: mesodermally derived, steroid-producing cortex and 
ectodermally derived, CA-producing medulla. Within these two 
environmental niches, interplay between various cells takes place 
including adrenocortical and chromaffin cells, neuronal cells, 
immune cells, endothelial cells, and glia cells (28). The adrenal 
gland is a source of many bioactive substances including steroid 
hormones, CAs, cytokines, neurotransmitters, and neuropeptides 
(Table 1). These substances are known to interact with various 
cell types within adrenal gland itself, thereby influencing its func-
tion during stress conditions and disease (24, 28).

Adrenal Cortex and Medulla interactions 
during Sepsis
Ample evidence exists suggesting a bidirectional interaction 
between adrenal cortex and the medulla (28). Despite a classical 
view on the adrenal gland anatomy, demonstrating a clear separa-
tion of the cortex and medulla, it has been well documented that 
these two endocrine tissues are morphologically intermingled 
(29, 30). This close localization, in turn, enables direct cell–cell 
and paracrine interactions between adrenocortical and chromaf-
fin cells involving their secretory products.

Consequently, the adrenal cortex-derived GCs were found to 
enhance synthesis of CAs both in vitro (31) and in vivo (32–34). 
GCs were found to execute these effects by upregulating expres-
sion of phenylethanolamine N-methyltransferase (PNMT), 
which gene encodes for an enzyme that catalyzes the synthesis 
of epinephrine from norepinephrine. Furthermore, studies using 
various knockout mice, which were deficient in steroidogenic 
factor-1, glucocorticoid receptor, or corticotropin-releasing 
hormone type 1 receptor, clearly demonstrated that lack of one of 
the these key steroidogenic regulators impair PNMT gene expres-
sion and thus basal and stress-induced epinephrine production 
(35–38). Similarly, an intact function of adrenal medulla is 
important to maintain adrenocortical function. It has been shown 
that coculture of bovine adrenocortical cells with chromaffin cells 
enhanced a basal GC secretion by 10-fold (39). Furthermore, CAs 
were found to enhance production of various steroids including 
cortisol, aldosterone, and androstenedione, through mechanism 
involving upregulation of steroidogenic acute regulatory protein 
(28, 40, 41).

During sepsis, an enhanced production of epinephrine and 
norepinephrine (42–44) and increased secretory capacity of 
adrenal chromaffin cells were reported (45). Unlike expression of 
tyrosine hydroxylase, which enzyme is involved in first step of CA 
biosynthesis, upregulation of PNMT gene expression in adrenal 
medulla was found to be regulated independently of splanchnic 
nerve stimulation (28). Instead, an extremely high concentration 
of GCs was reported to be involved in regulation of PNMT expres-
sion during sepsis (46). Consequently, stress-induced expression 
of PNMT is strongly attenuated in CRH-deficient mice (47).

