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Central Control of Feeding Behavior 
by the Secretin, PACAP, and 
Glucagon Family of Peptides
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Constituting a group of structurally related brain-gut peptides, secretin (SCT), pituitary 
adenylate cyclase-activating peptide (PACAP), and glucagon (GCG) family of peptide 
hormones exert their functions via interactions with the class B1 G protein-coupled 
receptors. In recent years, the roles of these peptides in neuroendocrine control of feed-
ing behavior have been a specific area of research focus for development of potential 
therapeutic drug targets to combat obesity and metabolic disorders. As a result, some 
members in the family and their analogs have already been utilized as therapeutic agents 
in clinical application. This review aims to provide an overview of the current understand-
ing on the important role of SCT, PACAP, and GCG family of peptides in central control 
of feeding behavior.

Keywords: secretin, PACAP, and glucagon family peptides, hypothalamus, feeding behavior, energy homeostasis, 
metabolic diseases

iNTRODUCTiON

Secretin (SCT), pituitary adenylate cyclase-activating peptide (PACAP), and glucagon (GCG) family 
or SCT family, a group of short peptides that were classified based on their structural homology 
and named after the first hormone discovered, include SCT, PACAP, vasoactive intestinal peptide 
(VIP), GCG, glucagon-like peptide-1 (GLP-1), GCG-like peptide-2 (GLP-2), glucose-dependent 
insulinotropic polypeptide (GIP), growth hormone–releasing hormone (GHRH), and peptide 
histidine isoleucine (PHI) or peptide histidine methionine (1). While sharing some biological 
functions, each of these hormones possesses distinct physiologic actions such as the involvement 
of SCT in water homeostasis (2). Similar to their ligands, receptors mediating functions of the 
peptides are structurally related and are grouped in the class B G protein-coupled receptors (3, 4). 
Recent pharmacological interests for these receptors have paved way for novel therapeutic strategies 
for intervention of pathological conditions (5–8). For instance, liraglutide and exenatide (GLP-1 
receptor agonists) are being used for treating diabetes (5).

Feeding is a complex behavior involving the integration of homeostatic systems that sense 
energy balance with hedonic (reward) behavior (9). Areas in the central nervous system (CNS) 
that appear to be important for regulation of feeding behavior are distributed across regions of 
forebrain and caudal brain stem (10, 11). Of particular significance is the hypothalamic neural 
circuitry, long known to be involved in the control of energy homeostasis in response to vari-
ous endocrine, nutritional, metabolic, and thermal signals. The role of hypothalamus in energy 
homeostasis regulation has been discussed in detail in several review articles (10, 12–16). Arcuate 
nucleus (ARC), paraventricular nucleus (PVN), ventromedial hypothalamus (VMH), dorsomedial 
hypothalamus (DMH), and lateral hypothalamus (LH) are hypothalamic regions with reciprocal 
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connections that are known to be involved in regulation of 
food intake and energy homeostasis. In the ARC above the 
median eminence, neurons expressing neuropeptide Y (NPY) 
and agouti gene-related protein (AgRP) stimulate food intake 
and are found medially, while pro-opiomelanocortin (POMC) 
(precursor of α-melanocyte-stimulating hormone; α-MSH) and 
cocaine- and amphetamine-regulated transcript (CART) induce 
anorexia and are coexpressed in the neuronal population of 
lateral ARC. These neurons project to the PVN which controls 
feeding and provides preganglionic autonomic output to the 
brainstem. NPY reduces energy expenditure and stimulates food 
intake through the Y1 and Y5 receptors in the PVN. Conversely, 
CART inhibits NPY-induced feeding (17–19). Also, POMC and 
its products such as α-MSH suppress feeding behavior. AgRP is 
an endogenous antagonist of α-MSH and, therefore, increases 
food intake and weight. Other hypothalamic peptides, such as 
melanin-concentrating hormone and hypocretin, are orexigenic 
in nature and are expressed in distinct populations of neurons 
in the lateral hypothalamic area (20–22). Another important 
site in regulation of feeding behavior is caudal brain stem. In 
the brain stem, neurons in the nucleus tractus solitarius (NTS) 
and dorsal motor nucleus of the vagus (DMV) receive and 
integrate inputs from vagus nerve, which is involved in sens-
ing nutrient accumulation in the stomach and the duodenum 
(23). Highly interconnected with the hypothalamus, brainstem 
regulates responses to fasting through ascending projections to 
the hypothalamus (10) and short-term satiety signals through 
descending projections from the hypothalamus (24). Apart 
from the brain circuits regulating hunger and satiety, nuclei 
embedded within the mesolimbic reward circuitry [ventral 
tegmental area (VTA) and nucleus accumbens (NAc)], which 
are well known for their importance in reinforcing properties 
of drugs of abuse and natural rewards (25), as well as nuclei in 
the amygdale and hippocampus are involved in the rewarding 
effects of food (26).

The SCT family peptides and their receptors have been found 
to exist in various brain regions, including hypothalamus, imply-
ing their neuroactive functions (27, 28). Most of them have also 
been found to be important in the central regulation of energy 
balance (29). Therefore, in the sections below, we have reviewed 
in detail the role of SCT family hormones in the central control 
of feeding behavior.

SeCReTiN

Secreted from the S-cells of the duodenum in response to acid, 
SCT is a 27-amino acid peptide and the first ever hormone 
discovered (30). SCT primarily functions in the gastrointestinal 
tract to stimulate bicarbonate secretion from the pancreas to 
neutralize acid (31). A century-long research has gone into 
studying the gastrointestinal functions of SCT, and only 
recently it has been found as a neuropeptide (2, 32–36). As we 
summarized before (28), SCT was found to be expressed in 
multiple brain sites, including PVN, supraoptic nucleus (SON), 
and ARC of hypothalamus, NTS of brainstem, central amygdala 
(CeA), hippocampus, and cerebral cortex (37, 38). SCT receptor 
(SCTR) expressions were also found in PVN, SON, and ARC 

of the hypothalamus, among other brain regions (39). In spite 
of contradictory evidences in the past (40–42), our laboratory 
has recently confirmed an anorectic effect of peripheral and 
central SCT in mice (39), supported by our findings that intrac-
erebroventricular (i.c.v.) and intraperitoneal (i.p.) injections of 
SCT reduced food intake in wild-type mice. This observation 
was absent in SCTR knockout (SCTR−/−) mice, further con-
firming the specificity of SCT–SCTR axis in regulating feeding 
behavior.

