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The adrenocorticotropic hormone (ACTH) is a pituitary hormone derived from a larger 
peptide, the proopiomelanocortin (POMC), as are the MSHs (α-MSH, β-MSH, and γ-MSH) 
and the β-LPH-related polypeptides (Figure 1A). ACTH drives adrenal steroidogenesis 
and growth of the adrenal gland. ACTH is a 39 amino acid polypeptide that binds and 
activates its cognate receptor [melanocortin receptor 2 (MC2R)] through the two regions 
H6F7R8W9 and K15K16R17R18P19. Most POMC-derived polypeptides contain the H6F7R8W9 
sequence that is conserved through evolution. This explains the difficulties in developing 
selective agonists or antagonists to the MCRs. In this review, we will discuss the clinical 
aspects of the role of ACTH in physiology and disease, and potential clinical use of 
selective ACTH antagonists.

Keywords: stress, cortisol, adrenals, ACTH, antagonist

FROM THe CONCePT OF “STReSS” TO THe DiSCOveRY 
OF ADReNOCORTiCOTROPiC HORMONe (ACTH)

Adrenocorticotropic hormone and cortisol are nowadays associated with the physiological response 
to stress. Historically, the concept of stress was first introduced in 1936 by Hans Selye (1). It was 
first called the “general adaptation syndrome” and later renamed by Selye as “stress response.” Stress 
results from the balance between the stressor, an agent that produces stress at any time, and the body’s 
adaptive response to it. His experiments on rats in 1936 have shown that a stressor often alters the 
adrenal cortex, the immune system, and the gut. Indeed, rats exposed to various nocuous chemical 
or physical stimuli had a hypertrophy of the adrenals, an involution of the lymphatic nodes and 
developed gastric erosions (2).

In the 1930s–1940s, Selye performed extensive structure–function studies, resulting in the 
first classification of steroid hormones, e.g., corticoids, testoids/androgens, and folliculoids/
estrogens (3, 4). During those years, he recognized the respective anti- and pro-inflammatory 
actions of gluco- and mineralocorticoids (named by Selye) in animal models, several years before 
demonstration of anti-rheumatic actions of cortisone and ACTHs in patients. In 1935 and 21 years 
after having isolated thyroxine in crystalline form, Kendall isolated and identified the structure of 
cortisone, and in 1936, Reichstein identified the structure of cortisol. In 1948, Hench and Kendall 
demonstrated that cortisone and ACTH exert a profound anti-inflammatory effect in patients with 
rheumatoid arthritis. In 1950, Hench, Kendall, and Reichstein were awarded the Nobel Prize in 
Physiology and Medicine for these discoveries. In the same year, Harris established that ACTH  

Abbreviations: ACTH, adrenocorticotropin; PBMAH, primary bilateral macronodular adrenal hyperplasia; AGRP, agouti-
related protein; ASIP, agouti signaling protein; CAH, congenital adrenal hyperplasia; FGD, family glucocorticoid deficiency; 
MSH, melanocyte-stimulating hormone; MCR, melanocortin receptor; MRAP, melanocortin receptor-associated protein; 
POMC, proopiomelanocortin.
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FiguRe 1 | (A) The POMC protein and its various peptide cleavage products: the yellow bands correspond to the amino acid sequences His6Phe7Arg8Trp9 and 
Lys15Lys16Arg17Arg18Pro19. His6Phe7Arg8Trp9 is important for binding and signal transduction of α-MSH. (B) His6Phe7Arg8Trp9 sequence is important for 
adrenocorticotropic hormone (ACTH) signal transduction and for ACTH binding to melanocortin receptor 2 (MC2R) (26), and was called the “message” sequence 
(13). The amino acids Lys15Lys16Arg17Arg18Pro19 was initially defined as the “address” sequence allowing specific ACTH binding to MC2R (27).
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secretion involves “neuronal control via the hypothalamus 
and the hypophyseal portal vessels of the pituitary stalk” (5). 
ACTH was first isolated in 1943 and then synthesized in the 
1960s and 1970s by different groups (6–9). Next, the amino 
acid sequences of ACTH from four mammalian species were 
elucidated between 1954 and 1961 by three groups of Bell, Li, 
and Lerner (6, 10, 11). In 1955, Guillemin (a former student of 
Selye’s) and Rosenberg demonstrated in rats the existence of 
CRF, the hypothalamic factor that allows ACTH release (12).

