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Glucose homeostasis is an important element of energy balance and is conserved in 
organisms from fruit fly to mammals. Central to the control of circulating glucose levels 
in vertebrates are the endocrine cells of the pancreas, particularly the insulin-producing 
β-cells and the glucagon producing α-cells. A feature of α- and β-cells is their plasticity, an 
ability to adapt, in function and number as a response to physiological and pathophysio-
logical conditions of increased hormone demand. The molecular mechanisms underlying 
these adaptive responses that maintain glucose homeostasis are incompletely defined. 
The zebrafish is an attractive model due to the low cost, high fecundity, and amenability 
to genetic and compound screens, and mechanisms governing the development of 
the pancreatic endocrine cells are conserved between zebrafish and mammals. Post 
development, both β- and α-cells of zebrafish display plasticity as in mammals. Here, we 
summarize the studies of pancreatic endocrine cell adaptation in zebrafish. We further 
explore the utility of the zebrafish as a model for diabetes, a relevant topic considering 
the increase in diabetes in the human population.
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inTRODUCTiOn

Glucose homeostasis is a central physiological mechanism important to maintain proper energy 
balance and cellular function. While the bulk of the information concerning glucose homeostasis 
comes from studies in mammals, homeostatic mechanisms are active in many organisms including 
teleost fish [reviewed in Ref. (1)], which underscores the importance of maintaining tight control 
of circulating glucose. Maintenance of glucose homeostasis is a coordinated effort between multiple 
organ systems including the brain, skeletal muscle, liver, and the pancreatic endocrine cells. By 
appropriately secreting glucagon and insulin into the circulation to regulate the production and 
uptake of blood glucose, respectively, the pancreatic α- and β-cells play a central role in glucose 
homeostasis. Interestingly, in conditions where demand for insulin or glucagon exceeds the current 
secretory capacity, glucose homeostasis is still maintained through increased function and number 
of α- or β-cells. The regulatory mechanisms of this adaptation or compensation, particularly the 
compensatory increase of cell number, are not fully defined.

The zebrafish has been firmly established as an attractive animal model to explore questions in 
developmental biology. This has been aided by the low cost, high fecundity traits of the model (2) 
as well as the optical transparency (3–6), ease of genome manipulation (7–10), and the amenabil-
ity toward small molecule screens (11–13). These attractive traits of zebrafish have also inspired 
investigators to study other biological questions including glucose homeostasis.
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GLUCOSe HOMeOSTASiS in ZeBRAFiSH

The systems regulating glucose homeostasis in zebrafish are 
similar to those of mammals in composition, ontogeny, and func-
tion. As in mammals, glucose homeostasis in zebrafish involves 
brain, skeletal muscle, liver, and the pancreatic endocrine cells. 
For example, the glucose transporter Glut2 has been found to 
be critical for proper brain development (14) supporting the 
importance of appropriate glucose control in the brain. In skeletal 
muscle, glucose transporters are present (15) and glucose uptake 
has been found to be insulin sensitive (16), suggesting that like 
in mammals, skeletal muscle is a major site of glucose disposal. 
The liver has a critical function in glucose homeostasis as it both 
uses and produces glucose. Gluconeogenesis is dynamically 
regulated in the zebrafish liver (17), and glucose-regulated pck 
promoter activity has been leveraged to screen for compounds 
that impact glucose production (18). Furthermore, risk alleles 
for altered fasting blood glucose in humans have been found to 
increase gluconeogenesis in the liver (19). This again supports 
the conservation of regulatory pathways of glucose homeostasis. 
Coordinating many aspects of glucose homeostasis are the 
pancreatic endocrine cells. Of primary focus has been the insulin-
producing β-cells and the glucagon-producing α-cells. In the 
zebrafish, these cells are present as early as 1 day post fertilization 
and their development is regulated by pathways similar to those 
for mammals (20–22). The conservation of glucose homeostasis 
system between zebrafish and mammals supports that zebrafish 
is a relevant model to study mechanisms of glucose homeostasis, 
including aspects of pancreatic endocrine cell biology.