The previous review from our lab (28) has concluded that 
circulating SCT might not cross the blood–brain barrier (BBB) 
for specifically exerting its anorectic effect (38, 39), although SCT 
has been shown to be able to cross the BBB (43). Thus peripheral 
SCT, through SCTR in the intestinal vagal afferents, communi-
cated to the brain to bring about satiety control without causing 
conditioned taste aversion (CTA) (39, 44). However, a very recent 
study has provided another piece of the puzzle on the appetite 
regulation by peripheral SCT. By using male oxytocin (OXT)-
monomeric red fluorescent protein 1 (mRFP1) transgenic rats, 
the study showed that i.p. SCT (100 µg/kg), apart from induc-
ing a reduction in food intake, stimulated mRFP1 fluorescence 
(OXT indicator) in the dorsal division of the parvocellular PVN 
(dpPVN) and increased mRFP1-positive granules in the axon 
terminals of dpPVN OXT neurons in the NTS. An upregulation 
of c-Fos expression was also observed in the NTS and OXT 
neurons of dpPVN. Therefore, peripheral SCT might regulate 
feeding behavior, at least in part, via an OXTergic pathway from 
the dpPVN to the NTS (45).

Consistently, central SCT is also able to reduce food intake. 
It has been shown that central SCT induced c-Fos immunore-
activities in the ARC and PVN of hypothalamus. In the ARC, 
POMC neurons were found to be colocalized with activated c-Fos 
as well as with SCTR. An increase in POMC and a reduction in 
AgRP transcript levels were observed in the ARC after i.c.v. and 
i.p. SCT (39, 46). In addition, it has been reported that central 
and peripheral SCT increased melanocortin-4 receptor (MC4R) 
mRNA in the PVN, and administration of MC4R antagonist, 
SHU9119, in the PVN reduced the anorectic effect of central 
and peripheral SCT, indicating the involvement of melanocortin 
system (39, 46). We previously showed that K+-induced depo-
larization of hypothalamic explants released SCT endogenously 
through voltage-gated sodium and calcium channels, suggesting 
that this endogenous SCT could function as a neurotransmitter 
in the region (34, 35). Taken all together, SCT has been suggested 
as a pleiotropic regulator of feeding behavior and neuroendo-
crine signaling in the hypothalamus. Microinjection of SCT into 
the CeA has been recently shown to reduce cumulative food 
intake through cAMP-activated protein kinase pathway, while 
electrophysiological recordings indicated that SCT may exert its 
anorectic actions, at least in part, by modulation of spontaneous 
firing of CeA neurons (47).

Absence of a truly functional SCTR antagonist is partly a 
hindrance for studying the region-specific (hypothalamus or 
amygdala) role of SCT in modulating food intake behavior. 
Recent establishment of several animal models such as SCT−/− 
or SCTR−/−as well as the SCTfl/fl for cell-specific knockout of 
SCT should help to reveal the relationship between SCT and 
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anorectic functions. Research on food intake modulations by 
SCT has been initiated for the past few years but still requires 
further efforts to test its potential in therapeutic interventions.

PiTUiTARY ADeNYLATe CYCLASe-
ACTivATiNG PePTiDe

Pituitary adenylate cyclase-activating peptide, a 38-residue pep-
tide hormone, was first isolated from ovine hypothalamic tissue 
as a hypophysiotropic peptide that would activate adenylate 
cyclase in cultured rat pituitary cells (48) and is widely distrib-
uted in the body including brain, gonads, and adrenal gland (49, 
50). Various regions of the brain like central thalamic nuclei, 
amygdaloid complex, and hippocampus expressed PACAP and 
yet the most abundant expression was found in the ARC, PVN, 
VMH, and SON of the hypothalamus (50, 51), which has been 
well documented to be involved in appetite regulation. Double 
labeling studies have shown PACAP to be colocalized with 
POMC neurons of the ARC but not POMC neurons within the 
brain stem (52). Receptors for PACAP (PAC1R and/or VPAC2R) 
were also found to be expressed in approximately half of POMC 
neurons (53, 54) and a significant proportion of NPY neurons 
(53, 54). Consistent with its distribution pattern in the brain, i.c.v. 
administration of PACAP was found to reduce food intake by 
several studies (55–57). Notably, in rat, Mizuno’s group showed 
that PACAP induced a long-lasting reduction of food consump-
tion (58). As we have reviewed before (28), a study showed 
that 100  nM PACAP increased POMC mRNA, α-MSH tissue 
content as well as α-MSH release in mediobasal hypothalamic 
explants (53, 54). Another study further revealed that central 
PACAP stimulated c-Fos expression in POMC neurons and 
increased POMC and MC4R transcripts in the ARC; PACAP-
specific receptor (PAC1R) knockout mice had lower POMC 
transcript levels in the ARC compared to wild-type animals and 
pre-injection of SHU9119, MC3R/MC4R antagonist, abolished 
the hypophagic effects of i.c.v.-PACAP, suggesting that PACAP 
might act through PAC1R receptor and then melanocortin 
system to exert its anorectic effect (57). Using AtT20PL, a clone 
of the AtT20 mouse corticotroph tumor cells stably transfected 
with rat POMC 5′ promoter-luciferase fusion gene, PACAP 
and VIP were found to increase the POMC promoter activity 
and expression via a PKA-independent intracellular signaling 
pathway (59).

