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The circadian timing system consists on a distributed network of cellular clocks that 
together coordinate 24-h rhythms of physiology and behavior. Clock function and 
metabolism are tightly coupled, from the cellular to the organismal level. Genetic and 
non-genetic approaches in rodents have been employed to study circadian clock function 
in the living organism. Due to the ubiquitous expression of clock genes and the intricate 
interaction between the circadian system and energy metabolism, genetic approaches 
targeting specific tissue clocks have been used to assess their contribution in systemic 
metabolic processes. However, special requirements regarding specificity and efficiency 
have to be met to allow for valid conclusions from such studies. In this review, we provide 
a brief summary of different approaches developed for dissecting tissue clock function in 
the metabolic context in rodents, compare their strengths and weaknesses, and suggest 
new strategies in assessing tissue clock output and the consequences of circadian clock 
disruption in vivo.
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inTRODUCTiOn

A network of cellular clocks adapts physiology and behavior to a 24-h rhythmic environment. 
Epidemiological evidence suggests a strong association between circadian rhythm disruption—
e.g., in shift workers—and metabolic disorders (1). The development of genetic rodent models has 
been essential in deciphering the mechanisms linking clock dysfunction and the pathogenesis of 
metabolic diseases, highlighting the therapeutic potential of circadian rhythm manipulation in this 
context. Here, we provide a brief overview of the metabolic consequences of circadian disruption 
derived from rodent model studies and discuss potential and pitfalls of emerging genetic techniques 
in studying clock-metabolism crosstalk.

nOn-GeneTiC CiRCADiAn DiSRUPTiOn MODeLS

Early approaches describing the interplay between circadian clock function and metabolism were 
based on models of non-genetic circadian disruption (Table 1). Lesion experiments identified the 
suprachiasmatic nucleus (SCN) as the central circadian pacemaker (2, 3). In rats, SCN lesions abolish 
plasma rhythms of glucose, insulin (4), and leptin (5). In terms of general energy homeostasis, there 
are differences between studies that range from slight weight reductions (6) to no effect (5) and 
marked obesity (7). In the latter study on mice, increased weight is accompanied by hepatic insulin 
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TABLe 1 | Advantages and disadvantages of different clock targeting 
approaches in rodents.

Paradigm Advantages Disadvantages

Non-genetic clock 
disruption

• No gene targeting 
necessary

• No developmental 
effects

• At least partly 
reversible

• Non-specific (except for 
lesioning) and non-targeted 
(very broad intervention)

Classical (global) 
gene targeting

• High recombination 
efficiency

• No spatio-temporal control
• Possible developmental 

effects
• Irreversible and non-tunable

Conventional CRE-
loxP gene targeting

• Relatively high 
recombination 
efficiency

• Relative tissue specificity
• Possible developmental 

effects
• Irreversible and non-tunable

Inducible CRE-loxP 
gene targeting

• Exclude 
developmental 
effects

• Relative tissue specificity
• Irreversible and non-tunable
• Reduced recombination 

efficiency

Chemogenetics • Reversible, 
tunable, and good 
temporal control 
(depending on the 
pharmacokinetics of 
the drug used)

• Drug administration can 
interfere with the experiment

• Poor tissue specificity (unless 
combined with the use of 
CRE-driver mice and/or viral 
transgene delivery)

Optogenetics • Very good tissue 
specificity with 
implantation of 
light sources (when 
combined with the 
use of CRE-driver 
mice and/or viral 
transgene delivery)

• Reversible, tunable, 
and excellent 
temporal resolution

• Phototoxicity for extended 
activation

• Technically demanding and 
only few (mainly CNS) tissues 
are applicable in mammals
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resistance. In sum, these studies illustrate that the SCN regulates 
metabolic hormones and tissue physiology either directly or via 
its control on food intake rhythms.