PROMOTinG β-CeLL PROLiFeRATiOn 
AnD DiFFeRenTiATiOn in LARvAL 
STAGeS wiTH SMALL MOLeCULeS: 
LineAGeS AnD PATHwAYS

Replenishing the β-cell mass has been an active area of investiga-
tion for many years as approaches to treat both type 1 and type 
2 diabetes. To increase β-cells in adults, often the approach is to 
manipulate pathways active during development. But there is also 
a need to understand the mechanisms that promote an increase of 
β-cells post development, either through neogenesis or through 
increased proliferation as different mechanisms may be active for 
adaption to changes in physiology. In embryonic and early larval 
stages, the pancreatic endocrine cells are primarily coalesced in 
a single large islet referred to as the principal islet (23). At later 
larval stages, additional secondary islets are present (24). These 
secondary islets arise from centroacinar cells in the pancreatic 
duct (24–28). These cells are Notch sensitive (24, 25, 28) and 
express markers of endocrine precursors including Nkx6.1 
(26) and Nkx2.2 (25). Inducing formation of secondary islets 
as a way to uncover pathways important in stages beyond early 
development was the basis of a compound screen (29, 30) and 
a component of another large-scale screen (30). These screens 
took advantage of the optical transparency of the zebrafish and 
transgenic lines that mark the pancreatic endocrine cells. The first 
screen revealed an important role for retinoic acid signaling in the 

differentiation of endocrine progenitors (29). Follow-up studies 
have shown this pathway is functionally conserved in humans 
(31) and that retinoic acid signaling regulated Sox9b (32), an 
important transcription factor in endocrine cell differentiation 
(33). The high-throughput screen was based on increasing endo-
crine cells in both the principal and secondary islets and yielded 
several candidate pathways controlling endocrine cell differentia-
tion including NFκB signaling and serotonin signaling (30). Both 
screens captured changes in both proliferation of endocrine cells 
and differentiation of precursors. Another compound screen 
aimed solely to increase β-cell proliferation (34) and relied on 
expression of markers indicative of the different phases of the cell 
cycle (35). This screen also identified retinoic acid and serotonin 
signaling, as well as glucocorticoids, as regulators of proliferation 
(34). These compound-screening approaches identified both 
molecules with functions in development, such as Sox9, and also 
pathways such as serotonin and NFκB which likely also func-
tion in post-developmental stages. Ultimately, these compound 
screening approaches using zebrafish may provide molecules that 
can be targeted to increase β-cell mass as a treatment for adults 
with diabetes.

PAnCReATiC enDOCRine CeLL 
PLASTiCiTY in ReSPOnSe TO 
inSUFFiCienT HORMOne ACTiOn

Proper development of the pancreatic endocrine cells is unques-
tionably crucial to establish homeostatic control. But equally 
important is understanding the underlying mechanisms that 
allow adaptation to different physiological stresses, in other words, 
plasticity. For example, in mammals, the β-cell mass increases 
during pregnancy (36, 37), with high-fat diet in mice (38–40), and 
in non-diabetic obese humans (41, 42). With obesity the increase 
in β-cell mass is an adaptive mechanism to compensate for insulin 
resistance (43). In type 2 diabetic obese patients, the β-cell mass is 
decreased compared to non-diabetic counterparts (41, 44), which 
has been attributed to β-cell death or dedifferentiation, in other 
words, the loss of β-cell identity (45–47). Zebrafish have been 
shown to also have β-cell compensatory responses. For example, 
in states of overnutrition, through culturing in glucose solution 
or in chicken egg yolk emulsion, the number of β-cells increases 
(48–53). This treatment also causes β-cell increase in older lar-
vae (52). In juvenile fish, a high calorie diet can promote β-cell 
proliferation and secondary islet formation (54), indicating that 
the overnutrition-induced β-cell expansion is not limited only to 
early larval stages. The compensatory increase in β-cells did not 
occur with intermittent exposure to the same diets, as would be 
found in meal-type feeding (52). Consistent with overnutrition as 
the trigger for the compensatory response, the expansion of the 
β-cells has been found to be dependent on the nutrient-secretion 
coupling apparatus in preexisting β-cells (49). Stimulating β-cell 
secretion through pharmacologic or genetic means increased 
the number of β-cells in the absence of overnutrition (49). 
Conversely, reducing β-cell activity inhibited the β-cell expan-
sion in the presence of overnutrition (49). The rapid expansion of 
β-cells was not through stimulation of β-cell proliferation (49, 52) 
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based on incorporation of EdU, which suggested differentiation 
of resident precursors. Lineage tracing experiments indicated 
that these new cells did not arise from the centroacinar cells in the 
pancreatic duct (50) but arise from cells with mnx1 and nkx2.2 
promoter activity (50, 52) likely residing within the principal 
islet. The non-canonically secreted FGF1 has been proposed 
to be a candidate molecule stimulating differentiation of these 
resident endocrine precursors (50). Mutation of fgf1 abolished 
the overnutrition-induced β-cell expansion but did not alter the 
baseline β-cell number, and this could be rescued through trans-
genic expression of human FGF1 (50). Furthermore, when FGF1 
was altered to allow for secretion through the canonical secretion 
pathway, the basal number of β-cells was increased without over-
nutrition stimulation (50). Intact leptin signaling is important 
for these responses (53) as leptin receptor mutant larvae had a 
higher number of β-cells developmentally but did not increase 
number of β-cells with high-fat diet feeding. In addition, block-
ing insulin expression through morpholino injection or through 
expression of a dominant-negative IRS2 protein increased the 
number of β-cells during embryonic stages (55). Furthermore, 
in adult fish with skeletal muscle insulin resistance, there was 
an initial increase in the number of β-cells (16). These studies 
suggest that with an increased need for insulin function, either 
due to elevated nutrient intake or through inhibition of insulin 
signaling, zebrafish increase the number of β-cells as an adaptive 
mechanism, similar to what has been observed in mammals. 
These conserved responses indicate that zebrafish are a useful 
model to study β-cell adaptive mechanisms, and with the utility 
of zebrafish in genetic and pharmacological approaches, the role 
of candidate molecules, such as FGF1, can be rapidly assessed.