Intra-PVN injection of PACAP has been shown to reduce 
food intake as well as lead to significant reductions in meal size, 
duration, and total time spent eating (60), consistent with the 
loss-of-function study showing that there was a pronounced 
hyperphagia in PVN-lesioned animals (61), and PACAP 
receptor-specific study showing that the feeding behavior was 
primarily controlled by PAC1R and this receptor subtype was 
abundantly distributed in the PVN (60). Although PVN has been 
suggested as the predominant site of action for PACAP-mediated 
hypophagia, the PACAP stimulation of the VMH may serve 
primarily to stimulate energy expenditure (60). Direct acute 
injection of PACAP into the VMH, a region heavily expressing 
PAC1R, was able to inhibit food intake for 6 h which could be 
reversed by the PAC1R antagonist. Intra-VMH injection of 

PACAP also increased POMC mRNA in the ARC while not 
affecting NPY and AgRP mRNA levels (62). Previous studies 
have shown that PACAP is capable of modulating the activation 
of ionotropic glutamate receptors (63, 64). Recently, it has been 
shown that glutamatergic signaling via NMDA receptors was 
required for the hypophagic effects of intra-VMH PACAP (65). 
A novel model of binge behavior that could temporally separate 
homeostatic feeding from palatable food-driven (hedonic) feed-
ing behavior (66), has shown that the microinjection of PACAP 
into NAc mimics the actions of GABA agonists and reduces the 
intake of palatable food without altering homeostatic feeding, 
while microinjection of PACAP into the VMH mimics the 
actions of AMPA by decreasing homeostatic feeding without 
altering hedonic feeding. Furthermore, it has been shown that 
transcript levels of PACAP in the VMH was regulated according 
to energy status, as fasting reduced and high-fat diet increased 
PACAP expression in VMH (67).

Recently, monosynaptic interactions of PACAP-expressing 
neurons in the VMH with appetite-suppressing POMC neurons 
of the ARC have been shown (68). Nevertheless, this study also 
showed, using channel rhodopsin-assisted circuit mapping, that 
appetite-stimulating AgRP neurons in the ARC had excitatory 
PACAPergic afferents originating within the PVN. Incidentally, 
a previous study has reported that PACAP could stimulate NPY 
neurons to elevate cytosolic Ca2+ levels (69). These exciting new 
findings suggested that, based on their neuroanatomical loca-
tion, PACAP could stimulate both orexigenic and anorexigenic 
effects (70). A very recent study showed a role of PACAP/PAC1 
signaling during light-regulated feeding behavior (71), adding 
more complexity on the appetite regulation by PACAP in the 
hypothalamus. Therefore, further detailed studies are required 
to understand how these pathways interact under various energy 
states and converge to modulate feeding behavior.

Apart from its anorectic role, local PVN as well as i.c.v. 
infusion of PACAP-38 significantly induced plasma glucose 
concentration, endogenous glucose production, and c-Fos 
immunoreactivity in the autonomic neurons in the PVN. These 
neurons project to preganglionic sympathetic neurons in the 
spinal cord and are involved in hepatic glucose production (72). 
Furthermore, PACAP has been shown to interact with other 
peptides to modulate feeding behavior. Central administration 
of PACAP provokes increases in hypophysiotropic neuro-
hormones in the hypothalamus, such as vasopressin, GnRH, 
somatostatin, and CRF (73, 74). In chicks (75) and goldfish (76), 
it has been shown that anorectic effect of central PACAP was 
inhibited by CRH receptor antagonist, astressin, and α-helical 
CRH(9–41), respectively, and GnRH2 has been found to medi-
ate CRH-signaling pathway in goldfish (77). PACAP mRNA 
was found to be colocalized with steroidogenic factor-1in the 
VMN and leptin signaling was required for normal PACAP 
expression in these cells, while blocking of endogenous central 
PACAP signaling attenuated leptin-stimulated hypophagia and 
hypothermia (67). Consistently, i.p. administration of PACAP 
has been found to suppress appetite with a decrease in plasma 
ghrelin and an increase in plasma GLP-1 and leptin (78, 79). For 
its integrative role in glucose and energy homeostasis, PACAP 
receptor subtype-specific agonists and/or antagonists are being 
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considered as potential therapeutic agents for metabolic disor-
ders in addition to appetite disorders.

vASOACTive iNTeSTiNAL PePTiDe

Distributed throughout the gastrointestinal tract (80, 81) and 
CNS including cerebral cortex, suprachiasmatic nucleus (SCN), 
and PVN of the hypothalamus and thalamus (82, 83), VIP is a 
28-amino acid peptide hormone known for its role in vasodila-
tion and hypotension acting through VPAC1R and VPAC2R 
receptors. VPAC1R expression has been found mainly in the 
cerebral cortex and hippocampus, while VPAC2R was expressed 
in the thalamus, midbrain and in the PVN and SON magnocellu-
lar cells and SCN of the hypothalamus (83, 84). Previous studies 
have demonstrated that plasma VIP concentrations increased 
following either a carbohydrate meal or water loading (85), and 
short-term fasting altered the VIP levels in the hypothalamus 
and other brain regions, suggesting a potential for VIP in modu-
lating appetite and food intake (86). Indeed, i.c.v. administration 
of VIP induced anorexia in chicken (87, 88), goldfish (89, 90), 
and rat (91). Disruption in food intake and metabolic rhythm 
occurred in VIP and VPAC2R knockout mice (92). VIP could 
possibly stimulate hypothalamic–pituitary–adrenal (HPA) axis 
as intra-PVN injection of VIP increased secretion of ACTH and 
corticosterone (93), possibly by activating the CRH neurons 
(94). Additionally, stimulation of hypothalamic explants by VIP 
significantly stimulated the release of α-MSH (91), suggesting 
VIP could also work through the activation of melanocortin sys-
tem to inhibit food intake. As mentioned earlier, cell line studies 
with transfected rat POMC promoter-luciferase fusion gene 
have shown that VIP induces POMC promoter activity through 
a PKA-independent pathway (59). Recently, VIP knockout mice 
were shown to have a disrupted pattern of circadian feeding 
behavior resulting in a significantly reduced nocturnal/diurnal 
feeding along with reduced body weight and fat mass accumula-
tion (78, 79). The study also showed that, in VIP knockout mice, 
the release of anorexigenic hormones, such as GLP-1, leptin, 
PYY, and insulin was altered in both fasting and post-prandial 
conditions, revealing a possibility of VIP cross-talking with 
other hormones to inhibit food intake. However simultaneously, 
orexigenic hormones were also found to be altered suggesting 
the role of VIP in both anorexigenic and orexigenic effects (78, 
79). There were also reports indicating an absence of anorectic 
effects by VIP as i.c.v. injection of VIP did not influence appetite 
in fasted mice (57) and administration of VIP receptor antago-
nist in the PVN had no effect on food intake in rats (94). With 
such contrasting evidences, the role of VIP on appetite control 
remains currently unclear.