In an alternative paradigm, exposure to altered light regimens 
leads to disruption of behavioral circadian rhythms and energy 
metabolism. Mice exposed to bright day/dim night illumination 
lose their feeding rhythm along with reduced glucose tolerance 
and increased body weight (8). Constant light (LL)-exposed 
mice develop a higher body weight together with a profound loss 
in insulin sensitivity (7). In rats, LL exposure disrupts pancreatic 
beta cell clocks, correlating with reduced glucose-stimulated 
insulin secretion (9). In type-2 diabetes-prone rats, LL acceler-
ates disease development due to a 50% reduction in beta cell 
mass (10). Most of these studies interpret their findings as a 
consequence of the disruptive effects of abnormal light exposure 
on SCN function. However, light can alter various centrally 
controlled functions such as mood and appetite independent 
of a clock effect (11, 12). Moreover, even though irregular light 
regimens are common for many animals and humans, there are 
only very few occasions where continuous light exposure above 

a certain threshold level may occur, making LL a highly artificial 
paradigm.

Several studies have outlined shift-working as a risk factor for 
the development of metabolic diseases (13), and various animal 
models have been developed to mimic this condition. Mice 
exposed to repeated 6-h advances of the light/dark (LD) cycle 
gain significantly more body weight than stable-LD controls (14). 
Interestingly, when mice are exposed to paradigms mimicking 
even more rapidly rotating weekly shift-work patterns, there 
is no or only a moderate effect on body weight (15). Sleep-
restricting mice during their normal rest phase for 2 weeks leads 
to significant alterations in liver clock gene expression rhythms 
associated impaired pyruvate-stimulated gluconeogenesis, but no 
significant alterations in body weight (16). A similar approach in 
rats further yielded body weight increases and impaired glucose 
tolerance (17).

The mixed metabolic outcomes in the mentioned shift-work 
studies are likely directly related to the ability of the chosen 
paradigms to provoke food intake during the normal rest phase. 
Rest phase-restricted food access in mice promotes weight gain 
without increased energy intake (18). In line with that, while both 
the rapid-shift (15) and our sleep-restriction study in mice (16) 
showed no change in food intake rhythms, the 6-h shift model 
(14) and the rat sleep-restriction study (17) reported misaligned 
food intake. Considering the reciprocal interaction between 
energy intake and clock function, it has been speculated that 
epigenetic programming may be an important mechanism in the 
circadian regulation of energy metabolism—even across genera-
tions [reviewed in Ref. (19, 20)].

MeTABOLiC ALTeRATiOnS in 
COnvenTiOnAL CLOCK Gene 
MUTAnT MiCe

The development of clock gene mutant mouse models has 
provided a substantial tool to understand clock-metabolism 
interaction at the molecular level. Following the identification 
of circadian locomotor output cycles kaput (Clock) (21), further 
mammalian clock genes have been cloned and functionally 
characterized in corresponding mouse mutants (22–25). So far, 
brain and muscle ARNT-like 1 (BMAL1) has been identified 
as the only essential component of the molecular clockwork in 
mammals. Deletion of Bmal1 in mice abolishes behavioral circa-
dian rhythms in constant environmental conditions (25). Gene 
expression profiling experiments show that the rate-limiting 
steps of various metabolic pathways are subject to circadian 
regulation (26). Bmal1 knockout (KO) mice show impaired 
glucose metabolism and insulin hypersensitivity (27, 28). At 
young age, they also gain weight more rapidly than wild-type 
littermates (28). Recently, an inducible global Bmal1 KO mouse 
model has been developed. Unexpectedly, adult-onset Bmal1 
KOs do not suffer from many metabolic abnormalities described 
in the standard Bmal1 KOs (29).

Mice expressing a dominant-negative CLOCK variant 
(CLOCK-Δ19) on a C57BL/6J genetic background display altered 
24-h feeding patterns (30). Clock-Δ19 mice are hyperphagic and 
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show reduced energy expenditure. They also develop hypergly-
cemia, hyperlipidemia, hyperleptinemia, hypoinsulinemia, and 
increase in body weight and visceral adiposity under different 
diet conditions. These phenotypes may be partly explained by a 
reduced lipolytic capacity of white adipose tissue (31). By contrast, 
on an ICR genetic background, the same Clock-Δ19 mutation 
leads to a reduction in body weight and impaired dietary lipid 
absorption, suggesting that the genetic background influences 
clock-metabolism interaction (32).

