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Neuronal survival and growth in the embryo is controlled partly by trophic factors. For 
most trophic factors (such as Insulin-like growth factor-1), the ability to regulate cell 
survival has been attributed to the phosphoinositide 3-kinase (PI3K)/Akt kinase cascade. 
This study presents data illustrating the role of PI3K/Akt in attainment of normal brain 
size during zebrafish embryogenesis. Blocking PI3K with inhibitor LY294002 caused a 
significant reduction in brain size (in addition to global growth retardation) during zebrafish 
embryogenesis. This PI3 Kinase inhibition-induced brain size decrease was recovered 
by the overexpression of myristoylated Akt (myr-Akt), a constitutive form of Akt. Further 
analysis reveals that expressing exogenous myr-Akt significantly augmented brain size. 
Whole mount in situ hybridization analysis of several marker genes showed that myr-Akt 
overexpression did not alter brain patterning. Furthermore, the expression of myr-Akt 
was found to protect neuronal cells from apoptosis induced by heat shock and UV light, 
suggesting that inhibition of neuronal cell death may be part of the underlying cause of 
the increased brain size. These data provide a foundation for addressing the role of PI3K/
Akt in brain growth during zebrafish embryogenesis.
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inTrODUcTiOn

Neural cell survival and death are precisely controlled in animal early developmental stage (1). During 
nervous system development, approximately half of all neurons are eliminated by apoptosis. Besides 
sculpting the developing brain, neuronal apoptosis has a critical role in many neurological diseases, 
such as Alzheimer’s, Parkinson’s, and Huntington’s disease (2). Neuronal death can be regulated and 
suppressed by a variety of growth factors. For example, normal brain growth requires insulin-like 
growth factor 1 (IGF1), and IGF1 deficiency decreases brain size by reducing both cell number and 
cell size (3–5). Additionally, targeted deletion of IRS2, the major downstream IGF1 receptor, also 
produced a pronounced brain growth deficiency in mice, in which the reduction became apparent 
during embryonic (E15.5) development (6). Furthermore, overexpressing IGF1 led to an increase 
in mice brain mass (7).

In the past decade, the ability of growth factors to promote neuronal survival has been attributed, 
at least in part, to the phosphoinositide 3-kinase (PI3K)/Akt pathway (8, 9). PI3K stimulates the 
activation of Akt/protein kinase B (Akt/PKB), and this activation appears to be one of the most 
important steps for regulating cell survival, cell size, and proliferation (10, 11). In mammals, there 
are three Akt isoforms: Akt1 (PKBα), Akt2 (PKBβ), and Akt3 (PKBγ), which are highly conserved 
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among species. Akt1 deficiency resulted in significant neonatal 
mortality and growth retardation due to a defect in placental 
development (12–14). Akt2−/− mice displayed insulin resistance 
and a type-II diabetes-like syndrome, accompanied with mild 
growth retardation and age-dependent loss of adipose tissue (15). 
Akt3−/− exhibited an approximate 20% reduction in brain size and 
weight in adult mice due to decreases in cell size and number, 
which indicates the importance of Akt3 in brain development 
(16). Furthermore, Akt1/2 and Akt2/3 double knockout mice 
both exhibited more severe defects in development and survival 
than single knockout mice, reinforcing the compensatory actions 
and functional essentiality of Akt proteins during development 
(17, 18).

On the contrary, overexpression studies revealed that Akt1 
provides neuroprotection to human neuronal cells (hNSCs) 
under the conditions of oxidative stress in  vitro and improves 
hNSCs survival and brain function recovery of mouse intrac-
erebral hemorrhage stroke model (19). Research also showed 
that Akt1 function enhanced neuronal cell survival in vitro and 
in vivo (20, 21), whereas Akt2 was found to be able to protect the 
retina from light-stress (22). Together, these studies illustrate an 
important requirement of Akt in the promotion of neuron growth 
and survival, which are also essential for brain growth.