GLUCAGON

Derived from proglucagon that contains sequences for 
GLP-1 and GLP-2, GCG is a 29-amino acid peptide hormone 
secreted by pancreatic α cells in response to low blood glucose. 
Counteracting hypoglycemia, it antagonizes insulin action 
by stimulating hepatic glucose synthesis and mobilization. In 
contrast to its peripheral action, recent reports have shown that 

hypothalamic action of GCG inhibited hepatic glucose produc-
tion (95, 96). Its role in energy homeostasis and metabolism 
has been reviewed in detail before (97–99). Also as we have 
reviewed before (28), peripheral GCG induced satiety in 
humans (100, 101) and in rats (102, 103) without causing CTA 
(104); GCG affected meal size rather than meal interval (105); 
and hepatic vagal afferents were found to mediate this effect 
of peripheral GCG (106). In addition, another study reported 
that subcutaneous injection of GCG was able to reduce appetite 
and through immunohistochemical analysis c-Fos expression 
could be detected in the NTS, area postrema (AP), and CeA but 
absent in the ARC, PVN, and DMH regions of the hypothala-
mus, suggesting the involvement of brainstem and amygdala in 
the appetite control by peripheral GCG (107). GCG receptor 
(GCGR) distribution has been found in the dorsal vagal complex 
(DVC) of brainstem (108). A recent study investigating the role 
of GCG in high-protein feeding has demonstrated that elevated 
circulating GCG found during high-protein feeding acted in 
the DVC through GCGR-dependent PKA–Erk1/2–KATP signal-
ing cascade to contribute to the effect of high-protein feeding 
(109). However, relatively low levels of GCGR were also found 
in the hypothalamus, and it is noteworthy that circulatory GCG 
has been shown to suppress glucose sensing via LH, DMH 
and VMH neurons of hypothalamus, hence the possibility of 
hypothalamic activation in appetite control by peripheral GCG 
could not be excluded (110). While the mechanisms behind 
the anorectic effect of peripheral GCG were not fully under-
stood, there were also reports suggesting that peripheral GCG 
increased food intake (111).

Central administration of GCG has been observed to induce 
anorexia in rats (112, 113), chicks (114, 115), and sheep (116) 
with much higher anorectic effect appeared after i.c.v. GCG than 
its peripheral effect in rats (112). Although the mechanisms 
underlying satiety regulation by central GCG remains a mystery, 
a previous review has discussed several possibilities. For example, 
it suggested the stimulation of hypothalamic corticotropin-
releasing factor and activation of HPA axis to be involved in the 
anorectic effect of GCG (117). Microinjection of GCG into the 
LH reduced appetite and stimulated sympathetic activity (118). 
Although high levels of immunoreactive GCG and relatively low 
levels of GCGR were found in the hypothalamus (108), the role of 
hypothalamic neurons in appetite control by GCG was not clear, 
until a recent report proved that central GCG reduced appetite 
through hypothalamic pathway (119). Hypothalamic GCG 
activated GCGR to stimulate downstream PKA pathway in the 
hypothalamic ARC, as i.c.v. co-infusion of the GCGR antagonist 
des-His1-[Glu9] GCG amide or the PKA inhibitor H-89 negated 
the ability of central GCG to induce anorexia. And as the 
downstream factor of PKA, central GCG injection also reduced 
protein levels of Ca2+-calmodulin-dependent protein kinase 
kinase β (CaMKKβ) and its downstream target phosphorylated 
AMP-activated protein kinase (AMPK) in the ARC. AMPK 
was upstream Acetyl-CoA carboxylase (ACC), and it was hence 
observed that the injection of a constitutively active AMPK virus 
in the ARC was able to recover the decrease of ACC caused by cen-
tral GCG and attenuated the anorectic effects of GCG. Consistent 
with above findings as well as the co-localization of the GCGR 
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in AgRP neurons of the ARC (95), a significant reduction in the 
expression of AgRP was observed after central GCG injection. 
Diet-induced obesity abolished the anorectic effects of GCG but 
it was restored by molecular inhibition of CaMKKβ in the ARC 
via adenoviruses encoding dominant negative CaMKKβ. Central 
GCG, therefore, exerted its acute anorectic effects through PKA/
AMPK/CaMKKβ-dependent pathways in the ARC and CaMKKβ 
mediated its obesity-induced hypothalamic resistance (119). 
Taken together, even though several aspects of the central GCG’s 
role in controlling feeding behavior have been discussed above 
and also by other studies, further research is still required to get 
better understanding and shed light on the beneficial effects by 
coordination of central GCG with other hormones such as insulin 
and GLP-1.