Inconsistent findings were also reported for the metabolic 
consequences of mutations in another clock gene, Period (Per) 
2. Per2Brdm1 mutant mice (24) show hyperphagy, diet-induced 
obesity (33), hyperinsulinemia with altered insulin sensitivity, 
hypoglycemia, and low fasting hepatic glycogen content (34). By 
contrast, Per2ldc mutants (35) show reduced adiposity, increased 
fatty acid oxidation, and hypotriglyceridemia (36), but are 
normoglycemic with improved clearance after glucose challenge 
(37). Of note, while genetic background may also play a role here, 
residual protein-coding transcripts have been detected in both 
mutants that may yield biologically active peptides (35, 38). Male, 
but not female, Per1/2/3 triple mutants become obese under an 
HFD (39). A Per3 KO alone has even stronger effects on male 
diet-induced weight gain, suggesting a genetic interaction of dif-
ferent Per genes in metabolic regulation (39).

Liver transcriptomic analyses from mice carrying Rev-Erbα 
loss- or gain-of-function alleles have identified it as a circadian 
regulator of cholesterol/lipid and bile acid homeostasis (40). In 
line with this, mice with adult-onset global loss of Rev-Erbα/β 
show deregulated glucose and lipid metabolism (41). Moreover, 
administration of REV-ERB agonists in mice induces body 
weight loss and decreased lipogenesis in liver and white adipose 
tissue, increased lipid and glucose oxidation in skeletal muscle, 
and elevated energy expenditure (42).

Together, these studies provide evidence that the circadian 
clock plays a fundamental role in energy homeostasis and 
that different clock components have specific functions in this 
context. However, because the mice used in these studies carry 
clock gene mutations in all tissues including the SCN, much like 
the non-genetic models discussed above, metabolic phenotypes 
may be confounded by systemic abnormalities such as altered 
sleep patterns, activity and feeding behaviors, or counteractive 
consequences of clock disruption in different tissues.

TiSSUe CLOCK FUnCTiOn in 
MeTABOLiC ReGULATiOn

Several techniques have been developed to study the physiology 
of tissue circadian clocks (Table 1). In vitro experiments allow the 
study of tissue rhythms in the absence of external influences (43). 
However, such approaches have only limited potential for predict-
ing the impact of tissue clock disruption on complex physiologi-
cal processes such as energy metabolism. Transplantations have 
been used to study tissue clock function (44, 45). However, such 
techniques are highly invasive and only applicable for few tissues. 
Instead, conditional CRE-loxP-based gene targeting has been 
widely used for tissue-specific deletion of clock function in vivo 

(in most cases by targeting Bmal1) (46, 47). Here, we highlight 
some studies which have provided important insights into the 
contribution of different tissue clocks to metabolism.

Hepatocyte-specific deletion of Bmal1 (L-Bmal1 KO) improves 
glucose tolerance—the opposite effect of a global Bmal1 KO—
which was attributed to reduced hepatic glucose export during 
the fasting phase via glucose transporter 2 (28). By contrast, mice 
with pancreatic beta cell-specific Bmal1 deletion (P-Bmal1 KOs) 
show hyperglycemia and impaired glucose tolerance (48) due to 
decreased insulin exocytosis (49). Further, while mice with mus-
cle-specific deletion of Bmal1 (M-Bmal1 KO) show no significant 
change in systemic glucose regulation, impaired myocyte glucose 
uptake, and metabolism have been reported (50). Finally—and 
similar to global Bmal1 KOs and Clock-Δ19 mutants—mice with 
adipocyte-specific Bmal1 deletion (A-Bmal1 KOs) become obese 
(ca. 20% body weight) under HFD but not normal chow condi-
tions. This phenotype correlates with misaligned food intake and 
blunted secretion rhythms of appetite-regulating polyunsaturated 
fatty acids from adipocytes (51).

Clock gene rhythms have been reported in central energy 
regulatory circuits (52). So far, few studies have addressed the 
biological function of specific brain clocks. With regard to 
metabolism, deletion of Bmal1 in steroidogenic neurons of the 
ventromedial hypothalamus reduces sympathetic activation of 
thermogenesis in brown adipose tissue (53).