Despite current progresses, the precise functions of Akt in 
early brain embryogenesis are incompletely understood due 
to in  utero development of mouse. In contrast, the zebrafish 
embryo is ectogenesis and transparent at early developmental 
stages, which is an ideal alternative model system for studying 
the embryonic function of genes and proteins. Several distinct 
zebrafish Akt proteins have been identified: zebrafish Akt1, 
Akt2, Akt2-like, Akt3a, and Akt3b (ZFIN: The Zebrafish Model 
Organism Database). Their structures are highly conserved with 
Akt proteins in other vertebrate species, suggesting the similar 
functional roles they might play in zebrafish.

In this study, we set out to analyze functions of PI3K/Akt dur-
ing zebrafish embryogenesis. We observed that inhibiting PI3K 
in zebrafish embryos with LY294002 resulted in decrease of brain 
size significantly. Those phenotypes could be recovered by over-
expressing mouse myristoylated Akt (myr-Akt) via mRNA injec-
tion at early stage of zebrafish embryogenesis. Overexpression 
of myr-Akt alone increased brain size significantly at 24 h post 
fertilization (hpf) while having no effects on brain patterning. 
Last, we showed that constitutive activation of Akt protected 
developing zebrafish neuronal cells from apoptosis induced by 
heatshock and UV exposure. These results provide a foundation 
for future work addressing the embryonic functions of Akt in the 
zebrafish.

MaTerials anD MeThODs

experimental animals
Adult wild-type zebrafish (Danio rerio) were maintained at 28°C 
on a 14  h:10  h (light:dark) cycle, and fed twice daily. Embryos 
were generated from natural crosses. Fertilized eggs were raised in 
embryo medium at 28.5°C and staged according to Kimmel et al. 
(23). This study was carried out in accordance with the recommen-
dations of the Animal Research and Ethics Committee of Ocean 

University of China. The protocol was approved by the Animal 
Research and Ethics Committee of Ocean University of China.

All chemicals and reagents were purchased from Fisher 
Scientific (Pittsburgh, PA, USA), unless otherwise noted. 
Restriction endonucleases were purchased from New England 
BioLabs (Beverly, MA, USA). The anti-Akt and anti-Phospho-
Akt antibodies (Ser473) and the anti-p70s6 kinase and anti-
Phospho-p70s6 kinase (Ser411) antibodies were purchased from 
Cell Signaling (Danvers, MA, USA).

synthesis and Microinjection of mrna
Capped mRNA synthesis was carried out using a commercial 
kit using mouse myr-Akt1 and GFP-linearized plasmid DNA 
(linearized with NotI digests) as template (Megascript kit; 
Ambion Inc., Austin, TX, USA). mRNA were injected into 1–2 
cell embryos as previously reported (24). As a control, we injected 
mRNA encoding GFP at a concentration of 200 pg per embryo. 
After injection, embryos were placed in embryo rearing medium 
(5  mM NaCl, 0.17  mM KCl, 0.33  mM CaCl2, and 0.33  mM 
MgSO4) and kept at 28.5°C.

In Situ hybridization analysis
Whole mount in  situ hybridization using digoxigenin-labeled 
RNA riboprobes was carried out as reported previously (25).

TUnel assays
Embryos were injected with 200 pg of either GFP mRNA (con-
trol) or mouse myr-Akt1 mRNA. At 20 hpf, 50 embryos in each 
treatment group were subjected to either heatshock (10  min 
incubation in a dry-air 37°C incubator in 50 ml of embryo rear-
ing solution) or UV light treatment (60  s in a UV cross linker 
set at 100 mJ/cm2 in 5 ml of embryo rearing solution). Embryos 
were then transferred to non-treated embryo rearing solution 
and allowed to incubate for 8 h, at which they were fixed in 4% 
paraformaldehyde for later analysis.

Embryo embedding, freezing, and sectioning protocols were 
performed according to Brunet et al. (26). Sections (10 µm) were 
collected and air dried at room temperature for 2 h before stain-
ing or storage at −20°C. For TUNEL assays, sections were stained 
using the In Situ Cell Death Detection Kit, TMR Red, according 
to the manufacturer’s instructions (Roche, Nutlet, NJ, USA). 
Nuclei were counterstained with 50 nM Sytox (Molecular Probes, 
Carlsbad, CA, USA). Images of TUNEL and Sytox staining were 
captured separately and then merged using Adobe Photoshop. 
Quantification of TUNEL-positive cells and total cell number 
(Sytox) was done using the particle analysis function of ImageJ. 
All thresholds were set and used for the analysis of every image. A 
total of six images for TUNEL and Sytox staining were quantified 
per treatment group.