Although β-cells are often the focus in glucose homeostasis, 
the glucagon-producing α-cells also have an important role in 
modulating glucose production. Glucagon acts as a counterregu-
latory hormone to insulin, and modulating glucagon signaling 
is becoming an increasingly attractive approach for diabetic 
treatments (56). It has been found in mice that the number of 
α-cells increases with blockade of glucagon signaling either by 
knocking out glucagon, the glucagon receptor, or Gsα, or by 
impairing glucagon receptor function with antagonists or mono-
clonal antibody treatment (57–61). With the β-cells, this suggests 
an adaptive response to the decreased effectiveness of glucagon. 
This is also true in zebrafish, where mutation of the two glucagon 
receptors resulted in an increased number of α-cells (62). The 
adaptive responses to nutritional or hormonal status in both 
β-cells and α-cells reflect conservation of metabolic responses 
between mammals and zebrafish. This further indicates that 
pathways and molecules identified in zebrafish may indeed be 
relevant to mammals.

ROBUST β-CeLL ReGeneRATiOn 
FOLLOwinG ABLATiOn

Another aspect of the plasticity of pancreatic endocrine cells 
is regeneration following ablation. Zebrafish has tremendous 
regenerative capacities, including the β-cells. Similar to com-
pensatory increase of β-cell mass, ablation-induced regeneration 

is also a response to unmet insulin demand, inferred by the 
high free glucose levels following ablation (25, 34, 63, 64) and 
underscores the conservation of β-cell function in zebrafish. Most 
commonly in zebrafish, β-cells are ablated through β-cell-specific 
expression of bacterial nitroreductase that converts the prodrug 
metronidazole to a genotoxic metabolite, resulting in death of the 
cells (65). There have been other approaches however, includ-
ing inducible expression of a truncated Bid protein, tBid (49), 
and mosaic expression of diphtheria toxin (DTA) (66) in larval 
zebrafish as well as streptozotocin (STZ) treatment in adult fish 
(67, 68). β-cell regeneration occurs quickly following ablation 
(25, 65, 69, 70) and has been used as an approach to identify 
sources of new β-cells. Using lineage tracing in adult fish where 
β-cells were ablated through nitroreductase/metronidazole, 
it was determined that the centroacinar cells residing in the 
pancreatic duct are the primary source of new β-cells based on 
promoter activity of nkx6.1 (26) or through Notch responsiveness 
(25). Ablation of β-cells in larval zebrafish also identified that 
transdifferentiation of α-cells to β-cells contributes to regenera-
tion (55, 63, 64). Using a combination of pharmacological and 
morpholino approaches, the α-cell transdifferentiation was found 
to be dependent on glucagon but not through the modulation 
of gluconeogenesis (64). This seems to differ from mouse where 
α- to β-cell transdifferentiation is independent of glucagon 
signaling (71). The secreted factor IGFBP1 has been found to 
also enhance α- to β-transdifferentiation following ablation (63). 
Regeneration following ablation has also been used to identify 
compounds that increase regeneration (70). This study identi-
fied a compound that activates adensosine GPCR to increase 
proliferation. Interestingly, this compound had a limited capacity 
to induce β-cell proliferation during development, which may 
reflect the difference between embryonic immature β-cells and 
mature β-cells. These studies provide important insights into the 
origins of and specific pathways leading to new β-cells and exem-
plify the plasticity of pancreatic endocrine cells. The ablation and 
recovery studies also exemplify the robust regenerative capacity 
of zebrafish that is not fully recapitulated in mammalian models. 
β-cell ablation in mouse using STZ, pancreatic ligation, and 
partial pancreatectomy causes less robust regeneration (72–77). 
Understanding the keys that confer the regenerative capacity of 
zebrafish may provide avenues to boost the regenerative potential 
in mammals.