ACTH STRuCTuRe AND FuNCTiON

Adrenocorticotropic hormone, adrenocorticotropin, cortico-
tropin, or ACTH, transmits information from the anterior lobe 
of the pituitary to the adrenal cortex. ACTH is a linear non-
atriacontapeptide with species differences in the COOH terminal 
two-third of the molecule (13). Initially, an analysis of the ACTH 
crystal structure was still lacking. In the early 1970s, different 
polypeptides were isolated from different lobes of the vertebrate 
pituitary (14). Lowry showed that ACTH and β-lipotropin (β-
LPH) shared the same amino acid motif H6F7R8W9 even if they 
have different functions (14, 15) (Figure 1). α-MSH and β-MSH 
were found to be embedded within the primary sequences of 
ACTH and β-LPH, respectively, in the melanocorticotropic cells 
(in the intermediate pituitary) (16). A few years later, the predic-
tion that ACTH, the MSHs, and the β-LPH-related polypeptides 
were derived from the same precursor (17) was confirmed by the 
cloning of the proopiomelanocortin gene (POMC) mRNA (18). 
Initially, Schwyzer and Sieber suggested that ACTH is a linear 
polypeptide (19). Later, Schiller showed that residues 10–21 have 

a flexible conformation (20). Squire and Bewley had already sug-
gested that a small region close to N-terminus had a tendency 
to form a helical structure (21). Low et al. have confirmed that 
a helical structure is produced in a solvent, the trifluoroethanol 
(22). It was suggested that this conformational change could 
occur when ACTH binds its receptor, to ensure a kinetically and a 
thermodynamically optimal hormone–receptor contact (23, 24). 
Later, Hruby et al. showed that the N terminal region of ACTH, 
between residues 4 and 10, adopts a β-turn conformation (25). 
Molecular modeling supports this hypothesis, given the presence 
of an N-terminal helical structure in the wild-type ACTH model 
(Figure 2A). This helical secondary structure is disrupted by vali-
dated inactivating mutations, which suggests that it is essential for 
ACTH bioactivity (Figure 2B).

Due to different bioassay systems, several research teams 
screened the biological activity of C terminally truncated 
analogs of ACTH (1–39) (30). ACTH (1–24) was as potent as 
ACTH (1–39) to induce glucocorticoid production by adrenal 
cells in culture (31), while ACTH (1–16) was unable to do so. It 
was concluded that the critical portion of ACTH for activating 
adrenal cells resided between residues 17 and 24 (31). However, 
the analog ACTH (11–24) was unable to induce glucocorticoid 
production and was even an antagonist at high concentrations 
(31). Fauchère et al. showed that dimers of ACTH (11–24) and 
ACTH (7–24) were potent antagonists, whereas ACTH (1–24) 
dimers remained agonists but were 70 times less potent when 
compared to its monomeric ACTH (1–24) (32–34).

Altogether, Schwyzer concluded that residues 17–24 were 
important for recognition of ACTH by its adrenal receptor, 
and he coined the term “address sequence” to indicate that 
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FiguRe 2 | Structure of wild-type (A) and mutant adrenocorticotropic 
hormone (ACTH) (B) after a 100-ns molecular dynamics simulation in 
implicit water (28, 29): (A) to retain full bioactivity, the N-terminal 
“message” sequence has to conserve its helical secondary structure 
as postulated by Schwyzer 40 years ago (13). (B) Naturally occurring 
bioinactive ACTH mutation (p.R8C) disrupts the helical conformation and 
hampers proper binding and activation of the melanocortin receptor 2 (26).

3

Ghaddhab et al. ACTH Structure and Function

Frontiers in Endocrinology | www.frontiersin.org February 2017 | Volume 8 | Article 17

these residues allowed the ligand to find the cognate receptor 
(Figure  1B) (13, 27). As Costa et  al. suggested, the position 
20 should be included in the address site (35). To activate the 
adrenal receptor, a “message” region is needed. Several studies 
suggested that the H6F7R8W9 motif should be considered as the 
“message sequence” (13) (Figure 1B). Indeed, both address and 
message sequences are necessary to activate the adrenal receptor: 
the address sequence interacts with the adrenal receptor and 
then the message sequence enters in contact with the receptor 
to induce the conformation change in the receptor that activates 
the adrenal cell (27). This could explain why α-MSH could not 
activate adrenal cells, even if it has the H6F7R8W9 motif. On the 
other hand, Schwyzer considered also the effect of analogs of 
ACTH (1–39) on the activation of melanocytes. All analogs of 
ACTH (N-terminally as well as C terminally truncated forms) 
were able to activate melanocytes as long as the H6F7R8W9 motif 
was intact (13, 27), and the H6F7R8W9 motif is probably both the 
message and the address sequence in these cells.