In addition, adrenal chromaffin cells release many active neu-
ropeptides and transmitters, including neuropeptide Y (NPY), 
vasoactive intestinal peptide (VIP), or substance P, with known 
stimulatory action on GCs production (48, 49). For example, 
VIP, which levels increase during experimental endotoxemia in 
adrenal medulla, was found to stimulate DHEA, testosterone, 
androstenedione, cortisol, and aldosterone secretion in adreno-
cortical cells (48–52). Among other mediators found in adrenal 
medulla, which may influence GC production during sepsis, are 
angiotensin, AVP, CRH, ACTH, and apelin (53–55). Although 
direct stimulatory effects of angiotensin 2, CRH, and ACTH on 
adrenal hormone production are well described, the degree to 
which each of these peptides contributes to hormone production 
during sepsis conditions has not been fully elucidated yet (2, 56). 
Another interesting peptide found recently to be expressed in the 
adrenal medulla is apelin. Apelin is a neurohormone, which acts 
through its receptor APJ expressed in various organs including 
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FiGURe 1 | Schematic representation of regulatory mechanisms involved in adrenal gland stress response during sepsis. (A) Sepsis activates the 
hypothalamic–pituitary–adrenal axis and sympathetic–adrenal medullary system, which in turn enhances production of glucocorticoids (GCs) and catecholamines 
from the adrenal gland. During chronic phase of sepsis, production of corticotropin-releasing hormone and adrenocorticotropic hormone (ACTH) is inhibited as a 
result of increased negative feedback from the elevated levels of GCs. High level of adrenal GCs in plasma is sustained due to stimulatory effects provided by 
intra-adrenal microenvironment and reduced GCs metabolism. (B) In the adrenal gland, many cell types including resident and infiltrating immune cells, sympathetic 
neurons, endothelial cells, and adrenal chromaffin and adrenocortical cells interact with each other. This interaction occurs through a direct cell–cell contact and in a 
paracrine way, which ultimately leads to sustained production of adrenal hormones. Among many mediators produced in adrenal gland, which are reported to 
modulate adrenal hormone production, are adrenocortical steroids, catecholemines, and various cytokines such as interleukin (IL)-1β, IL-6, tumor necrosis factor-α, 
serotonin (5-HT), neurotransmitters, and neurohormones (e.g., APL, ACTH, and vasoactive intestinal peptide).
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TABLe 1 | intra-adrenal interaction involved in a regulation of adrenal 
stress response.

Cell interactions Mediators Action

immune–adrenal 
crosstalk 
(macrophages, 
neutrophils, mast 
cells, lymphocytes)

Glucocorticoids 
(GCs)

Stimulatory effects on naïve and 
inhibitory actions on activated 
immune cells

Cytokines Stimulatory [interleukin (IL)-1β, 
IL6] or inhibitory action [tumor 
necrosis factor (TNF)-α] on adrenal 
steroidogenesis

Catecholamine (CA) Anti-inflammatory effects through 
activation of β-adrenergic 
receptors (ARs) (increase IL-10, 
decrease TNF-α in macrophage, 
and decrease NO and ROS in 
neutrophils)
Pro-inflammatory effects through 
activation of α-ARs

Direct contact Stimulatory effects on adrenal 
DHEA synthesis

α-Defensins Inhibitory effects on 
steroidogenesis through 
decreased sensitivity of adrenal 
cells to adrenocorticotropic 
hormone (ACTH)

Neutrophil 
extracellular traps

Destruction of adrenal cells and 
promotion of hemorrhages

Adrenocortical–
adrenomedullary 
interactions 
(adrenocortical cells 
and chromaffin 
cells)

GCs Stimulatory action on CA synthesis 
(through PNMT upregulation)

CAs Stimulatory action on adrenal 
steroidogenesis

Neurotransmitters 
(NT) (substance 
P, vasoactive 
intestinal peptide, 
neuropeptide Y, etc.)

Stimulatory and inhibitory action 
on adrenal steroidogenesis

Local corticotropin-
releasing hormone–
ACTH system

Stimulatory action on adrenal 
steroidogenesis

Apelinergic system Stimulatory action on adrenal 
steroidogenesis

vasculature 
(endothelial cells)

Endothelin-1 Direct stimulatory effect on GC 
production

eNOS and NO Possible stimulatory effect on 
steroidogenesis

Developmental 
endothelial locus 1

Regulation of immune cells 
recruitment into adrenal gland

Adrenal blood flow Stimulatory effect on 
steroidogenesis

innervation 
(sympathetic 
neurons)

NT (acetylcholine) Increased steroidogenesis via 
enhanced sensitivity of adrenal 
cells to ACTH
Increased production and 
secretion of CAs
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hypothalamic neurons, anterior pituitary, and adrenal gland. 
It was recently found to modulate neuroendocrine response to 
stress through stimulation of secretion of both ACTH and corti-
costerone directly and via AVP- and CRH-dependent pathways 
(54, 55, 57).

Recently, a population of nestin-positive glia-like multipotent 
stem cells was identified in adrenal medulla of nestin-GFP 
transgenic mice (58). Interestingly, when subjected to chronic 

stress, this population was able to give rise to new chromaffin 
cells, suggesting a direct involvement of these cells in the adre-
nal stress adaptation (58–60). It is therefore very interesting to 
investigate the fate of this cells and their potential interaction  
with adrenocortical cells during sepsis conditions.