MODeLinG DiABeTeS in THe ZeBRAFiSH

It is always of interest to produce an animal model that accurately 
reflects a human disease. While studies in zebrafish have been 
extremely useful to identify molecules, pathways, and cell types 
that contribute to the plasticity of the pancreatic endocrine 
cells, to date there have been no models that accurately reflect 
the life history of a human with diabetes. This is exclusive of 
models reflecting the maturity-onset forms of diabetes including 
targeting NeuroD that models MODY6 (78), Pdx1 that models 
MODY4 (48), and Hnf1ba that models MODY5 (79). However, 
these forms of diabetes are quite rare in the overall patient popu-
lation (80). The approaches to mimic type 1 diabetes by ablating 
β-cells have highlighted the regenerative nature of zebrafish, and 
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hyperglycemia is quickly reversed. Although stable expression of 
DTA can eliminate all β-cells, these fish have growth retardation 
and fail to thrive (54). For modeling type 2 diabetes, genetically 
induced muscle insulin resistance using dominant-negative IGF1 
receptor (dnIGFR) expression only resulted in glucose intoler-
ance in aged fish but no elevation in fasting blood glucose (16). 
Likewise, mutation of insulin receptors specifically in the liver 
resulted in postprandial alterations in glucose (10) but fasting 
blood glucose was reduced, similar to the liver insulin receptor 
knockout mice (81). Overfeeding adult fish quickly results in 
increased fasting glucose (16, 82) but hyperglycemia was reversed 
by returning to normal feeding. Although zebrafish are glucose 
sensitive (16, 83), insulin resistance or overfeeding in and of 
itself may be insufficient to lead to gross dysfunction of glucose 
homeostasis. A better understanding of the physiology of glucose 
control in zebrafish is likely necessary for the development of a 
truly diabetic zebrafish.

Despite the current lack of a robust model for diabetes, the 
zebrafish stands to contribute to the understanding of the influ-
ence of T2D-associated genetic loci on β-cell mass. Genome-wide 
association studies have identified loci associated with diabetes 
risk. The challenge is to determine the relevance of these different 
loci to phenotypes including β-cell mass and β-cell function and 
further determine the genes that may be influenced by these loci. 
Given the genetic tractability, the ease of producing mutations 
via CRISPR/Cas9, and the proven islet cell plasticity, zebrafish 
are an extremely attractive model to investigate the role of these 
candidate loci. Recently, O’Hare et  al. examined 67 candidate 
genes from GWAS studies using morpholino and CRISPR-based 
approaches (84). The impact on β-cell number and regeneration 
was assayed, and 25 genes that reduced β-cell number when 
mutated were found. This included genes previously known to 
influence β-cell number such as pdx1 and pax4 as well as some 
new genes such as camk1d. This study, as well as those using genes 

underlying monogenic forms of diabetes, supports the utility of 
zebrafish as a model to study the genetic basis of the disease.

To date, all of the screening modalities have relied on measur-
ing changes in the physical number of the β-cells. While second-
ary measures have also examined free glucose (30, 34, 84), no 
primary screen has been done to assay for β-cell function either 
in parallel or instead of changes in cell number. Approaches to 
achieve this end are currently lacking. Examining calcium signal-
ing through expression of genetically encoded sensors of calcium 
activity is one approach that may be useful (85), although difficult 
to employ in a high-throughput screen. To fully understand the 
physiology of glucose control in the zebrafish, other assays should 
be developed, beyond those that rely on cell numbers and free 
glucose assays.

Given all these measures, studies using zebrafish clearly have 
contributed to the study of glucose homeostasis. From endocrine 
cell development, plasticity under different conditions, genetic 
susceptibility, to modeling diabetes, the zebrafish has and will 
continue to have utility. With the ever increasing number of 
patients with diabetes, applying as many resources and approaches 
can only serve to increase knowledge and provide new avenues 
for therapies.
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