Drug Treatment
The PI3K inhibitor, LY294002, was dissolved in dimethyl sulfox-
ide (Amresco, Solon, OH, USA) as a 50 mM stock solution and 
then added to embryo rearing medium; the final concentration 
of LY294002 was 8, 16, or 32 µM according to different experi-
ments. For treatment of PI3K inhibitor, embryos at 10 hpf were 
transferred into embryo rearing medium containing different 
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FigUre 1 | inhibition of phosphoinositide 3-kinase leads to decrease of brain size significantly over growth retardation. (a) Representative Western 
immunoblots using antibodies for phosphorylated and total Akt on embryos treated with 8 μM, 16 μM, or without LY294002. Note the increase in total levels of Akt 
and gradually decreased phosphorylated Akt in LY294002 treated embryos compared to controls. Similar results were obtained in three other treatment 
experiments. (B) Morphology of 24 hpf embryos of wild type and treated with 8 µM, 16 µM LY294002. The top panel, scale bar = 500 μm; the bottom panel shows 
a close-up of the head region, scale bar = 200 μm. (c) Brain thickness and (D) relative heights of embryos from control group and embryos treated with 8 µM, 
16 µM LY294002. Results are from three independent microinjection experiments, each with 30 embryos per group. P < 0.05 compared with the control group.
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concentrations of LY294002, and then washed out and dechori-
onated at 24 hpf for inspection.

acridine Orange staining
Dechorionate embryos and place in 5  µg/ml acridine orange 
(Sigma, USA) in embryo rearing medium. After 30 min of staining, 
wash the embryos twice with embryo rearing medium and view 
using fluorescence microscope with green filter. Quantification 
of apoptosis cells was done using the particle analysis function of 
ImageJ 1.41 (NIH, USA). All thresholds were set and used for the 
analysis of every image.

Western immunoblots
Twenty-five embryos from each treatment group were dechorion-
ated, deyolked, and homogenized in 25 µl of RIPA buffer (50 mM 
Tris–HCl, 150 mM NaCl, 2 mM EGTA, 0.1% Triton X-100, pH 
7.5) containing 10 µg/ml aprotinin, 10 μg/ml leupeptin, 10 µg/
ml pepstatin, 100 mM PMSF, and 0.1 M sodium orthovanadate. 
The homogenates were briefly centrifuged to pellet cellular debris 
and the supernatant was retained. Each sample was subjected to 
SDS-PAGE (12.0%) and transferred to Immoblin-P membrane 
(Millipore Corp., Billerica, MA, USA). The total Akt antibody 
and the phospho-Akt antibody (Ser473) were used at a 1:1,000 
and 1:2,000 dilutions, respectively.

Brain Measurements
Brain sizes were determined at 24 hpf by measuring the linear 
distance from the forebrain to the mid–hindbrain boundary, 

bisecting the lens (called the horizontal brain length, H), and by 
measuring the linear distance from the yolk sac to the top of the 
brain, bisecting the lens (called the vertical brain height, V). Each 
value was then placed over embryo length, which is the curvilin-
ear distance from the forebrain and midbrain boundary to the 
tail (L) unless otherwise noted. This calculation is called relative 
brain height (H/L) and relative brain length (V/L) and was deter-
mined with the ImageJ 1.41 (NIH, USA) for each embryo from 
pictures. Each line was then measured using a scale taken at the 
same magnification.

statistics
Data are presented as means  ±  SE. Differences among groups 
were analyzed by One-Way ANOVA followed by Fisher Post hoc 
Test or t-test (SPSS Inc., Chicago, IL, USA). Significance was 
accepted at P < 0.05.