In the 1990s, five melanocortin receptor (MCR) genes 
were identified in the genome of mammals, tetrapods, birds, 
bony fish, and cartilaginous fish (36–39). MC1R mediates 
pigmentation, MC2R activates glucocorticoid biosynthesis 
in the adrenal cortex, MC3R and MC4R influence metabolic 
homeostasis in the central nervous system and periphery (40), 
and MC5R regulates sebaceous gland secretions (41). The 
MCRs belong to the rhodopsin family of G protein-coupled 
receptors (GPCRs) (37, 42). They induce intracellular cyclic 
AMP production following activation by ligands (43, 44). 
ACTH (1–39) or α-MSH can activate MC1R, MC3R, MC4R, 
and MC5R (37), but MC2R can only be activated by ACTH 
and not by α-MSH or other analogs (45). The MCR genes 
have now been cloned and expressed in cell lines, allowing 
in vitro binding and activation assays of ACTH analogs against 
all MCRs. Recently, it has been shown that MC2R requires 
the presence of the melanocortin receptor-associated protein 
(MRAP) to be expressed and active at the cell surface (46–49).

Although ACTH and α-MSH both have the H6F7R8W9 
motif, only ACTH can activate MC2R. This raises the question 

of differences between the H6F7R8W9-binding site in MC2R 
when compared to the other MCRs. Due to a crystal structure 
of the H6F7R8W9-binding site and site-directed mutagenesis 
analyses of human MC4R, we know that vertebrate MCRs 
have a common H6F7R8W9-binding site (50–53), which further 
confirms that the H6F7R8W9 motif is both the message sequence 
and the address sequence for the α-MSH. Dores hypothesized 
that, prior to stimulation, MC1, MC3, MC4, or MC5 recep-
tors have a binding site that is in an open conformation for 
the ligand. When the ligand interacts with the receptor, it leads 
to a conformational change (a “docking event”) that activates 
the receptor (27). Therefore, the activation of MC2R may be 
a multistep process that requires (i) a conformational change 
after docking of the H6F7R8W9 motif on its MC2R-binding 
site and, in the second step, (ii) docking of the K15K16R17R18P19 
motif of ACTH to activate the MC2R receptor (27, 54). This 
could explain the differential ligand selectivity of the MCRs. 
However, further analyses and experiments are necessary to 
confirm this hypothesis.

FAMiLiAL gLuCOCORTiCOiD DeFiCieNCY 
(FgD) AND POMC DeFiCieNCY

Familial glucocorticoid Deficiency
The glucocorticoid deficiency syndrome (FGD) is an autosomal 
recessive disorder characterized by insensitivity to ACTH action 
on the adrenal cortex (55), thereby resulting in glucocorticoid 
insufficiency with intact mineralocorticoid secretion. It may 
manifest during early neonatal life but can be diagnosed later 
during childhood. Clinical manifestations include recurrent 
hypoglycemia that may lead to seizures and coma, chronic fatigue, 
failure to thrive, recurrent infections, and skin hyperpigmenta-
tion. Typically, plasma cortisol levels are very low or undetectable 
without response to ACTH, while endogenous ACTH levels are 
very high, which clearly shows a specific resistance to the action 
of ACTH in these patients. The aldosterone and renin levels 
are usually normal and correctly match the activation of the 
renin–angiotensin axis. Even if congenital adrenal hyperplasia 
(CAH) (due to defects in the glucocorticoid synthesis pathway), 
congenital adrenal hypoplasia, and X-linked adrenoleukodystro-
phy are associated with high ACTH and low cortisol levels, they 
are distinct from FGD.