GLUCAGON-LiKe PePTiDe-1

Processed from the preproglucagon (PPG), GLP-1 is a 30-amino 
acid peptide hormone secreted from the L-cells of the intestinal 
epithelium in response to nutrient intake (120) and acts as an 
incretin along with GIP stimulating glucose-dependent insu-
linotropic action primarily (121, 122). As the most explored 
hormone for its role in feeding behavior among the SCT family 
of peptides, a plethora of research has brought clarity and under-
standing on the peripheral and central effects of endogenous 
and exogenous GLP-1 on food intake and glycemic control as 
reviewed in several reports (123–126). Acting with GLP-1 recep-
tors (GLP-1Rs), GLP-1 altered food intake behavior through 
various neural substrates, including hypothalamus (ARC, PVN, 
and LH), hindbrain nuclei [parabrachial nucleus (PBN), area 
postrema (AP), medial NTS (mNTS)], ventral hippocampus 
(vHP), and nuclei embedded within the mesolimbic reward 
circuitry (VTA and NAc). Within these areas, the diverse neural 
circuitry involved in feeding control by GLP-1 has been recently 
reviewed in detail (127). Following nutrient intake and entry 
into the gastrointestinal tract, peripheral GLP-1, endogenously 
released from the L-cells, acted in a paracrine manner on the 
GLP-1R that was expressed on dendritic terminals of the celiac 
and gastric branches of the vagal afferents which innervated the 
intestine to exert its satiation effect. This vagal activation via 
vagal-to-NTS glutamatergic signaling relayed signals to nodose 
ganglion for activating the NTS neurons in the brain (128). 
On GLP-1 stimulation, GLP-1R on the intestinal vagal afferents 
also stimulated pancreatic insulin secretion via vago-vagal reflex 
(128, 129). Indeed, it was possible that peripheral GLP-1 through 
a vagal afferent-independent pathway crossed the BBB to directly 
activate the central GLP-1R of NTS. But a recent finding that after 
subdiaphragmatic vagal deafferentation, i.p. injection of GLP-1 
did not affect the size of the first meal suggested otherwise (130). 
Although there was a question about whether peripheral GLP-1 
was able to act directly in the brain, in the case of peripheral 
injections of long-acting GLP-1 analogs like liraglutide and 
exendin-4 (Ex-4), it was quite clear that they brought about 
reductions in food intake, at least partly by crossing the BBB 
and directly acting on the brain regions (131–133).

Central GLP-1 was a potent modulator of blood glucose uti-
lization along with an anorectic effect (134). GLP-1 was found 

to be produced endogenously in the caudal nucleus of NTS 
and in the ventrolateral medulla while GLP-1R expression was 
found in the PVN, ARC, and DMH of hypothalamus as well as 
in the NTS, AP, and PBN of brainstem (135) revealing the func-
tional sites of GLP-1. In the hypothalamus, i.c.v.-GLP-1 induced 
c-Fos expression in the PVN (134), while intra-PVN GLP-1 
produced satiety (136, 137). PVN GLP-1R activation caused 
anorexia (138) and selective blockade of PVN GLP-1R resulted 
in hyperphagia and weight gain (139). GLP-1 (and/or GLP-1 
analogs) primarily activated CRH and nesfatin-1 neurons (and 
to a lesser extent OXT neurons) in the PVN (139). Additionally, 
HPA axis and catecholamine release was stimulated by central 
GLP-1 and GLP-1R in the PVN (140). Although it has been 
reported that central GLP-1 induced an acute dose-dependent 
anorectic effect and this effect was abolished after the damage 
of ARC (141), there were inconsistent findings supporting 
and negating the anorectic actions of GLP-1 injected into the 
ARC (142). Thus, it warrants further research to clarify the 
discrepancy. Intra-LHGLP-1 induced hypophagia that was 
short latency and short lasting, while liraglutide reduced food 
intake for 24 h after its injection into LH (143). Local injections 
of GLP-1 into the VMH or the DMH also resulted in short 
latency, short-lasting (1–2  h) hypophagia while there was no 
effect for liraglutide in these areas (144). In spite of multiple 
action sites of GLP-1 in the hypothalamus, which indicated its 
indispensable role in regulating appetite via neuroendocrine 
pathways, some negative side effects of centrally administrated 
GLP-1 could not be easily ignored. For example, i.c.v. GLP-1 
induced CTA effect (145) and central GLP-1R participated in 
LiCl-induced CTA effect as GLP-1R antagonist abolished the 
response. Bilateral lesions of CeA reversed the aversive behavior 
but not anorectic effect while bilateral lesions in the PVN was 
vice versa indicating that PVN was important for inhibition of 
food intake and CeA for aversive effect of GLP-1 (137, 146). 
However, it is still in need of more research to increase the 
knowledge of regional-specific effects of GLP-1 and expand the 
positive effect on clinical applications.

Caudal brain stem processing has been found to be sufficient 
for carrying out the various effects of peripheral and hindbrain 
GLP-1R activation (147). While all three nuclei of the DVC of the 
hindbrain (NTS, AP, DMV) expressed the GLP-1R, it was NTS 
GLP-1R expressing cells that were physiologically and pharma-
cologically more significant in modulating food intake behavior 
(127). It was unclear if NTS-PPG neurons expressed GLP-1R, 
while there was a report showing that they did not respond to 
GLP-1R ligands (148). Hindbrain GLP-1R activation has been 
found to suppress food intake via PKA-mediated suppression of 
AMPK activity and simultaneous activation of p44/42 MAPK in 
NTS neurons (149). In the same report, Ex-4, a GLP-1R agonist, 
activation of the same signaling cascades in GT1-7 neuronal 
cells and in NTS lysates supports the view that these pathways 
occur in GLP-1R-expressing neurons. As the mechanisms 
underlying the anorectic function of NTS GLP-1R activation 
are being studied, there were complimentary reports suggesting 
that intra-mNTSGLP-1 analogs mediated nausea responses and 
hence the anorexic effect was induced at least in part by reducing 
motivation to feed or by eliciting pica response and illness like 
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behavior (150). GLP-1 producing neurons in the NTS projected 
to lateral and medial PBN in rodents (151, 152) and consistently, 
GLP-1Rs have been found to be expressed in the lateral PBN 
(lPBN) (153). Activation of GLP-1R by microinjection of Ex-4, 
in lPBN resulted in reduced food intake and body weight along 
with reduced ingestion of palatable food and motivation to work 
for it (152, 154). Taken all together, these studies have provided 
another aspect of appetite control by GLP-1through brainstem 
pathways.