resUlTs

inhibition of Pi3 Kinase leads to  
Decrease of Brain size
Akt phosphorylation levels at 24 hpf were obviously attenuated in 
zebrafish embryos treated with LY294002, while total Akt levels 
remained unchanged (Figure  1A). Meanwhile, embryos with 
8 or 16 µM LY294002 treatment at 24 hpf displayed an overall 
reduction of body length and an uncharacteristic cloudiness 
or opacity in the head region (Figure 1B). However, the trunk 
region appeared to be relatively normal. We also observed other 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


FigUre 2 | Overexpression of myr-akt increases levels of 
phosphorylated akt and p70s6 kinase. (a) Representative Western 
immunoblots using antibodies for phosphorylated and total Akt on embryos 
injected with IGF1R MOs, dnIGF1R:GFP mRNA, myr-Akt mRNA, or control 
mRNA (encoding GFP). (B) Western blot analysis of the embryos same as (a) 
using p70s6 kinase antibody. Note the increase in phosphorylated Akt and 
p70s6 kinase in myr-Akt mRNA-injected embryos compared to controls, and 
to embryos with reduced IGF1R-mediated signaling (IGF1R MOs and 
dnIGF1R: GFP). Total levels of Akt and p70s6 kinase protein are not 
significantly different among the treatment groups. Similar results were 
obtained in two other microinjection experiments.
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phenotypes commonly associated with PI3K-treated embryos, 
such as hypoplasia of the yolk sac extension, and delayed pigmen-
tation. On close-up examination of those embryos, we determined 
significant reduction of brain thickness (linear distance form yolk 
sac to top of head, bisecting the lens) as that found in IGF1R 
knockdown research (Figure 1C); and the relative brain thickness 
(expressing brain thickness over whole embryo length, which is 
the linear distance from inner forehead to tail) also displayed an 
obvious trend of decrease (Figure 1D). It elucidated that the brain 
exhibited more severe size reduction over the whole retardation 
of growth.

Overexpression of myr-akt increase the 
levels of Phosphorylated akt and p70s6 
Kinase in Zebrafish embryos
An additional myristoylation sequence to Akt has been previ-
ously shown to be able to localize Akt to the plasma membrane 
where it can be more readily phosphorylated and rendered 
constitutively active (27–29). In order to test the effects of Akt 
overexpressing on zebrafish embryogenesis, considering the high 
degree of conservation, mRNA encoding mouse myr-Akt1 was 
transcribed in vitro and injected into embryos at the 1–2 cell stage. 
Injection of myr-Akt at concentrations above 200 pg mRNA per 
embryo caused severe and inconsistent morphological deformi-
ties (data not shown). As shown in Figure 2, overexpression of 
myr-Akt induced a significant increase of the levels of Akt and 
phosphorylation of its downstream molecule p70S6, comparing 
to controls and to embryos with reduced IGF1R-mediated signal-
ing (IGF1R MOs and dnIGF1R: GFP). Therefore, these results 
provide in vivo biochemical verification that injection of myr-Akt 
caused increases in Akt and p70S6 kinase phosphorylation.

Pi3 Kinase inhibition Modulated Brain size 
Decrease Was recovered by myr-akt 
Overexpression
Akt is activated via receptor tyrosine kinases in a PI3K-
dependent manner and phosphorylated on Thr308 and Ser473 
by upstream kinases. We used western immunoblot to analyze the 
phosphorylation levels of Akt in embryos. The results illustrated 
that treating with a series concentration of LY294002 markedly 
reduced phosphorylation of Akt in embryos with 200 pg myr-Akt 
mRNA injection (Figure 3A) via blocking the PI3K function. As 
shown in Figures 3B,C, Akt overexpressing could partially rescue 
phenotypes of PI3K inhibition. Morphological inspection shows 
their brain size were obviously larger than those with LY294002 
treatment. Furthermore, they appeared to be relatively normal 
comparing to wild type and GFP mRNA-injected embryos.