So far, mutations in five genes have been associated with iso-
lated FGD and four with FGD associated with various syndromic 
features. In all these genetic disorders, low cortisol and a high 
ACTH suggest ACTH resistance. Causative genes of isolated FGD 
are the ACTH receptor (MC2R; also formerly defined as FGD 1) 
(56), the melanocortin receptor-associated protein (MRAP; also 
formerly defined as FGD 2) (46), the DAX1 transcription factor 
(NR0B1) (57), nicotinamide nucleotide transhydrogenase (NNT) 
(58–60), and mitochondrial thioredoxin reductase (TXNRD2) 
(61). Interestingly, NNT and thioredoxin reductase (TXNRD2) 
are crucial enzymes for the production of sufficient NADPH to 
maintain the redox potential in the steroid-producing cells. Four 
syndromes have been reported with FDG: (i) the AAA(A) syn-
drome (ACTH resistance, alacrimia, achalasia, and autonomous 
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system dysfunction) due to AAAS mutations (62); (ii) the 
IMAGe syndrome (intrauterine growth restriction, metaphyseal 
dysplasia, adrenal hypoplasia congenita, and genital anomalies) 
due to CDKN1C mutations (63); (iii) a syndrome with short 
stature, recurrent infection due to natural killer cell deficiency, 
and chromosomal fragility associated with mutation of the DNA 
helicase, minichromosome maintenance 4 (MCM4) (64); and (iv) 
the MIRAGE syndrome (myelodysplasia, infection, restriction of 
growth, adrenal hypoplasia, genital phenotypes, and enteropathy) 
due to mutations in SAMD9 (65).

POMC Deficiency
Proopiomelanocortin (POMC) deficiency causes severe mono-
genic obesity that begins at an early age, adrenal insufficiency, red 
hair, and pale skin. Affected infants have a normal weight at birth, 
but they develop early hyperphagia that leads to excessive weight 
gain starting in the first year of life. During the neonatal period, 
patients usually present with hypoglycemic seizures, hyperbili-
rubinemia, and cholestasis due to secondary hypocorticism (66). 
Subclinical hypothyroidism was also reported. The incidence is 
very low, about one in 1 million. Complete POMC deficiency is 
an autosomal recessive disorder and is caused by homozygous 
or compound heterozygous loss-of-function mutations in the 
POMC gene on chromosome 2p23.3.

POMC is regulated by leptin and is cleaved by prohormone 
convertases to produce ACTH and MSH α, β, and γ. In POMC 
deficiency, the serum concentrations of these cleavage products 
are low. The red hair pigmentation, adrenal insufficiency, and 
obesity are caused by inability to activate the MC1, MC2, and 
MC4 receptors, respectively (66). In addition to complete POMC 
deficiency, isolated deficiency of β-MSH has been described. 
This isolated deficiency of β-MSH leads to severe obesity without 
adrenal insufficiency or red hair (67, 68).

A few years ago, we reported glucocorticoid deficiency in 
two unrelated patients with apparent ACTH resistance due to an 
unusual mutation in POMC: the p.R8C mutation in the sequence 
encoding ACTH and α-MSH (26). The patients (a 4-year-old 
girl and a 4-month-old boy) presented with hypoglycemia, low 
cortisol, normal electrolytes, and high ACTH. Both patients had 
red hair, adrenal insufficiency, and developed early-onset obesity. 
They were initially treated with gluco- and mineralocorticoids, but 
after the identification of the mutation in POMC, mineralocorti-
coid treatment was discontinued in both patients. Whole exome 
sequencing revealed that the girl was compound heterozygous 
for POMC mutations: one previously described null allele and 
one novel p.R8C mutation in the sequence encoding ACTH and 
α-MSH. The boy was homozygous for the p.R8C mutation. We 
demonstrated that even if ACTH-R8C was immunoreactive, it 
failed to bind and activate cAMP production in melanocortin-2 
receptor (MC2R)-expressing cells. We demonstrated also that 
α-MSH-R8C failed to bind and stimulate cAMP production in 
MC1R- and MC4R-expressing cells.

Discovery of this mutation indicates that in humans, unlike 
rodents, the amino acid sequence H6F7R8W9 is important not only 
for cAMP activation but also for ACTH binding to the MC2R. 
Furthermore, in silico modeling suggested that the pR8C muta-
tion disrupts the secondary structure of ACTH, which implies 

that this secondary structure may have a crucial role for M2R 
activation (Figure 2).

Diagnosis of complete POMC deficiency may be suspected 
on the basis of clinical manifestations and can be confirmed by 
identification of mutations in the POMC gene. To treat POMC-
deficient patients, only hydrocortisone substitution is currently 
available and is required. An intranasal administration of the 
ACTH 4–10 melanocortin fragment did not lead to a reduction 
in body weight. Administration of thyroid hormone had no effect 
on obesity (69). Recently, two extremely obese POMC patients 
have been substituted with a MC4R agonist (setmelanotide), and 
a significant reduction of their weight has been achieved (more 
than 10% after 10 weeks of treatment) (70). This paves the way 
for treatment of this condition with specific MC4R agonists and 
should also prompt research into developing agonists to other 
MCRs such as MC2R.