Glucagon-like peptide-1 neurons in the hindbrain projected 
directly to the NAc and VTA of the mesolimbic reward system 
(155), and both these areas expressed GLP-1R (153). GLP-1R 
activation in these nuclei led to reduction in reward-motivated 
behaviors for palatable food (156), alcohol (157), and cocaine 
(158). Injection of Ex-4 into the VTA or into the NAc core or shell 
reduced body weight, intake of regular chow, and intake of high-
fat diet while not inducing pica response or CTA (155, 156, 159). 
Furthermore, injection of GLP-1R antagonist into mesolimbic 
nuclei increased the intake of regular chow, high-fat diet, liquid 
sucrose meal, and alcohol suggesting a role of endogenous GLP-1 
in these nuclei (152, 157, 159). Interestingly, blockade of GLP-1Rs 
in the NAc-core increased high-fat diet intake, whereas blockade 
of shell GLP-1Rs did not show the effect (152), indicating a differ-
ence in actions of endogenous GLP-1 in the core and shell of NAc. 
Furthermore, it has been recently found that GLP-1R activation 
in NAc core suppresses food intake by increasing glutamatergic 
AMPA/Kainate signaling (160). Ex vivo electrophysiological 
studies revealed that GLP-1R activation in NAc core activates 
GABAergic medium spiny neurons predominantly by a presynap-
tic, AMPA/kainate-mediated glutamatergic mechanism and does 
not involve dopamine signaling. Consistently, in vivo intra-NAc 
core GLP-1R activation-induced food intake suppression and 
body weight reduction were attenuated by blockade of AMPA/
Kainate receptors but not NMDA receptors (160).

Recently, central GLP-1 has been found to increase 
dopamine signaling in amygdala (161). Central activation of 
GLP-1R increased tyrosine hydroxylase, rate limiting enzyme 
for dopamine synthesis in the VTA (161, 162), which might 
contribute to increase in somatodendritic release of dopamine 
in the VTA (163). VTA dopaminergic neurons also projected to 
the amygdala where central Ex-4 acutely upregulated dopamine 
turnover and amygdale-dopamine receptor activation-induced 
satiety (161). Hence, novel VTA-amygdala dopamine circuit 
is being proposed as one of the underlying circuits involved in 
the anorectic effect of GLP-1 (161). In addition, a recent study 
has revealed that GLP-1R activation in vHP robustly reduced 
feeding, high-fat palatable food in particular while antagonizing 
GLP-1R in vHP region increased feeding (164), suggesting vHP 
as another target of GLP-1 controlling appetite. Surprisingly, 
the knockdown of GLP-1R did not alter the food intake in mice 
(165) and consistently body weight gain induced by high-fat 
feeding was also unaltered in GLP-1R knockout mice (166). 
These indicated that there were other compensatory factors 
that could make a good combination with GLP-1. Indeed for 
instance, GLP-1 has been identified to be one of the downstream 
mediators of leptin and leptin has been suggested to enhance the 
central GLP-1 activity (167).

The use of Ex-4 and liraglutide, two GLP-1R agonists, for 
treatment of diabetes produced small yet significant reductions 
in body weight (168–171). GLP-1 also induced weight loss after 
bariatric surgery (172). Dual agonism of GLP-1R/GCGR (173) 
and very recently triagonism with GLP-1R/GIPR/GCGR (174) 
have been found to have potent effects to reverse obesity in 
rodents. A GLP-1R agonist has also been found to have thera-
peutic effects on alcohol use disorders in mice (175). With these 
increasing therapeutic advantages, the hunt for GLP-1R agonists 
and combinatorial integrative effect of GLP-1 with other hor-
mones is increasing to obtain maximum efficiency in therapeutic 
treatments.

GROwTH HORMONe–ReLeASiNG 
HORMONe

Named after its stimulating effect of pituitary growth hormone, 
GHRH or growth hormone-releasing factor is a 44-amino 
acid hypothalamic peptide (176–179). Predominantly in the 
hypothalamic region, GHRH containing cell bodies are located 
primarily in the ARC along with the DMH and VMH (180, 181). 
It has been shown that i.p. injection of GHRH failed to alter food 
intake in rodents (182) while peripheral injection of chicken 
GHRH inhibited feeding behavior in chicks (183), suggesting the 
complexity of the peripheral GHRH in feeding regulation. The 
i.c.v. injection of GHRH stimulated food intake at doses that did 
not stimulate GH release (182, 184) while the i.c.v. injection of 
GHRH suppressed feeding behavior in rats at a higher dose (185), 
suggesting that not only peripheral and central GHRH could have 
different effects on appetite control but different doses of GHRH 
might also cause different feeding behavior.

As we reviewed before (28), the cell bodies of ARC-GHRH 
neurons had varied projection sites with their nerve terminals 
being at perifornical region, lateral preoptic area and SCN/
medialpreoptic area (SCN/MPOA) (186) and mapping stud-
ies have identified SCN/MPOA as the central site of action for 
GHRH to induce orexigenic effects (184, 187). Orexigenic effect 
of GHRH has been found to be photoperiod sensitive which was 
consistent with the role of SCN/MPOA in controlling circadian 
rhythms (188). The i.c.v.-GHRH stimulated a dose-dependent 
increase and suppression of feeding during the light and dark 
phases of photocycle, respectively, in rats (189), and intra-SCN/
MPOA-injected GHRH antiserum reduced dark onset feed-
ing (190) with selective suppression of protein intake (191). 
Collectively, these reports suggested a role of endogenous GHRH 
in the regulation of circadian feeding rhythm. GHRH action was 
found to stimulate protein intake with no effects on carbohydrate 
intake (192). The observation that intra-ARC injected morphine 
stimulated protein intake was reversed by intra-SCN/MPOA 
pretreatments with GHRH antiserum (193), further confirming 
the significant role of GHRH in the regulation of protein intake. 
Additionally, Intra-PVN injection of opiate antagonist inhibited 
the effect of i.c.v.- (194) and SCN/MPOA-injected GHRH (192) 
suggesting a role of opiates in GHRH-induced feeding behavior. 
Transcriptional profiling of hypothalamic glucose-sensing neu-
rons along with electrophysiological studies has revealed that 
hypoglycemia activated GHRH neurons (195). The electrical 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


TABLe 1 | Secretin (SCT), pituitary adenylate cyclase-activating peptide (PACAP), and glucagon (GCG) family of peptides in neural regulation of appetite.