In summary, an intact function of both adrenal cortex and adre-
nal medulla is of pivotal importance in the regulation of adrenal 
stress response. Consequently, any disorders or medications that 
can attenuate adrenal cortex function will also ultimately affect 
CAs production by chromaffin cells and vice  versa potentially 
impacting the outcome of many stress-related disorders (19).

immune–Adrenal Crosstalk
In the last 40  years, it has become evident that immune and 
endocrine systems interact with each other at the level of adre-
nal gland and that this interaction is crucially involved in the 
regulation of adrenal gland function during normal and stress 
conditions (61). This immune–endocrine crosstalk is mostly 
executed by bidirectional action of paracrine factors, such as 
steroid hormones, CAs, and various vasoactive or proteolytic 
enzymes, as well as by direct cell–cell contacts and activation of 
toll-like receptors (TLRs) (28, 62).

Immune–Adrenal Interaction at the Level of Adrenal 
Cortex
During non-stress conditions, many immune cells can be found 
in the innermost zone of adrenal cortex known as zona reticularis; 
these are particularly tissue macrophages (63), dendritic cells 
(64), mast cells (65), and lymphocytes (66). However, some of 
them, especially macrophages and mast cells, were also reported 
in other parts of the adrenal gland including subcapsular region 
and in the adrenal medulla (64). In non-stress conditions, 
adrenal-resident immune cells play important homeostatic 
functions by sensing pathogens, removing apoptotic cells, 
and promoting tissue remodeling through, e.g., secretion of 
growth factors (24, 67). Recently, a new population of adrenal 
macrophages was identified based on the high expression of a 
complement receptor immunoglobulin, CRIg, which molecule is 
known to mediate phagocytosis of pathogens and apoptotic cells 
(68). During systemic inflammation induced either by LPS injec-
tion or CLP, highly dynamic changes within adrenal immune cell 
populations can be observed. For instance, it has been shown that 
already within first 3 h after administration of LPS or induction 
of peritonitis in rodents, a rapid infiltration of neutrophils takes 
place, while the number of local dendritic cells and macrophages 
declines (69–71).

Using electron microscopy, close cell–cell localization 
between local immune cells and surrounding adrenocorti-
cal, chromaffin, or endothelial cells was demonstrated (64, 
66). This in turn enables various bidirectional and direct 
interactions between each cell type. For example, a functional 
crosstalk between adrenocortical cells, expressing major his-
tocompatibility complex class II molecules (MHC/HLA), and 
leukocytes was described. Indeed, a co-incubation of T cells 
with primary cultures of human adrenocortical cells promoted 
adrenal androgen and cortisol secretion (66). Besides direct 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


5

Kanczkowski et al. Function of Adrenal Gland Microenvironment during Sepsis

Frontiers in Endocrinology | www.frontiersin.org December 2016 | Volume 7 | Article 156

interaction, various immune cells were found to regulate 
adrenal hormone production in a paracrine way through secre-
tion of cytokines, such as interleukins (IL) 1 and 6 (72), and 
pro-opiomelanocortin (POMC)-derived peptides, e.g., ACTH 
and biogenic amines (28, 73).