PeRSPeCTiveS: A ROLe FOR SPeCiFiC 
ACTH ANTAgONiSTS iN HuMAN DiSeASe

Specific ACTH antagonists would be of great value especially to 
treat two conditions: CAH and primary bilateral macronodular 
adrenal hyperplasia (PBMAH). Moreover, MC2R antagonists 
could represent a valuable alternative to anticortisolic drugs in 
clinical management of ACTH-dependent hypercortisolism, 
essentially Cushing’s disease, when removal of the source of 
ACTH excess is impossible or incomplete.

Congenital Adrenal Hyperplasia
Adrenocorticotropic hormone drives the synthesis and secre-
tion of cortisol as well as androgens from the adrenal gland. In 
CAH due to 21 hydroxylase deficiency, excess of ACTH leads 
to overandrogenization. CAH is due to the enzymatic defect in 
the cortisol synthesis pathway, with subsequent hypocortisolism, 
ACTH overproduction, accumulation of androgen precursors, 
and adrenal gland hyperplasia. Treatment with glucocorticoids 
at physiological doses is life saving but is not sufficient to suppress 
the elevated ACTH levels and androgen overproduction. Failure 
to suppress excess androgens results in height acceleration, 
advanced skeletal maturation, and eventually leads to decreased 
final adult height. Other effects of androgen excess include clito-
romegaly and hirsutism in females, isosexual pseudoprecocious 
puberty in males, and acne and deepening of the voice in both 
sexes. Only supraphysiological doses of glucocorticoids sup-
press ACTH in CAH but at the cost of hypercortisolemia with 
its adverse effects such as hyperglycemia, arterial hypertension, 
reduced growth, and osteoporosis. Since MC2R is expressed only 
in the adrenals, it could become a specific target. Therefore, an 
adjuvant drug able to specifically block the MC2R would obviate 
the need for supraphysiological dose of glucocorticoids in CAH 
and prevent the undesirable effects inherent to glucocorticoid 
overtreatment.

MC2R expressing PBMAH
Primary bilateral macronodular adrenal hyperplasia (also known 
as ACTH-independent macronodular adrenal hyperplasia) is a 
rare, sporadic disease affecting men and women with an almost 
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equal ratio. PBMAH has a bimodal age distribution: during the 
first year of life (minority) when it may be associated with the 
McCune–Albright syndrome (71) and during the fifth decade 
of life (majority) (72). Occurrence of familial cases of PBMAH 
and involvement of both adrenal glands (even in sporadic cases) 
strongly suggest involvement of germline genetic predisposition 
in PBMAH. Indeed, inactivating mutations of the armadillo 
repeat containing 5 (ARMC5) have been reported in 25–55% of 
patients with sporadic PBMAH (73–75).

The most frequent clinical manifestation of PBMAH is 
Cushing syndrome. In PBMAH, one previously believed that 
glucocorticoid secretion is ACTH independent given that, most 
of the time, plasma ACTH levels are undetectable, and high-dose 
dexamethasone administration fails to suppress cortisol secre-
tion. This notion has been revised following the demonstration 
of local production of ACTH. Indeed, Cheitlin et  al. studied 
the adrenal cells from a patient with PBMAH in vitro; the cells 
were cultured on an extracellular matrix and demonstrated rapid 
growth and a high rate of cortisol secretion in the absence of 
ACTH (76). Not only the MC2R was expressed in PBMAH tissue 
(77) but also ACTH was abnormally expressed, further stimulat-
ing the cortisol secretion through a paracrine effect (78). These 
findings represent a strong incentive to treat PBMAH-associated 
hypercortisolism with MC2R antagonists. This contrasts with 
primary pigmented nodular adrenocortical disease, sporadic 
large benign adenomas, and adrenocortical carcinomas, which 
are mostly ACTH unresponsive (79).