Overexpression of myr-akt increases 
Brain size in Zebrafish embryos
At a concentration of 200 pg per embryo, injection of myr-Akt 
mRNA caused an increase in brain size in zebrafish embryos 
(Figure  4A), evident in ~77% of injected embryos at 24  hpf 
(N = 151 total embryos from three independent microinjection 
experiments). We observed a significant increase in relative brain 

height and length in embryos injected with myr-Akt mRNA 
compared to control mRNA-injected embryos (Figure 4B).

neuronal cell abundance, But not Fate, is 
affected by akt Overexpression through 
apoptosis in the Brain
Since the embryos overexpressing Akt displayed abnormity 
mainly in the brain region during early developmental stage 
(24 hpf), the whole mount in situ hybridization was performed 
to analyze the expression pattern of several marker genes, egr2b 
(third and fifth rhombomeres of the hindbrain), emx1 (forebrain), 
pax2a (optic stalk, mid-hindbrain boundary), and rx1 (retina), 
involved in neural patterning of the brain (Figure 5A, a–d). In 
all cases, there is an increase in the expression domain of these 
genes, consistent with a larger brain size. In contrast, the expres-
sion domain of these genes decreased in embryos treated with 
LY294002 (Figure 5B). However, the localization of those neural 
markers in the embryos overexpressing Akt or treated with PI3K 
inhibitor was the same as that of wild-type embryos, suggesting 
that cell fate was unaffected. Thus, it indicates that overexpression 
of a constitutively active Akt in zebrafish embryos increases brain 
size but does not significantly alter brain patterning.
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FigUre 3 | Phosphoinositide 3-kinase inhibition associated brain size 
decrease was recovered by myr-akt overexpression. (a) Western 
immunoblots using antibody for phosphorylated Akt on embryos of wide-type 
and injected with myr-Akt mRNA treated with 8 µM, 16 µM, or without 
LY294002 or control mRNA (encoding GFP), with total Akt as a loading 
control. (B) Morphology of 24 hpf embryos of wild type and myr-Akt 
mRNA-injected group, treated with 8 µM, 16 µM, or without LY294002. GFP 
mRNA was injected as control mRNA. The first and third panel from the top, 
scale bar = 500 μm; the second and fourth panel displayed a close-up of the 
head region, scale bar = 200 μm. (c) Relative brain height of embryos with 
GFP or myr-Akt injected, treated with 8 µM, 16 µM, or without LY294002. 
Results are from three independent microinjection experiments, each with 25 
embryos per group. P < 0.05 compared with the wide-type control group.

FigUre 4 | Overexpression of myr-akt increases brain size in 
zebrafish embryos. (a) Morphology of zebrafish embryos injected with 
either control mRNA (left panels) or myr-Akt mRNA (right panels). Scale 
bar = 250 μm for top panels, and 100 µm for bottom panels. (B) Relative 
brain size measurements based on horizontal brain height (H) or vertical brain 
length (V), divided by inner ear to tail embryo length (L). Injection of myr-Akt 
significantly increased brain size compared to controls. N = 20 total embryos 
measured from two independent microinjection experiments, 10 embryos per 
group (*P < 0.0001).

5

Chen et al. PI3 Kinase/Akt Regulates Brain Size

Frontiers in Endocrinology | www.frontiersin.org February 2017 | Volume 8 | Article 21

AO-stained cells throughout the brain region. It revealed that 
PI3K inhibition-associated brain-size reduction might be real-
ized via increased cell apoptosis.

constitutively activated akt Protects 
neuronal cell from heatshock and UV 
light-induced apoptosis
Activation of Akt has been shown to be important for protecting 
neurons from apoptosis (18, 30). To test the ability of constitu-
tively active Akt at protecting neuronal cell from apoptosis in vivo 
during zebrafish embryogenesis, we subjected control and myr-
Akt mRNA-injected embryos to heatshock and UV light treat-
ment. After administration of heatshock or UV light exposure at 
20 hpf, embryos were allowed to continue to develop until 28 hpf 
and then fixed and stained for apoptotic cells using TUNEL. 
Compared to untreated control and myr-Akt mRNA-injected 
embryos, heatshock and UV light treatment showed significantly 
higher numbers of TUNEL-positive cells in the brains of control 
mRNA-injected embryos (Figures 6A–D,G). However, injection 
of myr-Akt mRNA significantly attenuated the heatshock and 