Peptide Primary physiological 
function

effect on 
feeding 
behavior

Central site of action Central mode of action

SCT Stimulates bicarbonate 
release from pancreas 
and water homeostasis 
regulation

Anorectic • Hypothalamus: ARC and 
PVN

• Brainstem: NTS
• Amygdala: CeA

• Activates oxytoxinergic pathway from the dpPVN to the NTS
• Stimulates POMC neurons in ARC
• Activates melanocortin system in PVN
• Modulates spontaneous firing of CeA neurons

PACAP Strong modulator 
of hypothalamic 
magnocellular neurons

Anorectic • Hypothalamus: 
ARC, PVN, NAc 
and ventromedial 
hypothalamus (VMH)

• Stimulates POMC neurons of ARC and activates melanocortin system 
through MC4R in PVN

• Increases ARC-POMC expression by intra-VMH administration and 
acts through glutamatergic signaling via NMDA receptors in VMH

• Acts through excitatory PACAPergic afferents originating within the 
PVN to AgRP/NPY neurons of ARC activating NPY neurons (possibly 
orexigenic effect)

• In NAc, mimics actions of GABA and reduces hedonic but not 
homeostatic feeding

• In VMH, mimics AMPA and reduces homeostatic but not hedonic 
feeding

Vasoactive intestinal 
peptide

Vasodilation and 
hypotesion

Not clear • Hypothalamus: PVN and 
SCN

• Stimulates HPA axis and melanocortin system

GCG Induces glucose release Anorectic • Hypothalamus: ARC, LH
• Brainstem: DVC

• Acts through GCGR-dependent PKA–Erk1/2–KATPsignaling cascade 
in DVC

• Stimulates HPA axis
• Acts through PKA/AMPK/CaMKKβ-dependent pathways and reduces 

AgRP in ARC

GCG-like peptide-1 
(GLP-1)

Incretin Anorectic • Hypothalamus: PVN, 
ARC, LH, DMH, and VMH

• Brainstem: mainly NTS, 
lPBN as well as AP, DMV

• Mesolimbic reward 
system: VTA and NAc

• Amygdala: CeA
• Hippocampus: vHP

• Activates NTS via vagal to NTS glutamatergic signaling
• Stimulates HPA axis in PVN
• Causes CTA in CeA
• Reduces motivation to feed or elicits pica response in NTS
• Acts through NTS to lPBN circuit to activate lPBN leading to reduced 

ingestion of palatable food and motivation to work for it in lPBN
• Reduces reward-motivated intake of palatable food, alcohol and 

cocaine in VTA and NAc (no pica response or CTA)
• Acts in NAc core neurons through GLP-1R activation via presynaptic, 

AMPA/kainate-mediated glutamatergic mechanism
• Acts through VTA to amygdala dopamine circuit
• Reduces feeding and high-fat palatable food in vHP

GCG-like peptide-2 
(GLP-2)

Intestinal function Anorectic • Hypothalamus: ARC • Stimulates POMC and activates melanocortin pathway

Growth hormone–
releasing hormone

Growth hormone release Orexigenic • Hypothalamus: ARC, 
DMH, SCN/MPOA

• Participates SCN/MPOA mediated circadian feeding stimulation
• Stimulates protein intake
• Induces opiate-involved feeding behavior

Peptide histidine 
isoleucine

Prolactin regulation Anorectic • Hypothalamus: PVN
• Amygdala: CeA

• Acts through oxytocin/vasopressin system in PVN and activates PVN 
OT neurons by intra-CeA infusion

ARC, arcuate nucleus; PVN, paraventricular nucleus; NTS, nucleus tractus solitarius; CeA, central amygdala; POMC, pro-opiomelanocortin; dpPVN, dorsal division of the 
parvocellular PVN; VMH, ventromedial hypothalamus; MC4R, melanocortin-4 receptor; AgRP, agouti gene-related protein; NPY, neuropeptide Y; SCN, suprachiasmatic nucleus; HPA 
axis, hypothalamic–pituitary–adrenal axis; LH, lateral hypothalamus; DVC, dorsal vagal complex; AMPK, AMP-activated protein kinase; CaMKKβ, Ca2+-calmodulin-dependent protein 
kinase kinase β; DMH, dorsomedial hypothalamus; lPBN, lateral parabrachial nucleus; AP, area postrema; DMV, dorsal motor nucleus of the vagus; VTA, ventral tegmental area; NAc, 
nucleus accumbens; vHP, ventral hippocampus; CTA, conditioned taste aversion; MPOA, medialpreoptic area.
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patterns that controlled the hypothalamic GHRH neurons have 
remained elusive while recently somatostatin has been found 
to bring about irregular suppression of the neuronal activity of 
GHRH neurons (196). In summary, it is the important role in GH 
secretion along with its involvement in nutritional and circadian 
feeding behavior that has made GHRH vital in integration and 
coordination of diverse aspects related to metabolism, growth 
and nutrient regulation (190, 197).