These few examples make clear that tissue-specific dissec-
tion of clock gene function has provided a much more detailed 
picture on how circadian clocks affect energy metabolism 
in  vivo. Nevertheless, conclusions drawn from these experi-
ments are often confounded by intrinsic drawbacks of the 
classical CRE-loxP system which novel genetic tools may help 
to overcome.

LiMiTATiOnS OF CLASSiCAL GeneTiC 
MODeLS in CHROnOBiOLOGY 
ReSeARCH

Poor Specificity of the CRe Driver
In CRE-loxP-based gene targeting, the tissue-specific mutation is 
determined by the transcription dynamics of the CRE-expressing 
promoter. While this may not be such an issue for processes 
confined to specific tissues, for the ubiquitously active circadian 
system, this poses an important limitation: many allegedly tissue-
specific promoters show varying amounts of off-target activity. 
For example, for two of the studies mentioned above, CRE drivers 
with off-target activities have been employed, namely Fabp4-Cre 
for A-Bmal1 and Pdx1-Cre for P-Bmal1 KOs. Critically, their 
expression in several metabolism-regulating circuits in the brain 
has been documented (54). Though the authors of these stud-
ies used different approaches to address this problem (such as 
supplementing in vitro/ex vivo data or repeating key experiments 
with another CRE driver), certain conclusions drawn from the 
in vivo metabolic experiments may still be ambiguous. Similarly, 
in the hypothalamic steroidogenic neuron Bmal1 KO study, the 
Sf1-Cre line used may very likely affect steroidogenic cells in other 
tissues (53).
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Developmental Compensation
Some CRE drivers are developmentally active and clock genes 
are known to be involved in early developmental processes (55). 
Therefore, some phenotypes observed in adult mice might reflect 
changes in developmental programs while others may be masked 
by compensatory responses. A strategy circumventing this issue 
is to employ an inducible version of CRE (T2-CRE), which is acti-
vated only when animals receive tamoxifen (56). This approach 
has been used to globally delete Bmal1 and Rev-erbα/β (29, 41). 
In the M-Bmal1 KO study discussed above, a muscle strength 
phenotype was only observed in mutants with conventional, but 
not inducible CRE deletion (50).

incomplete Recombination
Due to variations in expression levels or epigenetic effects, CRE-
mediated recombination frequently does not occur in all cells of 
the same tissue. This issue is further exaggerated with the T2-CRE 
system. Thus, the lack of certain phenotypes in tissue-specific 
mutants may stem from non-recombined cells sufficient to 
maintain tissue function. In the circadian clock context, this issue 
becomes critical in tissues of strong intercellular coupling such as 
the SCN. Our own approach to target SCN pacemaker function 
using a Syt10-Cre-driver line revealed that only with the highest 
CRE dosage (Syt10Cre/Cre) and on a Bmal1flox/del background, recom-
bination was sufficient to ablate behavioral rhythmicity (57).

The non-Circadian Role of individual 
Clock Genes
Many clock gene mutant studies fail to discern whether a pheno-
type is caused by altered clock rhythmicity or by loss of a specific 
clock component. For example, in the L-Bmal1 KO study, the 
mutation not only abolishes the transcription rhythm of Glut2, 
but also dramatically downregulates its overall expression (28). 
The multifaceted phenotype of Bmal1 KO mice suggests that this 
gene has important functions outside the circadian timekeeping 
system (58). Along this line, the monopolized use of Bmal1 tar-
geting for tissue-specific clock deletion further exacerbates this 
issue since some of the reported phenotypes may be caused by a 
loss of Bmal1 rather than of the clockwork.

eMeRGinG GeneTiC TeCHniQUeS FOR 
CHROnOBiOLOGY ReSeARCH

Some of the emerging novel genetic techniques may help to over-
come the issues discussed above. Below we will highlight some 
methodologies that may help improving our understanding of the 
role of tissue clocks in complex physiological contexts.