Next, we performed acridine orange staining on PI3K 
inhibitor-treated embryos of 24  hpf control and myr-Akt 
mRNA-injected embryos. As shown in Figures  5C,D embryos 
with myr-Akt mRNA injection had obviously lower numbers of 
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UV light-induced apoptosis (*P < 0.05; #P < 0.001, respectively; 
Figures 6E–G). These results indicate that Akt overexpression in 
zebrafish embryos could inhibit neuronal apoptosis in vivo, and 
suggest that apoptotic inhibition may be part of the underlying 
causes of the increased brain size in untreated myr-Akt mRNA-
injected embryos.

DiscUssiOn

Phosphoinositide 3-kinase/Akt signal pathway has been shown 
to be essential for normal animal growth and development. 

Moreover, this pathway is found to be sufficient for trophic factor-
induced neuronal survival and plays a significant role in central 
nervous system development. Trophic factors, such as nerve 
growth factor, IGF1, or brain-derived neurophic factor, lead to 
PI3K activation by binding to their cognate tyrosine kinase recep-
tors (31–34). In our study, we presented data that PI3K inhibition 
led to brain size decrease via regulating apoptosis in the brain 
region, and overexpressing Akt successfully rescued the reduc-
tion of brain size in zebrafish early embryogenesis. Combined 
with the consistent phenotypes of PI3K inhibition in Igf1−/− mice 
(4) and IGF1R loss-of-function in zebrafish (35, 36), these results 

FigUre 5 | neuronal cell abundance, but not fate, is affected by akt overexpression through influencing apoptosis. (a) Representative whole mount 
in situ hybridization images of control mRNA (left panels) or myr-Akt mRNA-injected embryos (right panels) using probes for (a) egr2b (third and fifth rhombomeres of 
the hindbrain), (b) emx1 (forebrain), (c) pax2a (optic stalk, mid-hindbrain boundary), and (d) rx1 (retina). N = 9–13 embryos per group, all with similar expression 
patterns. Scale bar = 100 µm. (B) Whole mount in situ hybridization of embryos treated with or without LY294002 using probes as (a). (c) Acridine orange staining 
of 24 hpf wild-type and myr-Akt mRNA-injected embryos treated without or with 8 µM, 16 µM LY294002. Scale bar = 100 μm. (D) Graphical representation of 
percentages of Median relative brightness of brain region after AO staining in each treatment group. N = 15 images quantified per treatment group. Groups with 
different letters differ significantly from each other (P < 0.05).
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FigUre 6 | constitutively activated akt protect neuronal cell from heatshock and UV light-induced apoptosis. Representative images of cryosectioned 
control mRNA (a–c) or myr-Akt mRNA-injected embryos, (D–F) stained using TUNEL (red) and the nuclear dye, Sytox (green). Images on right side of panels are 
TUNEL only, while left side are overlaid images of TUNEL and Sytox staining. (a,D) Embryos without treatment; (B,e) embryos administered heatshock; (c,F) 
embryos administered UV light. Scale bar = 50 μm. (g) Graphical representation of percentages of TUNEL-positive cells in each treatment group. N = 6 images 
quantified per treatment group (*P < 0.05; #P < 0.001).

illustrate that PI3K/Akt mediate the effects of trophic factors 
on brain development and is also essential for embryonic brain 
development in zebrafish.

We also found a specific increase in brain size in zebrafish 
embryos overexpressing Akt1 mRNA at 24 hpf without displaying 
any ectopic expression. These results are also supported by the 
phenotypes of Akt3 knockout mice, which exhibit an approximate 
20% reduction in brain size (16, 37). Additionally, the following 

studies with brain-specific deletion of PTEN, which is an inhibi-
tor for Akt phosphorylation, demonstrated brain enlargement in 
mice (38, 39). From the available data, we learn that Akt has a 
significant status in brain size regulation.

As we know, activation of Akt via the IGF1R is a particularly 
important survival-promoting signal during vertebrate develop-
ment. The levels of IGF1R expression are directly proportional to 
the degree of apoptosis, with lower expression in cells that appear 
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