OTHeR PePTiDeS

Other peptides from SCT family also shared a certain degree 
of functional similarities on the feeding behavior. Derived from 
the PPG, GLP-2 was known to have anorectic effect (198, 199). 
Central but not peripheral injection of GLP-2 reduced food 
intake and stimulated c-Fos expression in the ARC, PVN, DMH, 
VMH, and LH (200). The anorectic effect by central GLP-2R 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


8

Sekar et al. Secretin Family Peptides Regulate Feeding

Frontiers in Endocrinology | www.frontiersin.org February 2017 | Volume 8 | Article 18

ReFeReNCeS

1. Cardoso JC, Vieira FA, Gomes AS, Power DM. The serendipitous origin of 
chordate secretin peptide family members. BMC Evol Biol (2010) 10(1):135. 
doi:10.1186/1471-2148-10-135 

2. Lee VHY, Lee LTO, Chu JYS, Lam IPY, Siu FKY, Vaudry H, et  al. An 
indispensable role of secretin in mediating the osmoregulatory functions 
of angiotensin II. FASEB J (2010) 24(12):5024–32. doi:10.1096/fj.10-165399 

3. Laburthe M, Couvineau A, Gaudin P, Maoret JJ, Rouyer-Fessard C, Nicole 
P. Receptors for VIP, PACAP, secretin, GRF, glucagon, GLP-1, and other 
members of their new family of g protein-linked receptors: structure-func-
tion relationship with special reference to the human VIP-1 receptora. 

Ann N Y Acad Sci (1996) 805(1):94–109. doi:10.1111/j.1749-6632.1996. 
tb17476.x 

4. Harmar AJ. Family-B G-protein-coupled receptors. Genome Biol (2001) 
2(12):3011–3. doi:10.1186/gb-2001-2-12-reviews3013 

5. Archbold JK, Flanagan JU, Watkins HA, Gingell JJ, Hay DL. Structural 
insights into RAMP modification of secretin family G protein-coupled 
receptors: implications for drug development. Trends Pharmacol Sci (2011) 
32(10):591–600. doi:10.1016/j.tips.2011.05.007 

6. Furness SGB, Wootten D, Christopoulos A, Sexton PM. Consequences 
of splice variation on secretin family G protein-coupled receptor func-
tion. Br J Pharmacol (2012) 166(1):98–109. doi:10.1111/j.1476-5381.2011. 
01571.x 

activation was reversed in MC4R knockout mice suggesting 
the involvement of melanocortin system and specific deletion 
of GLP-2R in the ARC POMC neurons resulted in increased 
intake (199).

Unlike its incretin counterpart GLP-1, GIP alleviated obesity 
through increased energy expenditure but did not affect food 
intake (201–203). However, recent evidences have shown the 
modulation of hypothalamic gene expression by i.c.v.-GIP (204). 
The i.c.v. administration and intra-PVN or -CeA injection of 
PHI decreased food consumption in overnight-deprived rats 
(205). These peptides’ roles in appetite regulation has not been 
well understood, hence further research is warranted for clarity 
in understanding the role of these peptides in neuromodulation 
of feeding behavior.

CONCLUSiON

This review has focused on central roles of the SCT, PACAP 
and GCG family of peptides in regulating food intake behavior. 
With members of the family such as GLP-1 exhibiting significant 
therapeutic advantage, SCT family of peptides have been con-
sidered as an important group of hormones in neural appetite 
modulation. With the exception of GHRH which is an orexigenic 
peptide, members of the SCT family of peptides mostly exhibit 
anorectic roles with GLP-1 and PACAP being most-studied 
among all the peptides. Central sites of action, effects on specific 
aspect of feeding behavior control, and the central circuitry 
recruited to carry out these effects vary widely among the SCT 
family of peptides and they have been summarized in Table 1. 
More information on the site-specific endogenous actions of 
these peptides on food intake modulation and the neural path-
ways involved along with the mechanistic insights is still unclear. 
Of the neural circuitry involved, melanocortin system (206), 
stimulated mainly through activation of POMC neurons, is the 
most common neural pathway through which these peptides, at 
least partially, exert their anorectic effect. Yet, the combinato-
rial effect of these peptides, along with the mechanisms and 
the neural pathways involved in such a scenario, is important 
to understand if they have synergistic additive effects on food 
intake reduction. Importance of this research is clearly evident 
as a novel monomeric peptide triagonist acting on GLP-1, GIP, 
and GCG receptors (174) has been found to be the most effective 
among existing pharmacological agonists/strategies in reversing 
obesity in mice (207, 208).

Recent research on the neurobiology of food intake behavior 
has taken a leap with the advances in neuro-technology for 
mapping, manipulating, and monitoring molecularly defined 
cell types that are exponentially expanding our understanding 
into appetite modulating neural circuits (209). Although there 
is a huge gap between our current knowledge of the SCT family 
peptides and valuable clinical implications of these peptides for 
disease treatment, significance on the clinical applications of these 
peptides has already been evident by the significant therapeutic 
advantage by GLP-1R agonists in human (210, 211). In over-
weight or obese individuals, GLP-1R agonists have been shown to 
produce clinically relevant reductions in weight, body mass index, 
and waist circumference (212, 213). Liraglutide 3.0 mg day−1 has 
been approved for weight management in the US on December 
23, 2014 (214), and in the EU on March 23, 2015 (215). Novel 
combinatorial hormone therapies are being researched at the 
pre-clinical stage for obesity treatment (216), wherein the novel 
unimolecular GLP-1R/GIPR/GCGR triagonist at a very low dose 
of 2 nmol/kg decreases cumulative food intake and reduces the 
body weight of HFD-mice by 18.3% and is more effective than 
any other available therapy (174). While the application prospect 
of SCT family peptides is exciting, some aversive consequences 
brought by injection of these peptides should not be easily 
ignored. Further regional and functional specific research as well 
as the understanding on combinational effects of SCT family pep-
tides needs to be greatly enhanced. Future studies with the new 
tools that give neurobiologists opportunity to rigorously examine 
neural circuits in modulating feeding behavior should provide 
insights and novel therapeutic approaches to combat pathophysi-
ological conditions related to appetite disorders and obesity.
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