improving the Spatio-Temporal Resolution 
of Clock Gene Manipulation
Though pharmacologically inducible CRE systems bypass 
developmental effects, this strategy often compromises the 
recombination efficiency and complicates experimental designs 
(56). Moreover, the manipulation is irreversible, rendering it 
unsuitable for certain biological questions. As an alternative 
approach, chemogenetic manipulations such as tetracycline-based  

(i.e., Tet-ON/OFF) systems achieve anatomical specificity by 
expressing effectors under tissue-specific promoters, the activity 
of which depends on the presence/absence of an otherwise inert 
chemical (59, 60). These systems are reversible and have a very 
flexible space-time window for manipulations. For example, two 
complementary studies have established mouse lines expressing 
Clock-Δ19 and Rev-erbα as clock disruptors in brain and liver, 
respectively, in a tetracycline-dependent manner, to elucidate the 
relative contribution of central and peripheral clocks to physi-
ological rhythms (61, 62). This revealed that circadian expression 
rhythms of most rhythmic transcripts in the liver depend on local 
oscillators whereas 10% of the rhythmic transcripts (including 
Per2) are sustained by systemic signals.

Optogenetic techniques have recently been introduced in 
chronobiology research. Photic stimulation on channelrho-
dopsin-2-expressing SCN neurons results in phase-resetting 
of SCN firing and behavioral rhythms (63). Other optogenetic 
systems allow for photo-switchable control of specific cellular and 
molecular processes (64). Of note, one strategy employs modi-
fied photo-sensitive plant cryptochrome 2 clock proteins from 
Arabidopsis (64), which would allow to directly affect molecular 
clock function by light. In addition to high spatial control (by 
directing light exposure), optogenetics may benefit chronobiol-
ogy research because of their supreme temporal resolution, e.g., 
in phase-resetting experiments.

While standard viral transgene delivery approaches using 
short tissue-specific promoters often fall short to confer sufficient 
specificity (65), this is circumvented by combining virus injec-
tions with CRE-driver mouse lines targeting transgene expres-
sion to specific cells and tissues (66). Viral approaches further 
benefit from high spatio-temporal control through injection 
time/sites and viral capsid serotypes. They, however, often suffer 
from somewhat reduced penetrance and technical variability 
(67). Viruses can be used in conjugation with chemogenetic or 
optogenetic manipulations to interrogate the role of circadian 
clock in metabolic regulation and other physiological systems 
with unprecedented spatio-temporal resolution.

Perspectives for Developing Animal 
Models That Can Dissociate Circadian and 
non-Circadian Functions of Clock Genes
Clock gene knockdown/KO experiments often cannot distinguish 
between circadian (i.e., timing related) and non-circadian effects 
of a given mutation. This may to some extent be addressed by 
comparing phenotypes between mutants of different clock genes. 
However, because of the interactive nature of clock genes this may 
often not yield further insights. As an alternative approach, the 
direct modulation of circadian period length without abolishing 
clock function itself in a tissue-specific manner is achievable via 
manipulating period-determining genes such as casein kinase 
I ϵ (44). To some extent, this and other similar approaches still 
inevitably change clock protein levels and, thus, pleiotropic clock 
gene output.

An ideal animal model would be one with altered phasing 
of clock gene expression rhythms but unaffected overall clock 
protein abundance. Generating such model has become possible 
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with recent developments in genome editing such as CRISPR and 
TALEN (68, 69). CRISPR techniques have been used to “cure” 
retinal degeneration models in rats (70, 71). Together with the 
expanding knowledge of the role of the cis-regulatory elements of 
clock genes in determining the phase of expression rhythms, such 
as the identification of the phase-determining intronic enhancer 
of Cry1 (72), in  vivo genome editing may allow to selectively 
manipulate clock gene phasing.

COnCLUSiOn

In the last decades, the tools for studying the mechanisms 
underlying organismal circadian timekeeping and its role in 
metabolic regulation have been constantly refined (Figure  1). 
The network structure of the circadian system represents an 
important challenge in this context, posing high demands 
on both tempo-spatial control and recombination efficiency 

in genetic experiments. Novel genetic approaches may help 
to overcome these issues and provide a clearer picture of the 
complex interaction of different tissue clocks in the regulation 
of energy metabolism.
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