The ample experimental evidence exists demonstrating that 
cytokines are critically involved in ACTH-independent activa-
tion of GC production during sepsis (72). For example, injection 
of IL-1β enhanced GC production in hypophysectomized rats 
(74). Furthermore, an impaired synthesis of GCs after LPS injec-
tion was observed in mice receiving sera against tumor necrosis 
factor (TNF)-α and IL-6 and, to a lesser extent, IL-1β- or in 
IL-6-deficient mice (75, 76). However, it has been demonstrated 
that cytokine levels found normally in plasma are far too low to 
induce hormone production from adrenocortical cells. Therefore, 
the main source of cytokines must come from the adrenal gland 
itself (28). Sustained production of cytokines in highly anti-
inflammatory environment of the adrenal gland during systemic 
inflammation was found to be enabled by increased expression 
of migration inhibitory factor (77). During sepsis, various cell 
types present within adrenal gland microenvironment may be 
a potential source of pro-inflammatory cytokines. For example, 
adrenocortical cells were found to express several TLRs and 
secrete several cytokines in response to bacterial ligands (78, 
79). However, in a recent study, inactivation of myeloid but not 
adrenocortical TLR signaling resulted in significant reduction 
of intra-adrenal cytokine levels and activation of the HPA axis 
after LPS administration (80). The latter observation suggests 
that immune cells are the key sources of cytokines in the adrenal 
gland during sepsis. Due to high expression of both cytokine and 
GC receptors in adrenocortical and immune cells, respectively, 
cytokines and adrenal hormones are known to regulate produc-
tion in each other. For example, IL-1β or IL-6 was found to 
increase adrenal hormone production, whereas TNF stimulation 
demonstrated rather opposite effect (81–83). In turn, adrenal 
steroid hormones are known to influence immune cells function. 
In particular, it has been demonstrated that in naïve immune cells, 
GCs can activate several inflammatory-related genes, e.g., TLRs, 
yet in cells treated with LPS, they inhibit inflammation (6). In a 
recent study, a chronic exposure to GCs was found to cause a shift 
in the innate–adaptive balance of the immune response, particu-
larly, influencing the chemokine–chemokine receptor networks 
(84). Besides cytokines, other biologically active substances, such 
as serotonin (5-HT) or histamine, which are stored by mast cells 
show stimulatory effects on adrenal steroidogenesis (85, 86).

During prolonged sepsis, the immune–adrenal interaction 
may also result in the suppression of adrenal hormone pro-
duction. Despite their important role in host defenses against 
bacterial infections limiting bacterial spread in circulation (87), 
a prolonged exposure of adrenal cells to neutrophil-derived anti-
microbial agents, such as ROS and proteolytic enzymes secreted 
during formation of neutrophil extracellular traps, results in tis-
sue damage (88). In addition, neutrophils were found to secrete 
corticostatins, e.g., α-defensins, which substances are known 
to interfere with ACTH-mediated increase in adrenocortical 
hormone production (89). In a recent study using developmental 
endothelial locus 1 (Del-1)-deficient mice (90), an association 

between higher amount of infiltrating neutrophils and impaired 
adrenal corticosterone production after systemic LPS administra-
tion was found (91).

Immune–Adrenal Interaction at the Level of Adrenal 
Medulla
Activation of the sympathetic nerve system during sepsis results 
in enhanced production and secretion of CAs from the adrenal 
chromaffin cells (44) through a mechanism involving an increased 
release of Ca2+ from endothelial reticulum (45). An early increase 
in endogenous CA level plays an important protective role as its 
absence due to either pharmacological or surgical intervention 
resulted in induction of hypotension and increased mortality 
of rats during experimental endotoxemia (20, 43). One of the 
mechanisms involved in the protective role of CAs, besides well-
known vasopressor function, is the anti-inflammatory action on 
various immune cells. The immunomodulatory effects of CAs are 
mediated via their direct interactions with β-adrenergic receptors 
(ARs) expressed by a variety of immune cells. In particular, it has 
been shown that CAs promote IL-10 secretion while decreasing 
production of pro-inflammatory TNF cytokine in LPS-treated 
macrophages (92). Furthermore, incubation of neutrophils 
with CAs decreased NO production and ROS generation (93). 
However, these immune-suppressive effects of CAs should be 
carefully interpreted as they may correspond predominantly to 
the leukocyte populations or be restricted to β-AR activation. In 
fact, recently both epinephrine and norepinephrine were shown 
to increase IL-6 production in endothelial cell line: HMEC-1 and 
in human skin microvascular endothelial cells (94). It has been 
also found that activation of α-ARs in macrophages by CA may 
potentiate inflammation by increasing TNF-α production (95). 
Recently, phagocytes were shown to be able not only to secrete 
CAs in response to LPS stimulation but also to possess all major 
CA-generating and -degrading enzymes required for their produc-
tion and inactivation (96). This discovery adds additional com-
plexity to already complex immune–chromaffin cell interaction. 
During sepsis, the adrenal medulla shows high degree of immune 
infiltration (69). This suggests that overactivation of immune cells 
could potentially impair production and secretion of adrenomed-
ullary hormones or induce structural damage. Indeed, during 
experimental sepsis induced by CLP, systemic inflammation 
resulted in a strong apoptosis in the adrenal chromaffin cells, which 
process required activation of receptors for complement C5a (97). 
The latter observation suggests that during progression of sepsis, 
an increased activation of immune system promoting apoptosis of 
chromaffin cells may impact stress-induced CA production.