Even if these observations suggest that specific MC2R antag-
onist could help patients with PBMAH, the specific structure 
of the ACTH produced by PBMAH cells (78) and in ectopic 
Cushing’s syndrome (80) might raise unexpected difficulties. 
Indeed, these bioactive ACTH are not detected by antibodies 
directed to the ACTH C terminal portion. This may result from 
extrapituitary sources of ACTH producing increased amounts 
of precursors (pre-ACTH and POMC) due to impaired POMC 
processing (81, 82). Reports on receptor affinity and steroido-
genic potency of ACTH precursors are conflicting (81), which 
may complicate the design of MC2R antagonists that also block 
ACTH precursors.

A Specific MC2R Antagonist:  
An elusive Target
In the last four decades, extensive studies that have been performed 
to determine the molecular basis of the interaction of ACTH with 
cognate MCRs have shown inconsistent results, mainly due to 
technical limitations. First, the expression at the cell membrane 
of human MC2R in cell lines was not possible until the discovery 
of the melanocortin receptor-associated protein (MRAP) (46), 
which is required to address MC2R at the cell membrane. Second, 
studies on putative ACTH antagonists failed to perform a system-
atic analysis of ACTH antagonists’ activation and binding against 
all cognate MCRs to assess specificity (83, 84).

Melanocortin receptors belong to the GPCRs family that 
has natural agonists and antagonists. The melanocortin 
antagonists, agouti-related protein (AGRP) and agouti signal-
ing protein (ASIP), are the only two endogenous antagonists 

of MCRs identified to date (85–87). The primary sequences 
of the endogenous agonists (MSHs) and antagonists (AGRP 
and ASIP) are different, and they interact differently with the 
MCRs to produce the active and inactive conformations of the 
ligand–receptor complex.

The design of a specific peptide remains a challenge that 
has not been resolved because of the difficulty of designing 
a peptide specific for one MCR (e.g., MC2R) (37). Indeed, 
all melanocortin ligands receptors shared the same H6F7R8W9 
motif, which is important for MCR binding and stimulation 
(88) and which bind to all MCR receptors. Development of 
selective ligands for the melanocortin system is challenging due 
to the conserved amino acid sequences of the MCRs and of 
their structural similarity in the seven-transmembrane GPCR 
fold (89). The limited structural variations of the endogenous 
melanotropin ligands further reduce options in the design of 
MCR ligands for achieving selectivity. If they are not selective, 
these peptides could be the source of severe undesirable effects 
due to the numerous specific roles of the five MCRs. Of note, 
some ACTH fragments show variable specificity across species. 
For example, ACTH (7–38) fragment antagonizes the human 
MC2 receptor but stimulates aldosterone secretion from the rat 
adrenal cortex through a mechanism involving the angiotensin 
receptor (90). Variable specificity between species is therefore 
another challenge for the preclinical phase of the development 
of new ACTH receptor agonists. A table listing MC2R ago-
nists and antagonists is available in Table S1 in Supplemental 
Material.

Designing molecules that possess both functional selectivity 
and human melanocortin receptor (hMCR) subtype selectivity 
from the melanotropin core sequence H6F7R8W9 has been dif-
ficult. Many peptides are conformationally flexible in aqueous 
solution, but upon interacting with their biologically relevant 
molecule, they assume a preferred conformation. The reduction 
of conformational freedom may eventually lead to the receptor 
bound conformation, which results in the selective interaction 
of a ligand with a receptor. A major step is to determine which 
peptide conformation is required for binding to the receptor and 
resulting in an agonist or antagonist effect. A critical approach is 
to understand if changes in ACTH three-dimensional (3D) con-
formation are associated with antagonist properties (Figure 2). 
X-ray crystal structures provide 3D conformation but may be 
misleading in terms of function. Incorporation of these X-ray 
coordinates into a computer-aided examination of function into 
3D space is being pursued (91). This allows one to further explore 
the region/site or the surrounding 3D space occupied by the key 
amino acids of the protein (where the potent ligand has an affin-
ity) so as to better understand biological actions. Nevertheless, 
the numerous physiological functions of the five known subtypes 
of hMCRs continue to be a stimulus for the production of selec-
tive melanocortin agonists and antagonists (92).

CONCLuSiON

The ACTH is the pituitary hormone that allows growth 
and development of the adrenal cortex and glucocorticoid 
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synthesis. Even if the structure of ACTH has been known 
for decades, the exact mechanism of activation of MC2R, 
the specific ACTH receptor on adrenal cells, is still 
unknown. Understanding this activation and the develop-
ment of specific MC2R antagonists would allow the treat-
ment of some difficult-to-treat diseases such as CAH or  
PBMAH.
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