Adrenal vasculature
Vascular system plays a key role in the proper functioning of 
many vital organs during sepsis. Besides enabling the secretion of 
steroid hormones and CAs into circulation, adrenal vasculature 
was found to control leukocyte infiltration through expression of 
adhesion molecules and Del-1 protein (91).

Adrenal cortex is characterized by high density of endothelial 
cells that stay in close vicinity with steroid-producing cells. 
Consequently, both adrenal hormones and endothelial cell-
derived products were shown to influence function of adrenal 
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vasculature and steroid-producing cells, respectively. For example, 
human adrenocortical cells increase production of aldosterone 
and cortisol once incubated with endothelial cell-conditioned 
media. Although the exact composition of the latter media was 
not determined, this stimulatory effect was found to require 
cAMP, but not PKA, pathway (98). Endothelial cells are known 
to produce several factors that, e.g., nitric oxide (NO) or endothe-
lin-1, could potentially influence adrenal hormone production. 
In particular, in rat and human adrenocortical cells, it has been 
found that endothelin-1 can directly promote GC synthesis 
and potentiate angiotensin II and ACTH-induced aldosterone 
production (99). Besides endothelin-1, nitric oxide (NO) was 
found to exert stimulatory effect on adrenal steroidogenesis by 
mediating the acute response to ACTH (28). In fact, blocking 
of NO production either by using NO synthase inhibitor or NO 
scavengers resulted in decreased ACTH-mediated corticosterone 
release (100). However, in other studies using perfused adrenal 
glands administration of l-arginine, the substrate for nitric oxide 
synthesis did not change corticosterone response to ACTH, sug-
gesting an indirect modulatory action of NO (101).

During sepsis, in many critically ill patients, an increased size 
of adrenal gland resulting from the hypervascularization and 
increased blood flow and adrenal hyperplasia were found to posi-
tively correlate with survival rate (102). Although an intact activity 
of splanchnic nerve is crucial in regulation of adrenal blood flow, 
other factors such as VIP, NPY, or neurotensin were found also to be 
involved (103, 104). Furthermore, a positive correlation between 
an increased blood flow and enhanced adrenal steroidogenesis 
was demonstrated (105). Indeed, an enhanced adrenal blood flow 
was found to participate in angiotensin II- and ACTH-induced 
aldosterone and cortisol production. This stimulatory action on 

adrenal vascular response to angiotensin II and ACTH was found 
to be mediated by vasoactive substances released from granules 
of mast cells (106). However, more recently, additional involve-
ment of the cytochrome 450 in controlling the adrenal blood flow  
after AII and ACTH was demonstrated in rats (24, 107).

SUMMARY

Sepsis and septic shock strongly impacts body homeostasis, 
which if not sufficiently counteracted by activated stress system 
results in increased mortality of critically ill patients (56, 108, 
109). During chronic phase of sepsis, elevated adrenal hormone 
secretion was reported to be mediated by pituitary-independent 
mechanisms including activation of intra-adrenal microenviron-
ment (22, 23). An increasing amount of experimental studies sup-
port the key involvement of several cell types and cellular systems 
present within adrenal gland microenvironment in the sustained 
production of adrenal hormones during sepsis. Consequently, 
any impairment in function of these systems can ultimately affect 
adrenal stress response (2, 24).
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